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Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene 
Variants in Sepsis
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Background: The humoral system is activated and 
various cytokines are released due to infections in 
tissues and traumatic damage. Nuclear factor-kappa B 
dimers are encoded by nuclear factor-kappa B genes 
and regulate transcription of several crucial proteins of 
inflammation such as tumour necrosis factor-alpha. 
Aims: To investigate the possible effect of 
polymorphisms on tumour necrosis factor-alpha serum 
levels with clinical and prognostic parameters of sepsis 
by determining the nuclear factor-kappa B-1-94 ins/
del ATTG and tumour necrosis factor-alpha (-308 G/A) 
gene polymorphisms and tumour necrosis factor-alpha 
serum levels. 
Study Design: Case-control study. 
Methods: Seventy-two patients with sepsis and 104 
healthy controls were included in the study. In order to 
determine the polymorphisms of nuclear factor-kappa 
B-1-94 ins/del ATTG and tumour necrosis factor-alpha 
(-308 G/A), polymerase chain reaction–restriction 
fragment length polymorphism analysis was performed 
and serum tumour necrosis factor-alpha levels were 
determined using an enzyme-linked immunosorbent 

assay. 
Results: We observed no significant differences in 
tumour necrosis factor-alpha serum levels between the 
study groups. In the patient group, an increase in the 
tumour necrosis factor-alpha serum levels in patients 
carrying the tumour necrosis factor-alpha (-308 G/A) A 
allele compared to those without the A allele was found 
to be statistically significant. Additionally, an increase in 
the tumour necrosis factor-alpha serum levels in patients 
carrying tumour necrosis factor-alpha (-308 G/A) AA 
genotype compared with patients carrying the AG or GG 
genotypes was statistically significant. No significant 
differences were found in these 2 polymorphisms 
between the patient and control groups (p>0.05). 
Conclusion: Our results showed the AA genotype and 
the A allele of the tumour necrosis factor-alpha (-308 
G/A) polymorphism may be used as a predictor of 
elevated tumour necrosis factor-alpha levels in patients 
with sepsis.
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Sepsis is a multisystem disease typically causing hemodynamic 
alterations, shock, organ dysfunction, and organ failure. 
Moreover, sepsis can be life threatening. Studies have shown 
that the humoral system is activated and various cytokines are 
released due to infections in tissues and traumatic damage (1). 
Nuclear factor-kappa B (NF-κB) dimers, which are encoded by 
NF-κB genes, regulate transcription of several crucial proteins 
of inflammation such as tumour necrosis factor-alpha (TNF-α) 
(2). Additionally, NF-κB is a key molecule in the immune and 
inflammatory response; in many cell types it modulates cell 
proliferation, apoptosis, adhesion, invasion and angiogenesis 
(3). The major form of NF-κB is a heterodimer of the p50 and 
p65/RelA subunits encoded by genes NF-κB1 and RelA (4). 
-94 ins/del ATTG rs28362491 polymorphism was identified 
between 2 main promoter regulatory elements in the NF-κB1 
gene. ATTG deletion leads to the loss of binding to nuclear 
proteins, which causes decreased promoter activity (2). ATTG 
deletion leads to the loss of binding to nuclear proteins, which 
causes decreased promoter activity. Studies report that the ATTG 
deletion is associated with immune and inflammatory diseases 
(2). Schäfer et al. (5) suggested that hydrocortisone therapy in 
D allele carriers of the NF-κB1-94 ins/del ATTG polymorphism 
was a prognostic factor for 30-day mortality. TNF-α is one of 
the major mediators of the immune response against infectious 
challenge. Increased levels of TNF-α have been found in sepsis, 
but TNF-α inhibition has proven to be an unsuccessful treatment 
(6). The main source of TNF-α synthesis is human monocytes. 
Plasma levels of TNF-α are normally minimal; however, cells 
of the immune system release TNF-α on stimulation. The 
correlation between TNF-α and inflammatory process-based 
pathologic states has been previously investigated. In healthy 
volunteers and patients with septic shock, elevated TNF-α 
plasma levels have been reported after endotoxin excitation 
(7). Several polymorphisms have been identified at different 
positions of the TNF-α promoter region in various infectious 
and inflammatory diseases (8,9), mainly focusing on the 
promoter single nucleotide polymorphism TNF-α-308 G/A in 
sepsis. Although many studies have reported the association of 
the A allele with susceptibility to septic shock, the findings have 
been variable (10,11). The G/A transition at position -308 in 
the TNF-α promoter has been reported to affect TNF promoter 
activity and TNF-α production (12). In a meta-analysis, 
Zhang et al. (13) reported that TNF-α-308 G/A and -238 G/A 
polymorphisms were associated with an increased risk of sepsis 
but not sepsis-related mortality.
The aim of this study was investigate the possible effects 
of NF-κB1 -94 ins/del ATTG and TNF-α (-308 G/A) gene 
polymorphisms on TNF-α serum levels and clinical parameters 
of sepsis in Turkish sepsis patients.

MATERIALS AND METHODS

Study groups
The study group consisted of 72 patients (21 women and 51 
men; mean age 64.60±11.45 years) diagnosed with sepsis in 
between February 2014 and February 2015. Sepsis was defined 
in accordance with Bone et al. (14). The control group included 
104 randomly selected healthy individuals (20 women, 84 men; 
mean age 62.28±11.34 years) who had no signs of sepsis. All 
participants gave written informed consent. This study was 
approved by the local ethics committee (February 20, 2014; 
number: 380) and was carried out in concordance with the 
Declaration of Helsinki. 

DNA isolation
Peripheral blood of participants was collected in EDTA-
containing vacurtainer tubes (BD Vacutainer, Franklin Lakes, 
NJ., USA) Genomic DNA was extracted in accordance 
with PureLink® Genomic Kit manufacturer's instructions 
(Invitrogen, Carlsbad, CA, USA).

Genotyping for NF-κB1-94 ins/del ATTG and TNFα (-308 
G/A) polymorphisms

The NF-κB1 -94 ins/del ATTG and TNF-α-308G/A 
polymorphisms were amplified and genotyped using polymerase 
chain reaction–restriction fragment length polymorphism 
(PCR-RFLP). The genotype of the NF-κB1 gene polymorphism 
was amplified using the following primer sequences: F- 5'-TTT 
AAT CTG TGA AGA GAT GTG AAT G -3', R- 5'- CTC TGG 
CTT CCT AGC AGG G -3' and the genotype of the TNF-α-308 
G/A gene polymorphism was amplified using the following 
primer sequences: F- 5'-AGG CAA TAG GTT TTG AGG GCC 
AT -3', R- 5'- TCC TCC CTG CTC CGA TTC CG -3'. 
PCR was performed for the NF-κB1 gene with the initial 
denaturation at 95 ºC for 5 minutes, 38 cycles at 94 ºC for 45 
seconds, 72 ºC for 45 seconds and the final step at 72 ºC for 
5 minutes. PCR products were then digested using the Van91I 
restriction enzyme for 3 hours at 37 ºC. Three genotypes were 
determined through distinct banding patterns as base pairs 
(bp) on a 2% agarose gel for the NF-κB1 gene polymorphism: 
homozygous del/del (254 bp), heterozygous ins/del (254 and 
206 bp) and homozygous ins/ins (206 bp).
For the TNF-α-308 G/A polymorphism, PCR was performed 
with the initial denaturation at 95 ºC for 5 minutes, 35 cycles of 
94 ºC for 45 seconds, 64 ºC for 45 seconds, 72 ºC for 45 seconds 
and the final step at 72 ºC for 5 minutes. The PCR products were 
digested using the NcoI restriction enzyme for 3 hours at 37 
ºC. Three genotypes were determined through distinct banding 
patterns on a 2% agarose gel for the TNF-α gene polymorphism: 

Balkan Med J, Vol. 35, No. 1, 2018

Acar et al. Polymorphisms in Sepsis 31



107 bp for the AA genotype, 20 and 87 bp for the GG genotype, 
and 20, 87 and 107 bp for the AG genotype.

Determination of TNFα levels
Fasting blood samples were obtained from each participant in 
plain tubes (Vacuette). The samples were centrifuged for 10 
minutes at 1500 × g followed by the removal of serum. Levels 
of TNF-α were determined using a human ELISA kit (Diaclone, 
Besancon Cedex, France) in Greiner Labortechnik, Germany, 
accordance with the manufacturer's protocol.

Statistical analysis
The statistical analyses were performed using the SPSS software 
version 21.0 (SPSS, Chicago, Illinois, USA). P values less than 
0.05 were assumed to be statistically significant. The differences 
in allele and genotype frequencies between patient and control 
groups were detected using the χ2 and Fisher test. We compared 
the biochemical parameters in the case and the control groups 
using the Student’s t-test. Biochemical parameters among the 
genotypes were investigated using One-Way ANOVA and the 
Mann-Whitney U test.

RESULTS

Biochemical and demographical analysis 
Biochemical and demographic data of the study groups are 
given in Table 1. No statistical difference was found in terms 

of age between the patient and the control groups (p>0.05). As 
expected, body temperature, creatinine, blood urea nitrogen 
(BUN), white blood cells (WBC), C-reactive protein (CRP), 
pH, lactate, glucose, lactate dehydrogenase, serum glutamic-
oxaloacetic transaminase (SGOT), serum glutamic-pyruvic 
transaminase (SGPT) (p<0.001) and K+ (p=0.043) levels are 
higher in the sepsis group compared to the controls.

Genetic analysis
Between the study groups, there were no significant findings in 
terms of the NF-κB1 -94 ins/del ATTG and TNF-α (-308 G/A) 
polymorphism genotypes and allele distributions (Table 2). 

Hardy-Weinberg equilibrium
Each of the case and control groups was checked for all 
polymorphisms using Hardy-Weinberg equilibrium, and the 
equilibrium was confirmed by PLINK software using the exact 
test (for patients NF-κB1 p=0.006, TNF-α p=0.02; for controls 
NF-κB1 p=0.001, TNF-α p=0.38).
Serum TNF-α levels according to NF-κB1 -94 ins/del ATTG 
and TNF-α (-308 G/A) genotypes and allele distributions in 
the study groups are shown in Table 3. In the patient group, 
increased TNF-α serum levels in patients carrying the TNF-α 
(-308 G/A) A allele compared with those without the A 
allele were found to be statistically significant. Additionally, 
increased TNF-α serum levels in patients carrying TNF-α (-308 
G/A) AA genotype was statistically significant when compared 
to patients carrying the GA genotype [95% CI: (10.71-71.66); 
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TABLE 1. Biochemical and demographic parameters of the study population

Parameters Patients (n=72) Controls (n=104) p value

Age (years) 64.60±11.45 62.28±11.34 >0.05
Temperature (˚C) 37.02±1.02 36.49±0.13 <0.001
Creatinine (mg/dL) 2.17±1.50 0.97±0.34 <0.001
Blood urea nitrogen 
(mg/dL)

62.79±28.96 20.65±5.89 <0.001

Hemoglobin (g/dL) 9.65±1.11 13.28±1.72 <0.001
WBC (kg/mm3) 20714.43±14737.03 7735.87±2253.08 <0.001
C-reactive protein 
(mg/L)

17.90±5.26 0.50±0.05 <0.001

pH 7.35±0.10 7.42±0.31 <0.001
Lactate (mEq/L) 4.00±3.75 1.02±0.44 <0.001
Glucose (mg/dL) 163.02±63.51 116.14±37.33 <0.001
K+ (mEq/L) 4.06±0.86 3.86±0.43 >0.05
SGOT 513.78±98.96 28.40±22.09 <0.001
SGPT 244.82±51.20 28.16±26.73 <0.001
Lactate 
dehydrogenase 

483.23±268.16 220.94±92.91 <0.001

TNF-α level (pg/mL) 49.47±24.79 47.94±21.02 >0.05
n: number of individuals; pH: acidity; SGOT: serum glutamic oxaloacetic 
transaminase; SGPT: serum glutamic pyruvic transaminase; WBC: white blood cell; 
TNF-α: tumour necrosis factor-alpha; Statistical evaluation was performed using the 
Student’s t-test

TABLE 2. Distribution of NF-κB1 -94 ins/del ATTG and TNF-α (-308 G/A) 
genotype and alleles in the study groups

NF-κB1 Patients (n=72) Controls (n=104)

Genotype

ins/ins 12 (16.7%) 23 (22.1%)

del/del 39 (54.2%) 58 (55.8%)

ins/del 21 (29.2%) 23 (22.1%)

Alleles

ins 45 (31.2%) 69 (33.2%)

del 99 (68.8%) 139 (66.8%)

TNF-α Patients (n=72) Controls (n=104)

Genotype

GG 58 (80.6%) 84 (80.8%)

AA 3 (4.2%) 2 (1.9%)

GA 11 (15.3%) 18 (17.3%)

Alleles

G 127 (88.2%) 186 (89.4%)

A 17 (11.8%) 22 (10.6%)
n: number of individuals; TNF-α: tumour necrosis factor-alpha; NF-κB1: nuclear 
factor-kappa B



p=0.009] and GG [p=0.002, 95% CI: (16.92-72.33)]. When 
comparing NF-κB1 -94 ins/del ATTG, TNF-α (-308 G/A) 
genotype and allele distributions in the control group, no 
significant difference between TNF-α levels was found. TNF-α 
levels in terms of NF-kB1 -94 ins/del ATTG polymorphism 
were determined as ins/ins>ins/del>del/del, and TNFα levels in 
terms of TNF-α (-308 G/A) polymorphism were determined as 
AA>GA>GG respectively. We also detected TNF-α levels by 
infectious agent (Table 4). In patients, TNF-α levels increased 

in the presence of Acinetobacter baumanni, Corynebacterum 
striatum, Streptococcus pneumonia and Serratia marcescens 
when compared to infectious agents. 

Multivariate logistic regression analysis
Multivariate logistic regression analysis was also performed 
and no significant results were found.

DISCUSSION

The common parameters for the diagnosis of sepsis were 
redefined in 2005. We observed compatible clinical parameters 
in the patients (15). In the present study, there was a statistically 
significant increase for the following parameters in the patient 
group compared to healthy group: creatinine, BUN, WBC, 
CRP, lactate, fasting blood glucose, K+, SGPT, SGOT, lactate 
dehydrogenase levels and body temperature. Two initial 
molecules in sepsis that need further exploration are TNF-α 
and interleukin-1 (IL-1). These inflammatory factors associated 
with severe sepsis are shown by some studies (16-18). 
Single nucleotide polymorphisms such as TNF-α, IL-1, 
IL10, and Fc-γ receptor genes were found to be effective 
in the regulation of the inflammatory response against 
microorganisms. Polymorphisms in cytokine genes can affect 
inflammatory or anti-inflammatory cytokine production and 
concentrations. Consequently, the patients have either an 
increased or decreased inflammatory response. It was detected 
that various genetic polymorphisms, including TNF-α, IL-1, IL-
6, and IL- 10, were associated with a predisposition to infection 
and increased mortality in patients with sepsis (17,18). In a 
GWAS study in premature infants, Srinivasan et al. (19) did not 
report any significant results for common sepsis genes, such as 
IL-6, TLR-2, TLR-4, etc.
Previous studies demonstrated that cytokine gene 
polymorphisms caused severe pneumococcal and 
meningococcal infections and septic shock (20-22). A Turkish 
study demonstrated the MyD88 SNP -938 C/C genotype was 
associated with sepsis (23). Tak and Firestein (22) observed 
that levels of IL-1β, IL-6, and TNF-α proinflammatory 
proteins in the cell were reduced by suppression of NF-κB 
dependent inflammation. Additionally, a positive relationship 
was observed between increased cellular IL-6 levels and the 
NF-κB1 -94 ins/del ATTG polymorphism deletion allele in a 
study by Giachelia et al. (24).
In their study comparing carriers of the -308 A allele with GG 
homozygous individuals in patients with burns, Barber et al. 
(25) determined that the risk of developing severe sepsis was 
higher in -308A allele carriers. Song et al. (26) suggested that 
-308 A was strongly associated with susceptibility to severe 
sepsis, but not with mortality in the Chinese Han population. 
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TABLE 3. Serum TNF-α levels according to NF-κB1 -94 ins/del ATTG and 
TNF-α (-308 G/A) genotypes and alleles

NF-kB1 -94 ins/del 
ATTG polymorphism

Patients 
(n=72)

Controls 
(n=104)

Genotype

ins/ins 53.34±21.53 (n=12) 48.29±20.53 (n=23)

del/del 47.98±22.48 (n=39) 46.57±17.98 (n=58)

ins/del 50.02±30.88 (n=21) 51.04±28.17 (n=23)

Alleles

ins 51.23±27.53 (n=33) 49.67±24.42 (n=46)

del 48.69±25.49 (n=60) 47.84±21.28 (n=81)

TNF-α (-308 G/A) 
polymorphism

Patients (n=72) Control (n=104)

Genotype

GG 47.08±20.00 (n=58) 46.77±21.87 (n=84)

AA 91.71±65.08 (n=3)** 64.78±1.96 (n=2)

GA 50.52±25.82 (n=11) 51.55±16.91 (n=18)

Alleles

A 59.35±38.37 (n=14)* 52.87±16.51 (n=20)

G 47.63±20.86 (n=69) 47.61±27.09 (n=102)
n: number of individuals; TNF-α: tumour necrosis factor-alpha; NF-κB1: nuclear 
factor-kappa B; *G (p=0.045); **GA (p=0.009) and GG (p=0.002)

TABLE 4. TNF-α levels according to infectious agent in patients

Infectious agents TNF-α levels  
(pg/mL) (n=72)

Candida albicans (n=1) 36.72

Acinetobacter baumannii (n=27) 53.63±35.60

Aspergillus (n=1) 47.25

Corynebacterum striatum (n=4) 55.72±22.62

Pseudomonas aeruginosa (n=28) 46.49±17.58

Klebsiella pneumoniae (n=17) 43.67±9.53

Enterobacter (n=10) 44.71±13.14

Methicillin-resistant Staphylococcus aureus (n=19) 42.71±9.55

Staphylococcus aureus (n=6) 43.27±8.59

Serratia marcescens (n=1) 71.17

Escherichia coli (n=9) 46.59±16.28

Vancomycin-resistant Enterococcus (n=4) 43.79±9.96

Streptococcus pneumoniae (n=5) 55.05±19.75
TNF-α: tumour necrosis factor-alpha



Feng et al. (27) reported that TNF-α-308 A allele and the IL-6 
rs1800795 allele variants were risk factors for septic shock 
induced by pneumonia in intensive care unit patients. Baghel et 
al. (28) indicated that the TNF-α-308 G/A polymorphism was 
associated with the development of postoperative sepsis and 
increased expression of TNF-α, IL-6 and IL-8 genes. Contrary 
to these studies, we did not find any significant differences 
between patients and controls according to TNF-α genotype 
and allele distributions.
In 1993, de Bont et al. (29) reported that in neonatal sepsis 
IL-6 and TNF-α serum levels increased significantly but IL-
1β increased only slightly. In addition, in 1994, Ozdemir et al. 
(30) detected that IL-1β also increased in neonatal sepsis. In 
1993, Casey et al. (31) concluded that patients carrying sepsis 
syndrome criteria, TNF-α, IL-1β and IL-6 levels were high, and 
there was an inverse correlation between high IL-6 and survival 
regardless of microbiologic profiles. In 1994, van Deuren et 
al. (32) specified that in fulminant septicemia, TNF-α levels 
increased briefly and temporarily for a time in the early stages of 
infection, but the production of IL-1β was never induced. Kothari 
et al. (33) reported that plasma TNF-α levels and the single 
nucleotide polymorphism of the TNF gene showed significant 
association with the development of severe sepsis and septic 
shock. Bavunoglu et al. (34) suggested that IL-6, TNF-α, NT, and 
oxLDL serum levels were correlated with the severity of sepsis.
In our study, we compared serum TNF-α levels between the 
study groups and found increased TNF-α levels statistically 
insignificant. We suggest that the real importance of TNF-α, 
which is thought to play an important role in the pathogenesis 
of sepsis, and the periods in which TNF-α plays an active role 
during the disease should be determined in large population 
studies. According to TNF-α genotypes and alleles, we observed 
that TNF-α serum levels in patients carrying TNF-α (-308 G/A) 
A allele had statistically significant increases compared to those 
without the A allele. Additionally, TNF-α serum levels in patients 
carrying TNF-α (-308 G/A) AA genotype showed a statistically 
significant increase compared to patients carrying GA.
Karban et al. (2) showed that the promoter activity of the 
NF-κB1 -94 del ATTG del allele is considered low, but the 
promoter activity of the ins allele is considered high. Therefore, 
the del allele may lead to the production of the p50/p105 NF-
κB heterodimer at lower levels and reduce the inflammatory 
response causing a decrease in NF-κB1 expression.
The NF-κB1 -94 ins/del ATTG promoter gene polymorphism 
was studied and found to also have some immune inflammatory 
diseases (35). The results obtained from these studies contradict 
each other as different results were obtained even between 
experiments that studied the same disease group. These 
contradictions have been attributed to racial differences (36). 

Adamzik et al. (37) found that the NF-κB1 -94 ins/del ATTG 
del allele is associated with an increased 30-day mortality 
rate in severe sepsis and an increased activation of the innate 
immune system. In our study, no statistically significant finding 
was encountered in terms of the NF-κB1 -94 ins/del ATTG 
polymorphism genotype and allele distributions between study 
groups.
The transcription of TNF-α is performed by NF-κB (3). 
Therefore, it is expected that increased NF-κB activity can 
cause an increase in TNF-α expression. However, in our study, 
no significant difference in TNF-α levels was found.
Our findings suggest that there is no relationship between sepsis 
risk and both polymorphisms; however, the AA genotype and A 
allele are associated with increased TNF-α levels in patients. 
As a result, although there have been many innovations in the 
genetic knowledge and treatment of sepsis, we think that further 
studies on polymorphisms will be useful, and the data obtained 
in this study must be supported by further studies with increased 
patient participation.
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