Some Null Quaternionic Curves in Minkowski Spaces

Tanju Kahraman*
Manisa Celal Bayar University, Faculty of Arts and Sciences, Department of Mathematics, Campus of Prof. Dr. İlhan Varank, Manisa, Turkey
*tanju.kahraman@cbu.edu.tr

Received: 01 January 2018
Accepted: 08 October 2018
DOI: 10.18466/cbayarfbe. 376273

Abstract

In this work, we examine null quaternionic rectifying curves and null quaternionic similar curves in Minkowski space E_{1}^{3}. Also, we defined null quaternionic (1,3)-Bertrand partner curves in E_{1}^{4}. Thus, we have characterizations between curvatures of these curves in Minkowski spaces.

Keywords: Null Quaternionic Curve; rectifying curve; similar partner curve; Bertrand partner curve.

1. Introduction

The quaternions are essentially multi-dimensional complex numbers and were first defined by Hamilton in 1844 and 1845. The quaternions are both relatively simple and very effective for rotations. The quaternion algebra has played a important role recently in several areas such as differential geometry, analysis and synthesis of mechanism and machines, simulation of particle motion in molecular physics and quaternionic formulation of equation of motion in theory of relativity [10, 16].

In the fundamental theory and characterizations of space curves, special curves have very interesting and an important problem. Large part of mathematicians studied the special curves in detail. Especially, the partner curves, i.e., the curves which are related each other at the corresponding points, have drawn attention of many mathematicians so far. In the theory of curves, wellknown curves are Bertrand, Mannheim, rectifying, similar and involute-evolute curves. These curves are studied on different spaces by a lot of mathematicians [12, 13].

Bertrand curves are most favourite type of partner curves. A Bertrand curve is a curve which has common principal normal vectors with another curve and characterized by speciality that $\lambda \kappa+\mu \tau=1$ where κ, τ curvatures of the Bertrand are curve and λ, μ are constants. Rectifying curves were defined by Chen in 2003 [3]. At the same year, İlarslan et al. studied rectifying curves in

Minkowski 3-space [11]. Then, more mathematicians studied about rectifying curves in some spaces [2-4, 9, 15]. In 2014, Soyfidan and Güngör studied quaternionic rectifying curves in Semi-Euclidean space [14]. ElSabbagh and Ali have defined a new curve couple called similar curves whose arc-length parameters have relationships and their tangents are the same [8].
In [1], Bharathi and Nagaraj defined Serret-Frenet formulas for a quaternionic curve in E^{3} and E^{4}. Finally, Çöken and Tuna defined Serret-Frenet formulas for quaternionic curves and null quaternionic curves in SemiEuclidean spaces [5-7].
In this study, we define null quaternionic rectifying curves and null quaternionic similar partner curves in Minkowski 3-space E_{1}^{3}. We show that similar results of rectifying and similar curves is almost satisfied for null quaternionic rectifying curves and null quaternionic similar partner curves. Moreover, we obtain some characterizations for these curves. Lastly, we prove definition of null quaternionic (1, 3)-Bertrand curves in Minkowski space-time E_{1}^{4} and obtain some relations about null quaternionic (1-3)-Bertrand curves in E_{1}^{4}.

2. Material and Methods

In this section, we give basic concepts related to the semireal quaternions. For more detailed information, we refer ref. [6, 7].

The set of semi-real quaternions is given by
$Q=\left\{q \mid \quad q=a e_{1}+b e_{2}+c e_{3}+d ; \quad a, b, c, d \in I R\right\}$
where $e_{1}, e_{2}, e_{3} \in E_{1}^{3}, \quad h\left(e_{i}, e_{i}\right)=\varepsilon\left(e_{i}\right), \quad 1 \leq i \leq 3$ and
$e_{i} \times e_{i}=-\varepsilon\left(e_{i}\right)$,
$e_{i} \times e_{j}=\varepsilon\left(e_{i}\right) \varepsilon\left(e_{i}\right) e_{k} \in E_{1}^{3}$.
The multiplication of two semi real quaternions p and q are defined by
$p \times q=S_{p} S_{q}+S_{p} V_{q}+S_{q} V_{p}+h\left(V_{p}, V_{q}\right)+V_{p} \wedge V_{q}$
Here in, we have inner and cross products in SemiEuclidean space $E_{1}^{3} . \quad q=a e_{1}+b e_{2}+c e_{3}+d$ and $\alpha q=-a e_{1}-b e_{2}-c e_{3}+d$ are semi real quaternion and its conjugate, respectively and inner product h are defined by
$h(p, q)=\frac{1}{2}[\varepsilon(p) \varepsilon(\alpha q)(p \times \alpha q)+\varepsilon(q) \varepsilon(\alpha p)(q \times$
[6].
Semi-Euclidean space E_{1}^{3} is identified clearly with null spatial quaternions $\left\{\gamma \in Q_{E_{1}^{3}} \mid \quad \gamma+\alpha \gamma=0\right\}$,

$$
\gamma(s)=\sum_{i=1}^{3} \gamma_{i}(s) e_{i}, \quad 1 \leq i \leq 3
$$

$\{l, n, u\}$ are Frenet frames of the null quaternionic curves in E_{1}^{3} and e_{2} be timelike vector. Then, Frenet formulae are

$$
\left[\begin{array}{l}
l^{\prime} \\
n^{\prime} \\
u^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & k \\
0 & 0 & \tau \\
-\tau & -k & 0
\end{array}\right]\left[\begin{array}{l}
l \\
n \\
u
\end{array}\right]
$$

where k and τ are curvatures of null quaternionic curve and
$h(l, l)=h(n, n)=h(l, u)=h(n, u)=0$,
$h(l, n)=h(u, u)=1$
l and n are null vectors and u is a spacelike vector. At this juncture, quaternion product is given by
$l \times n=-1-u, \quad n \times l=-1+u, n \times u=-n, u \times n=n$ $u \times l=-l, \quad l \times u=l, \quad u \times u=-1, \quad l \times l=n \times n=0$ [6].

Let $\gamma(s)=\gamma_{1} e_{1}+\gamma_{2} e_{2}+\gamma_{3} e_{3}$ be a quaternionic curve in E_{1}^{3}. An orthonormal basis of E_{1}^{4} is $\left\{e_{1}, e_{2}, e_{3}, e_{4}=1\right\}$ and let e_{2} be timelike vector and $\beta=\gamma_{1} e_{1}+\gamma_{2} e_{2}+\gamma_{3} e_{3}+\gamma_{4} e_{4}$ be a null quaternionic curve in E_{1}^{4} and $\{L, N, U, W\}$ be the Frenet components of β in E_{1}^{4}. Then, Frenet formulae are given by

$$
\left[\begin{array}{c}
L^{\prime} \\
N^{\prime} \\
U^{\prime} \\
W^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & K \\
0 & 0 & \tau+p & p \\
\tau+p & 0 & 0 & 0 \\
p & K & 0 & 0
\end{array}\right]\left[\begin{array}{c}
L \\
N \\
U \\
W
\end{array}\right]
$$

where K is the first curvature of β in E_{1}^{4}. Here,
$\alpha h(L, L)=h(N, N)=h(L, U)=0$
$h(N, U)=h(W, U)=0$
$h(U, U)=h(W, W)=1, h(L, N)=-1$,
$h(N, W)=h(L, W)=0$
L and N are null vectors, U and W are spacelike vectors for which the quaternion product is given by
$L \times N=1-U, N \times L=1+U, N \times U=N$
$U \times N=-N, \quad U \times L=L, L \times U=-L$
$U \times U=-1, L \times L=N \times N=0$

3. Results and Discussion

3.1. Null Quaternionic Rectifying Curves

Now, we give attribution of null quaternionic rectifying curves in E_{1}^{3}.

Definition 3.1. Let $\gamma(s)$ be null quaternionic curve in E_{1}^{3}. If γ is null quaternionic rectifying curve. Then, γ is defined by

$$
\gamma(s)=\lambda(s) l(s)+\mu(s) n(s)
$$

where $\lambda(s)$ and $\mu(s)$ are some functions by arclength parameter s of the curve.

Theorem 3.1. Let $\gamma(s)$ be null quaternionic rectifying curves in E_{1}^{3}. Then;
i) Distance function $q=|\gamma|$ satisfies $q^{2}=a_{1} s+a_{2}$ for some constants a_{1} and a_{2} and is nonconstant.
ii) Tangential component of position vector of the curve is given by $\lambda(s)=s+c_{1}$ for some constant c_{1}.
iii) Binormal component of position vector of the curve has constant length $\mu(s)=c_{2}$.
iv) The relationship between curvatures of the curve is given by $\mu \tau=\lambda k$.
Proof. Let $\gamma(s)$ be a null quaternionic curve in E_{1}^{3}. Suppose that γ is a null quaternionic rectifying curve. Then, by definition 3.1, we have
$\gamma(s)=\lambda(s) l(s)+\mu(s) n(s)$
for some functions λ, μ. By taking derivative of (1)
with respect to s and using the Frenet formulae, we obtain that

$$
\begin{equation*}
l=\lambda^{\prime} l+\mu^{\prime} n+(\lambda k-\mu \tau) u \tag{2}
\end{equation*}
$$

We take the quaternionic inner product of (2) by itself

$$
\begin{equation*}
-2 \lambda^{\prime} \mu^{\prime}=(\lambda k-\mu \tau)^{2} \tag{3}
\end{equation*}
$$

Using the inner product of (2) and $n(s)$, following equality holds
$\lambda^{\prime}=1$.
Thus, statement (ii) is proved that
$\lambda=s+c_{1}, c_{1} \in I R$.
From vector components of (2), we get statement (iii) and (iv)

$$
\begin{equation*}
\mu^{\prime}=0 \text { or } \mu=c_{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda k=\mu \tau \tag{7}
\end{equation*}
$$

Since $\rho^{2}=h(\gamma, \gamma)$, we obtain statement (i)

$$
\begin{align*}
& \rho^{2}=2 \lambda \mu=a_{1} s+a_{2} \tag{8}\\
& a_{1}=2 c_{2}, a_{2}=2 c_{1} c_{2} \quad c_{1}, c_{2} \in I R
\end{align*}
$$ nonzero functions $\lambda(s)$. Let define a null quaternionic curve

$$
\begin{equation*}
\gamma^{*}\left(s^{*}\right)=\gamma(s)+\lambda(s) l(s) \tag{16}
\end{equation*}
$$

where $\lambda(s)$ is nonzero function. We will prove that null quaternionic curves $\gamma(s)$ and $\gamma^{*}\left(s^{*}\right)$ are similar curves. We get by taking derivative of (16) according to s

$$
\begin{equation*}
l^{*}\left(s^{*}\right) \frac{d s^{*}}{d s}=(1+\dot{\lambda}) l(s)+\lambda(s) k(s) u(s) \tag{17}
\end{equation*}
$$

By substituting (15) in (17), we have

$$
l^{*}\left(s^{*}\right)=l(s)
$$

Thus, we obtain desired outcome that curves $\gamma(s)$ and $\gamma^{*}\left(s^{*}\right)$ are null quaternionic similar curves.

Corollary 4.1. Let $\gamma^{*}\left(s^{*}\right)$ be null quaternionic similar partner curve of null quaternionic curve $\gamma(s)$ in Minkowski 3-space. Then, curvature of $\gamma(s)$ is zero.

5.1. Null Quaternionic $(1,3)$ Bertrand partner curves

Definition. Let γ_{1} and γ_{2} be null quaternionic Bertrand partner curves in $E_{1}^{4} .\left\{L_{1}, N_{1}, U_{1}, W_{1}\right\} \quad$ and $\left\{L_{2}, N_{2}, U_{2}, W_{2}\right\}$ are Frenet frames at corresponding points of these curves, respectively. γ_{1} and γ_{2} are called null quaternionic $(1,3)$-Bertrand partner curves if there exist a bijection

$$
\begin{align*}
\varphi: I_{1} & \rightarrow I_{2} \\
s_{1} & \rightarrow \varphi\left(s_{1}\right)=s_{2} \quad, \frac{d s_{2}}{d s_{1}} \neq 0 \tag{18}
\end{align*}
$$

and the plane spanned by $\left\{N_{1}, W_{1}\right\}$ at each point $\gamma_{1}\left(s_{1}\right)$ of γ_{1} coincides with the plane spanned by $\left\{N_{2}, W_{2}\right\}$ at corresponding point $\gamma_{2}\left(s_{2}\right)$ of γ_{2}.

Theorem 5.1. Let γ_{1} and γ_{2} be null quaternionic curves in E_{1}^{4} and let $\left\{L_{1}, N_{1}, U_{1}, W_{1}\right\}$ and $\left\{L_{2}, N_{2}, U_{2}, W_{2}\right\}$ be Frenet frames of these curves, respectively. If γ_{1} is null quaternionic $(1,3)$-Bertrand curve, then following equalities are hold;
i) $\tan \left(\theta\left(s_{1}\right)\right)=-2\left(\lambda^{\prime}+\mu K_{1}+\lambda\left(\tau_{1}+p_{1}\right)\right)$
ii) $2\left(1+\mu p_{1}\right)\left(\lambda^{\prime}+\mu K_{1}+\lambda\left(\tau_{1}+p_{1}\right)\right)=\mu^{\prime}+\lambda p_{1}$

Proof. We assume that γ_{1} is null quaternionic $(1,3)-$ Bertrand partner curves parametrized by arclenght S_{1}. Thus, we can write null quaternionic $(1,3)$-Bertrand partner curve γ_{2}

$$
\begin{equation*}
\gamma_{2}\left(s_{2}\right)=\gamma_{1}\left(s_{1}\right)+\lambda\left(s_{1}\right) N_{1}+\mu\left(s_{1}\right) W_{1}\left(s_{1}\right) \tag{19}
\end{equation*}
$$

for all $s_{1} \in I_{1}$. Here λ and μ are C^{∞} functions on I_{1} and s_{2} is arclenght parameter of γ_{2}. Differentiating (19) with respect to S_{1} and using the Frenet equations, we have

$$
\begin{align*}
L_{2} \frac{d s_{2}}{d s_{1}}= & \left(1+\mu p_{1}\right) L_{1} \\
& +\left(\lambda^{\prime}+\mu K_{1}+\lambda\left(\tau_{1}+p_{1}\right)\right) N_{1} \tag{20}\\
& +\left(\mu^{\prime}+\lambda p_{1}\right) W_{1}
\end{align*}
$$

From definition, we can write

$$
N_{2}\left(s_{2}\right)=\cos \left(\theta\left(s_{1}\right)\right) N_{1}\left(s_{1}\right)+\sin \left(\theta\left(s_{1}\right)\right) W_{1}\left(s_{1}\right)
$$

$$
\begin{equation*}
\mathrm{W}_{2}\left(s_{2}\right)=-\sin \left(\theta\left(s_{1}\right)\right) N_{1}\left(s_{1}\right)+\cos \left(\theta\left(s_{1}\right)\right) W_{1}\left(s_{1}\right) \tag{21}
\end{equation*}
$$

and $\sin \left(\theta\left(s_{1}\right)\right) \neq 0$ for all $s_{1} \in I_{1}$. By using inner products of the equations (20) and (21), we obtain

$$
\begin{align*}
-\frac{d s_{2}}{d s_{1}}= & -\cos \left(\theta\left(s_{1}\right)\right)\left(1+\mu p_{1}\right) \tag{22}\\
& +\sin \left(\theta\left(s_{1}\right)\right)\left(\mu^{\prime}+\lambda p_{1}\right)
\end{align*}
$$

and

$$
\begin{equation*}
0=\sin \left(\theta\left(s_{1}\right)\right)\left(1+\mu p_{1}\right)+\cos \left(\theta\left(s_{1}\right)\right)\left(\mu^{\prime}+\lambda p_{1}\right) \tag{23}
\end{equation*}
$$

By the using (22) and (23), we get

$$
\begin{equation*}
\tan \left(\theta\left(s_{1}\right)\right)=-2\left(\lambda^{\prime}+\mu K_{1}+\lambda\left(\tau_{1}+p_{1}\right)\right) \tag{24}
\end{equation*}
$$

Taking the inner product of (20) by itself, we obtain

$$
\begin{equation*}
2\left(1+\mu p_{1}\right)\left(\lambda^{\prime}+\mu K_{1}+\lambda\left(\tau_{1}+p_{1}\right)\right)=\mu^{\prime}+\lambda p_{1} \tag{25}
\end{equation*}
$$

Theorem 5.2. Let γ_{1} and γ_{2} be null quaternionic curves in E_{1}^{4}. If γ_{1} is null quaternionic $(1,3)$-Bertrand curve. Then, curvatures of curves γ_{1} and γ_{2} are hold that

$$
\begin{aligned}
K_{2}^{2}\left(\frac{d s_{2}}{d s_{1}}\right)^{2} & =\binom{K_{1}+2 \mu p_{1} K_{1}+2 \lambda^{\prime} p_{1}}{+\lambda p_{1}\left(\tau_{1}+p_{1}\right)+\mu^{\prime \prime}+\lambda p_{1}^{\prime}}^{2} \\
& -\left(2 \mu^{\prime} p_{1}+\mu p_{1}^{\prime}+\lambda p_{1}^{2}\right) \\
& \left(\begin{array}{l}
\lambda^{\prime \prime}+2 \mu^{\prime} K_{1}+\mu K_{1}^{\prime} \\
\\
+\left(2 \lambda^{\prime}+\mu K_{1}+\lambda\left(\tau_{1}+p_{1}\right)\right)\left(\tau_{1}+p_{1}\right) \\
+\lambda\left(\tau_{1}^{\prime}+p_{1}^{\prime}\right)+\lambda p_{1} K_{1}
\end{array}\right)
\end{aligned}
$$

Proof. γ_{1} is null quaternionic $(1,3)$-Bertrand partner curves parametrized by arclenght S_{1}. Thus, we have equation (20). By taking the derivation of equation (20), we have

$$
\begin{align*}
L_{2} \frac{d^{2} s_{2}}{d s_{1}^{2}}+K_{2} W_{2} & \frac{d s_{2}}{d s_{1}}=\left(2 \mu^{\prime} p_{1}+\mu p_{1}^{\prime}+\lambda p_{1}^{2}\right) L_{1} \\
& +\left(\begin{array}{l}
\lambda^{\prime \prime}+2 \mu^{\prime} K_{1}+\mu K_{1}^{\prime} \\
+\left(2 \lambda^{\prime}+\mu K_{1}+\lambda\left(\tau_{1}+p_{1}\right)\right)\left(\tau_{1}+p_{1}\right) \\
+\lambda\left(\tau_{1}^{\prime}+p_{1}^{\prime}\right)+\lambda p_{1} K_{1}
\end{array}\right) N_{1} \\
& +\binom{K_{1}+2 \mu p_{1} K_{1}+2 \lambda^{\prime} p_{1}}{+\lambda p_{1}\left(\tau_{1}+p_{1}\right)+\mu^{\prime \prime}+\lambda p_{1}^{\prime}} W_{1} \tag{26}
\end{align*}
$$

Finally, taking the inner product of (26) by itself, we get desired result.

References

1. Bharathi, K., Nagaraj, M., Quaternion valued function of a real variable Serret-Frenet formula, Indian Journal of Pure and Applied Mathematic, 1987, 18, 6, 507-511.
2. Cambie, S., Goemans, W., Van Den Bussche, I., Rectifying curves in the n-dimensional Euclidean space, Turkish Journal of Mathematics, 2016, 40, 210-223.
3. Chen, B., When Does the Position Vector of a Space Curve Always Lie in Its Rectifying Plane? American Mathematical Monthly, 2003, 110, 2, 147-152.
4. Chen, B., Dillen, F., Rectifying Curves as Centrodes and Extremal Curves, Bulletin of the Instıtute of Mathematics Academia Sinica, 2005, 33, 2, 77-90.
5. Çöken, A.C., Tuna, A., On the quaternionic inclined curves in the Semi-Euclidean space E_{2}^{4}, Applied Mathematics and Computation, 2004, 155, 373-389.
6. Çöken, A.C., Tuna, A., Null Quaternionic Curves in SemiEuclidean 3-Space of Index v, Acta Physica Polonica A, 2015, 128, 2-B, 286-289.
7. Çöken, A.C., Tuna, A., Serret-Frenet Formulae for Null Quaternionic Curves in Semi Euclidean 4-Space $I R_{1}^{4}$, Acta Physica Polonica A, 2015, 128, 2-B, 293-296.
8. El-Sabbagh, M.F., Ali, A.T., Similar Curves with Variable Transformations, Konuralp Journal of Mathematics, 2013, 1, 2, 80-90.
9. Grbovic, M., Nesovic, E., Some relations between rectifying and normal curves in Minkowski 3-space, Mathematical Communications, 2012, 17, 655-664.
10. Hacisalihoglu, H.H., Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Üniversitesi, Fen-Edebiyat Fakültesi Yayınları Mat. 1983 No: 2.
11. İlarslan, K., Nesovic, E., Petrovic-Torgasev, M., Some Characterizations of Rectifying Curves in the Minkowski 3-Space, Novi Sad Journal of Mathematics, 2003, 33, 2, 23-32.
12. Keçilioğlu, O., İlarslan, K., Quaternionic Bertrand Curves in Euclidean 4-Space, Bulletin of Mathematical Analysis and Applications, 2013, 5, 3, 27-38.
13. Önder, M., Quaternionic Salkowski Curves and Similar Curves, arXiv:1205.1368 [math.DG].
14. Soyfidan, T., Güngör, M., Some Characterizations of Quaternionic Rectifying Curves in the Semi-Euclidean Space, Honam Mathematical J. (2016) 36(1) 067-083.
15. Yücesan, A., Ayyıldız, N., at al., On Rectifying Dual Space Curves, Revista Matem'atica Complutense, 2007, 20, 2, 497-506.
16. Ward, J.P., Quaternions and Cayley Numbers, Kluwer Academic Publishers, Boston/London, 1997.
