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Abstract. The present paper focuses on the theory of two-dimensional (2D) linear cellular automata (CA) with
respect to uniform reflexive and periodic boundary conditions. It is investigated the theoretical aspects of 2D linear
CA over binary states field with image problem. We consider geometrical and visual aspects of images generated
by these CA transition rules. Multiple copies of any arbitrary images corresponding to CA can be studied further
by considering theses transition rules of von Neumann and Moore CAs. An important note that these special types
of CAs can be applied many different special problems e.g. computability theory, applied mathematics, theoretical
chemistry and biology, DNA and genetics research, image science, textile design.
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1. Introduction

Cellular automata theory (CA for brevity) introduced by Ulam and von Neumann [27] in the early 1950’s, have
been systematically studied by Hedlund from purely mathematical point of view. One-dimensional (1D) CA has been
investigated to a large extent. However, a little interest has been given to two-dimensional cellular automata (2D CA).
Von Neumann [27] showed that a cellular automaton can be universal. Due to its complexity, von Neumann rules were
never implemented on a computer. In the beginning of the eighties, Wolfram [28] has studied in much detail a family
of simple 1D CA rules and showed that even these simplest rules are capable of emulating complex behavior. Some
basic and precise mathematical models using matrix algebra over the binary field which characterize the behavior of 2D
nearest neighborhood linear CA with null and periodic boundary conditions have been seen in the literature [13–16,20].
CA has received remarkable attention in the last few decades [20–25]. Due to its structure CA has given the opportunity
to model and understand many behaviors in nature easier. Most of the work for CA is done for one-dimensional (1D)
case. Here we study the theory of two dimensional uniform reflexive and periodic boundary CA (2D RB CA, 2D PB
CA) of the all linear rules (e.g. von Neumann, Moore neighborhood and the others) and problem of image science for
self copied patterns (see Figs. 6-7). We present some illustrative examples and figures to explain the method in detail.
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In the literature, there are many contributions to 2D cellular automata and its applications. In [1, 17, 18], the
theory and applications of two-dimensional, Null-boundary, nine-neighborhood, cellular automata linear rules and their
relations are studied in details. Application of two-dimensional periodic cellular automata with basic image processing
is investigated in [8,10,12]. In [6,7,9,11], sweeper’s Algorithm and its application on image Clustering and hexagonal
neighborhood CA are studied. Characterization of any non-linear Boolean function using a set of linear operators and
investigation of the global dynamics of cellular automata using Boolean derivatives are presented in [2,19]. Nowadays
many contributions on this direction still continues.

In this paper, we concentrate a special family of 2D finite linear CA with reflexive and periodic boundary condition
over the binary states field Z2. Here, we set up a specific relation between the structure of these CA and transition matrix
rules of 2D linear CA with reflexive and periodic boundary condition. It is determined of the transition rule matrices of
this special CA by means of the matrix algebra theory. Since CAs nature is very simple to allow mathematical studies
and to obtain very complicated and complex behaviors in dynamical systems, we believe that these linear CAs could
be obtained many different kind of applications. The present results can give further to the algebraic consequences of
these 2D CA and relates some elegant applications found by the authors in the literature (i.e. [20, 21, 24–26]).

2. Preliminaries

We investigate CA transition rules over the field Z2, and deal with the general case of the primary transition rule
matrices.

2.1. Technical Details. In this section, we introduce 2D CA over the field Z2 by using all primary local rules. We
recall the definition of a CA. We consider the 2D integer lattice Z2 and the configuration space Ω = {0, 1}Z

2
with

elements σ : Z2 → {0, 1}. (see details in [25, 26]).
The 2D finite CA consists of m × n cells arranged in m rows and n columns, where each cell takes one of the values

of 0 or 1. A configuration of the system is an assignment of states to all the cells. Every configuration determines a
next configuration via a linear transition rule that is local in the sense that the state of a cell at time (t + 1) depends only
on the states of some of its neighbors at time t using modulo 2. For 2D CA nearest neighbors (see Figs. 1-3), there are
nine cells arranged in a 3 × 3 matrix centering that particular cell (see [S6, S9, S10] for the details). For 2D CA there
are some classic types of rules, but in this work only we restrict ourselves to primary linear rules (briefly, from Rule 1
to Rule 256). So, we can define (for an example Rule 170) the (t + 1)th state of the (i, j)th cell as follows;

x(t+1)
(i, j) = x(t)

(i−1, j) + x(t)
(i, j+1) + x(t)

(i+1, j) + x(t)
(i, j−1)(mod 2) (Rule 170).

Any other rules can be written the linear combination of primary rules of Fig. 2. The dependence will be restricted to
the case of being zero or nonzero, in other words if the coefficients in the above equation equal to 0 or 1, then this case
will be assumed to be the same. This approach is adopted in this paper though these cases may be further distinguished.
The linear combination of the neighboring cells on which each cell value is dependent is called the rule number of the
2D CA over the field Z2.

In this paper, we will only consider a 2D finite CA generated by the primary rules with reflexive (RB) and periodic
boundary (PB). It is well known that these CAs are discrete dynamical systems formed by a finite 2D array m × n
composed by identical objects called cells. Let Φ : Mm×n(Z2)→ Zmn

2 . Φ takes the tth state [Xt] given by
x11 x12 ... ... x1n

x21 x22 ... ... x2n

... ... ... ... ...

... ... ... ... ...
xm1 xm2 ... ... xmn

 =
(

x11 x12 ... x1n ... xm1 ... xmn

)T
,

where T is the transpose of the matrix. Therefore, the local rules will be assumed to act on Zmn
2 rather than Φ :

Mm×n(Z2). Suppose binary information matrix is [Xt]m×n, of order m × n:

[Xt]m×n =


x(t)

11 ... ... x(t)
1n

... ... ... ...

... ... ... ...

x(t)
m1 ... ... x(t)

mn
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Figure 1. Null, periodic, reflexive and adiabatic boundary configurations on 2D CA respectively.

Figure 2. Rule convention chart of 2D linear CA over binary field. Any other rules can be written the linear
combination of these primary rules.

is called the configuration of the 2D finite CA at time t. From the above equations, we can define as follows;

(TRule)mn×mn.



x(t)
11
.
.

x(t)
1n
.
.

x(t)
m1
.
.

x(t)
mn



=



x(t+1)
11
.
.

x(t+1)
1n
.
.

x(t+1)
m1
.
.

x(t+1)
mn


The matrix (TRule)mn×mn is called the rule matrix with respect to the 2D finite CAm×n with the transition rule (see [6]

for details).
Let us give some background of 2D CA boundary conditions in the literature. Considering the neighbourhood of

the information cells, there are two well-known studied boundary approaches in the literature (see Fig. 1).
• Null or 0-fixed boundary: A null boundary (NB) CA is the one whose extreme cells are connected to 0-state.
• Adiabatic boundary: An adiabatic boundary (AB) CA is duplicating the value of the cell in an extra virtual

neighbor.
• Reflexive boundary (RB): This is designed for the value left and right neighbors that are the same with respect

to the boundary cell.
• Periodic boundary (PB): This implies that the space is wrapped around each spatial axis, i.e., the cells at one

edge of a finite space are connected to the cells at the opposite edge.
The linear combination of the neighboring cells on which each cell value is dependent is called the rule number of the
2D CA over the binary field Z2.

3. All Primary Transition RuleMatrices

In this section, we will obtain all primary transition rule matrices corresponding to 2D linear, reflexive and periodic
boundary CA over the binary field Z2.
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3.1. Transition Rule Matrices for Reflexive Boundary.

Theorem 3.1. (Reflexive Case). The transition rule matrices of 2D linear CA of all primary rules (1, 2, 4, 8, 16, 32,
64, 128, and 256) under the reflexive boundary condition are given in the following way

TRule1RB =



I 0 0 ... 0 0 0
0 I 0 ... 0 0 0
0 0 I ... ... 0 0
: : : : : : :
0 0 0 ... ... I 0
0 0 0 0 ... 0 I


TRule2RB =



K 0 0 ... 0 0 0
0 K 0 ... 0 0 0
0 0 K ... ... 0 0
: : : : : : :
0 0 0 ... 0 K 0
0 0 0 0 ... 0 K



TRule4RB =



0 K 0 ... 0 0 0
0 0 K ... 0 0 0
0 0 0 K ... 0 0
: : : : : : :
0 0 0 ... 0 0 K
0 0 0 0 ... K 0


TRule8RB =



0 I 0 ... 0 0 0
0 0 I ... 0 0 0
0 0 0 I ... 0 0
: : : : : : :
0 0 0 ... 0 0 I
0 0 0 0 ... I 0



TRule16RB =



0 L 0 ... 0 0 0
0 0 L ... 0 0 0
0 0 0 L ... 0 0
: : : : : : :
0 0 0 ... 0 0 L
0 0 0 0 ... L 0


TRule32RB =



L 0 0 ... 0 0 0
0 L 0 ... 0 0 0
0 0 L 0 ... 0 0
: : : : : : :
0 0 0 ... 0 L 0
0 0 0 0 ... 0 L



TRule64RB =



0 L 0 ... 0 0 0
L 0 0 ... 0 0 0
0 L 0 0 ... 0 0
: : : : : : :
0 0 0 ... L 0 0
0 0 0 0 ... L 0


TRule128RB =



0 I 0 ... 0 0 0
I 0 0 ... 0 0 0
0 I 0 0 ... 0 0
: : : : : : :
0 0 0 ... I 0 0
0 0 0 0 ... I 0



TRule256RB =



0 K 0 ... 0 0 0
K 0 0 ... 0 0 0
0 K 0 0 ... 0 0
: : : : : : :
0 0 0 ... K 0 0
0 0 0 0 ... K 0


mn×mn

where I is the identity n × n matrix and the sub-matrices K, L are given as

K =



0 1 0 ... 0 0 0
0 0 1 ... 0 0 0
0 0 0 ... ... 0 0
: : : : : : :
0 0 0 ... ... 0 1
0 0 0 0 ... 1 0


n×n

L =



0 1 0 ... 0 0 0
1 0 0 ... 0 0 0
0 1 0 ... ... 0 0
: : : : : : :
0 0 0 ... 1 0 0
0 0 0 0 ... 1 0


n×n

.

Proof. To construct for each primary transition rule matrix TRule RB, it is needed to determine the action of TRule RB

on the standard bases vectors. Firstly, we consider the linear transformation Φ from m × n matrix space to itself. Next,
we relate the transformation Φ with rule matrix TRule RB. Let ei j denote the matrix of size m× n where the (i, j) position
is equal to one and the rest of the entries equal to zero. It is well-known that these vectors give the standard basis for
this space (see [27,28]). Consider ei j, the image of ei j which is Ψ(ei j) is related to the transition rules neighbors. Φ(ei j))
equals to a linear combination of its non-zero nearest neighbors in the following way

Φ(ei j) = ei+1, j + ei, j−1 + ei−1, j + ei, j+1,

with a care on the nearest bordering components of the matrix. Due to the neighboring linear relations that govern the
rule, we obtain the transition rule matrices given in the theorem.
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Figure 3. Two dimensional 3 × 3 linear cellular automata with center xi, j.

Theorem 3.2. (von Neumann CA with Reflexive Boundary). Let us consider von Neumann CA with reflexive
boundary. Then the transitions matrix rules corresponding to von Neumann neighborhood CA with reflexive boundary
is equal to Rule 170RB. Hence the transition rule matrix is

T170RB =



K + L 0 0 ... 0 0 0
I K + L I ... 0 0 0
0 I K + L I ... 0 0
: : : : : : :
0 0 0 ... I K + L I
0 0 0 0 ... 0 K + L


.

Proof. Considering the linearity of the rule numbers, we get

Rule 170RB = Rule 2RB + Rule 8RB + Rule 32RB + Rule 128RB.

Then

TRule170RB =



K 0 0 ... 0 0 0
0 K 0 ... 0 0 0
0 0 K ... ... 0 0
: : : : : : :
0 0 0 ... 0 K 0
0 0 0 0 ... 0 K


+



0 I 0 ... 0 0 0
0 0 I ... 0 0 0
0 0 0 I ... 0 0
: : : : : : :
0 0 0 ... 0 0 I
0 0 0 0 ... I 0



+



L 0 0 ... 0 0 0
0 L 0 ... 0 0 0
0 0 L 0 ... 0 0
: : : : : : :
0 0 0 ... 0 L 0
0 0 0 0 ... 0 L


+



0 I 0 ... 0 0 0
I 0 0 ... 0 0 0
0 I 0 0 ... 0 0
: : : : : : :
0 0 0 ... I 0 0
0 0 0 0 ... I 0



=



K + L 0 0 ... 0 0 0
I K + L I ... 0 0 0
0 I K + L I ... 0 0
: : : : : : :
0 0 0 ... I K + L I
0 0 0 0 ... 0 K + L


.

Theorem 3.3. (Moore CA with Reflexive Boundary). Let us consider Moore CA with reflexive boundary. Then the
transitions matrix rules corresponding to Moore neighborhood CA with reflexive boundary is equal to Rule 510RB. So
the transition rule matrix is

T510RB =



K + L 0 0 ... 0 0 0
I + K + L K + L I + K + L ... 0 0 0

0 I + K + L K + L I + K + L ... 0 0
: : : : : : :
0 0 0 ... I + K + L K + L I + K + L
0 0 0 0 ... 0 K + L


.
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Proof. Using the linearity of the rule numbers, it is obtained

Rule 510RB = Rule 2RB + Rule 4RB + Rule 8RB + Rule 16RB
+ Rule 32RB + Rule 64RB + Rule 128RB + Rule 256RB.

Also it can be written as

Rule 510RB = Rule 170RB + Rule 4RB + Rule 16RB + Rule 64RB + Rule 256RB.

Then

T510RB =



K + L 0 0 ... 0 0 0
I K + L I ... 0 0 0
0 I K + L I ... 0 0
: : : : : : :
0 0 0 ... I K + L I
0 0 0 0 ... 0 K + L


+



0 K 0 ... 0 0 0
0 0 K ... 0 0 0
0 0 0 K ... 0 0
: : : : : : :
0 0 0 ... 0 0 K
0 0 0 0 ... K 0



+



0 L 0 ... 0 0 0
0 0 L ... 0 0 0
0 0 0 L ... 0 0
: : : : : : :
0 0 0 ... 0 0 L
0 0 0 0 ... L 0


+



0 L 0 ... 0 0 0
L 0 0 ... 0 0 0
0 L 0 0 ... 0 0
: : : : : : :
0 0 0 ... L 0 0
0 0 0 0 ... L 0


+



0 K 0 ... 0 0 0
K 0 0 ... 0 0 0
0 K 0 0 ... 0 0
: : : : : : :
0 0 0 ... K 0 0
0 0 0 0 ... K 0



=



K + L 0 0 ... 0 0 0
I + K + L K + L I + K + L ... 0 0 0

0 I + K + L K + L I + K + L ... 0 0
: : : : : : :
0 0 0 ... I + K + L K + L I + K + L
0 0 0 0 ... 0 K + L


.

3.2. Transition Rule Matrices under Periodic Boundary.

Theorem 3.4. (Periodic Case). The transition rule matrices of 2D linear CA of all primary rules (1, 2, 4, 8, 16, 32,
64, 128, and 256) under the periodic boundary condition are given in the following way

TRule1PB =



I 0 0 ... 0 0 0
0 I 0 ... 0 0 0
0 0 I ... ... 0 0
: : : : : : :
0 0 0 ... ... I 0
0 0 0 0 ... 0 I


TRule2PB =



M 0 0 ... 0 0 0
0 M 0 ... 0 0 0
0 0 M ... ... 0 0
: : : : : : :
0 0 0 ... ... M 0
0 0 0 0 ... 0 M



TRule4PB =



0 M 0 ... 0 0 0
0 0 M ... 0 0 0
0 0 0 ... ... 0 0
: : : : : : :
0 0 0 ... ... 0 M
M 0 0 0 ... 0 0


TRule8PB =



0 I 0 ... 0 0 0
0 0 I ... 0 0 0
0 0 0 ... ... 0 0
: : : : : : :
0 0 0 ... ... 0 I
I 0 0 0 ... 0 0



TRule16PB =



0 N 0 ... 0 0 0
0 0 N ... 0 0 0
0 0 0 ... ... 0 0
: : : : : : :
0 0 0 ... ... 0 N
N 0 0 0 ... 0 0


TRule32PB =



N 0 0 ... 0 0 0
0 N 0 ... 0 0 0
0 0 N ... ... 0 0
: : : : : : :
0 0 0 ... ... N 0
0 0 0 0 ... 0 N
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TRule64PB =



0 0 0 ... 0 0 N
N 0 0 ... 0 0 0
0 N 0 ... ... 0 0
: : : : : : :
0 0 0 ... N 0 0
0 0 0 0 ... N 0


TRule128PB =



0 0 0 ... 0 0 I
I 0 0 ... 0 0 0
0 I 0 ... ... 0 0
: : : : : : :
0 0 0 ... I 0 0
0 0 0 0 ... I 0



TRule256PB =



0 0 0 ... 0 0 M
M 0 0 ... 0 0 0
0 M 0 ... ... 0 0
: : : : : : :
0 0 0 ... M 0 0
0 0 0 0 ... M 0


mn×mn

where I is the identity n × n matrix and the sub-matrices M,N are given as

M =



0 1 0 ... 0 0 0
0 0 1 ... 0 0 0
0 0 0 ... ... 0 0
: : : : : : :
0 0 0 ... ... 0 1
1 0 0 0 ... 0 0


n×n

N =



0 0 0 ... 0 0 1
1 0 0 ... 0 0 0
0 1 0 ... ... 0 0
: : : : : : :
0 0 0 ... 1 0 0
0 0 0 0 ... 1 0


n×n

.

Proof. To obtain for each transition rule matrix TRule PB, it is needed to determine the action of TRule PB on the
bases vectors as given in the reflexive case. Consider the linear transformation ψ from m × n matrix space to itself.
Next, we relate the transformation ψ with rule matrix TRule PB. Given ei j, the image of ei j which is ψ(ei j) is related to
the transition rules neighbors. ψ(ei j)) equals to a linear combination of its non-zero neighbors as in the reflexive case.
Then it is found the periodic transition rule matrices given in the theorem.

Theorem 3.5. (von Neumann CA with Periodic Boundary). Let us consider von Neumann CA with periodic bound-
ary. Then the transitions matrix rules corresponding to von Neumann neighborhood CA with periodic boundary is
equal to Rule 170PB. Hence the transition rule is

T170PB =



M + N I 0 ... 0 0 I
I M + N I ... 0 0 0
0 I M + N I ... 0 0
: : : : : : :
0 0 0 ... I M + N I
I 0 0 0 ... I M + N


.

Proof. By using the linearity of the rule numbers, we write

Rule 170PB = Rule 2PB + Rule 8PB + Rule 32PB + Rule 128PB.

Then

TRule170PB =



M 0 0 ... 0 0 0
0 M 0 ... 0 0 0
0 0 M ... ... 0 0
: : : : : : :
0 0 0 ... ... M 0
0 0 0 0 ... 0 M


+



0 I 0 ... 0 0 0
0 0 I ... 0 0 0
0 0 0 ... ... 0 0
: : : : : : :
0 0 0 ... ... 0 I
I 0 0 0 ... 0 0



+



N 0 0 ... 0 0 0
0 N 0 ... 0 0 0
0 0 N ... ... 0 0
: : : : : : :
0 0 0 ... ... N 0
0 0 0 0 ... 0 N


+



0 0 0 ... 0 0 I
I 0 0 ... 0 0 0
0 I 0 ... ... 0 0
: : : : : : :
0 0 0 ... I 0 0
0 0 0 0 ... I 0
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=



M + N I 0 ... 0 0 I
I M + N I ... 0 0 0
0 I M + N I ... 0 0
: : : : : : :
0 0 0 ... I M + N I
I 0 0 0 ... I M + N


.

Theorem 3.6. (Moore CA with Periodic Boundary). Let us consider Moore CA with periodic boundary. Then the
transitions matrix rules corresponding to Moore neighborhood CA with periodic boundary is equal to Rule 510PB.
Hence the transition rule is

T510PB =



M + N I + M + N 0 ... 0 0 M + N
I + M + N M + N I + M + N ... 0 0 0

0 I + M + N M + N I + M + N ... 0 0
: : : : : : :
0 0 0 ... I + M + N M + N I + M + N

M + N 0 0 0 ... I + M + N M + N


.

Proof. The linearity of the rule numbers can be written as

Rule 510PB = Rule 2PB + Rule 4PB + Rule 8PB + Rule 16PB
+ Rule 32PB + Rule 64PB + Rule 128PB + Rule 256PB.

Also we get

Rule 510PB = Rule 170PB + Rule 4PB + Rule 16PB + Rule 64PB + Rule 256PB.

Then

T510PB =



M + N I 0 ... 0 0 I
I M + N I ... 0 0 0
0 I M + N I ... 0 0
: : : : : : :
0 0 0 ... I M + N I
I 0 0 0 ... I M + N


+



0 M 0 ... 0 0 0
0 0 M ... 0 0 0
0 0 0 ... ... 0 0
: : : : : : :
0 0 0 ... ... 0 M
M 0 0 0 ... 0 0



+



0 N 0 ... 0 0 0
0 0 N ... 0 0 0
0 0 0 ... ... 0 0
: : : : : : :
0 0 0 ... ... 0 N
N 0 0 0 ... 0 0


+



0 0 0 ... 0 0 N
N 0 0 ... 0 0 0
0 N 0 ... ... 0 0
: : : : : : :
0 0 0 ... N 0 0
0 0 0 0 ... N 0


+



0 0 0 ... 0 0 M
M 0 0 ... 0 0 0
0 M 0 ... ... 0 0
: : : : : : :
0 0 0 ... M 0 0
0 0 0 0 ... M 0



=



M + N I + M + N 0 ... 0 0 M + N
I + M + N M + N I + M + N ... 0 0 0

0 I + M + N M + N I + M + N ... 0 0
: : : : : : :
0 0 0 ... I + M + N M + N I + M + N

M + N 0 0 0 ... I + M + N M + N


.

4. Image Problems and Cellular Automata

Self copied pattern producing is one of the most interesting topic and research area in nonlinear science. Pattern
generation is the process of transforming copies of the motif about the array (1D), plane (2D) or space (3D) in order to
create the whole repeating pattern with no overlaps and blank [14, 15, 21–25]. These patterns have some mathematical
properties which make generating algorithm possible. A cellular automaton is a good candidate algorithmic approach
used for pattern generation.

In the present paper it is used von Neumann and Moore CA with all the nearest neighborhoods (i.e. all primary rules
and their combinations and Theorems 3.1-3.6 (von Neumann and Moore CA with Reflexive-Periodic Boundaries)) to
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Figure 4. Image transition of 7 × 7 von Neumann CA (i.e. Rule 170) with reflexive boundary after
1,2,3 iterations of the first image.

Figure 5. Image transition of 7 × 7 von Neumann CA (i.e. Rule 170) with periodic boundary after
1,2,3 iterations of the first image.

generate some image patterns of two states or digital images. For applying 2D reflexive and periodic CA linear rules in
image problems, we study a binary matrix of size (7×7) and (100×100) respectively, and these are due to computational
limitations. It is mapped each element of the matrix to a unique pixel on the screen (using MATLAB codes) and colored
a pixel white for 0, black for 1 for the matrix elements (see Figs. 4-5). Then we take another image (see Figs. 6-7)
whose size is less than (30 × 30) for which patterns are to be generated and put it in the center of the binary matrix.
This is the way how the image is drawn within an area of (100× 100) pixels. We see from Figs. 6-7 that the self copied
patterns can be generated only when number of repetition is 16-iterations. Also behaviors for different boundaries
produce different shapes when t = 16. This interesting results should be investigated as a image problem for CA in the
next studies.

Figure 6. Image transition of 100×100 von Neumann CA (i.e. Rule 170) with reflexive and periodic
boundaries after 16 iterations of the first image.

5. Conclusion

In the present paper it is studied the theory two dimensional, uniform reflexive and periodic boundary CA of linear
primary rules and problem of image science. It is easily seen that 2D linear these CAs could be applied successfully in
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Figure 7. Image transition of 100 × 100 Moore CA (i.e. Rule 510) with reflexive and periodic
boundaries after 16 iterations of the first image.

evolution patterns of image problems. The some characterizations and applications on 2D finite linear CAs considering
matrix algebra built on any other states fields should be explored for the next studies. New interesting results and further
connections on this direction wait to be explored in 2D CA and the other science branches [3–5, 22].
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