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Abstract: In this paper, we consider the estimation for the parameters of 
exponentiated reduced Kies (ERK) distribution using maximum likelihood (ML), 
least squares (LS), weighted least squares (WLS), Cramér-von Mises (CM), Anderson 
Darling (AD) and right-tail Anderson Darling (RAD) methods. The performances of 
the estimators are compared via Monte-Carlo simulation study for different 
parameter settings and different sample sizes. Finally, a real data set is analyzed for 
the implementation of the proposed methods. 

  
  

Exponentiated Reduced Kies Dağılımının Parametreleri için Tahmin Yöntemlerinin 
Karşılaştırılması 

 
 

Anahtar Kelimeler 
Exponentiated reduced Kies 
dağılımı, 
Parametre tahmini, 
Monte-Carlo simülasyonu, 
Etkinlik 

Özet: Bu makalede, exponentiated reduced Kies (ERK) dağılımının parametreleri en 
çok olabilirlik, en küçük kareler, ağırlıklandırılmış en küçük karaler, Cramér-von 
Mises, Anderson Darling ve sağ-kuyruklu Anderson Darling yöntemleri kullanılarak 
tahmin edilmiştir. Tahmin edicilerin performansları farklı parametre değerleri ve 
farklı örneklemler boyutları için Monte-Carlo simülasyon çalışması ile 
karşılaştırılmıştır. Son olarak, önerilen yöntemlerin uygulanması için gerçek bir veri 
seti analiz edilmiştir. 

  
 
1. Introduction 
 
Weibull distribution is one of the most popular 
distributions used in engineering, life testing and 
natural science with its wide variety of the shapes 
[1]. However, Weibull distribution may not be 
appropriate for all data sets [2]. Especially, if the data 
represents unimodal or bathtub shaped hazard 
function, the usage of Weibull distribution may cause 
misspecification. To overcome this difficulty, there 
have been significant number of studies considering 
the extensions or modifications of Weibull models, 
such as exponentiated Weibull [3], generalized 
Weibull [4], modified Weibull [5], beta Weibull [6], 
beta exponentiated Weibull [7] distributions and so 
on.  
 
In addition to these studies, [8] considered a 
functional form of Weibull distribution which is 
called as Kies distribution. The detailed information 
about this functional form and the distributional 
properties of Kies distribution are investigated by 

[9]. They reported that Kies distribution have 
increasing, decreasing and bathtub-shaped hazard 
function. This property provides flexibility for 
modeling data. Furthermore, [10] proposed a new 
distribution, namely reduced Kies (RK) distribution 
which is a special case of Kies distribution. The 
exponential form of RK distribution is introduced by 
[11] and is called as exponentiated reduced Kies 
(ERK) distribution. They investigated some 
distributional properties of ERK distribution, 
obtained the maximum likelihood (ML) estimators 
and discussed asymptotic properties of these 
estimators. They modeled four different engineering 
data sets with ERK distribution and compared its 
modeling performance with different statistical 
distributions. They represented that the ERK 
distribution has better modeling performance than 
the commonly used statistical models.  
 
In this paper, we consider the estimation of the 
parameters of ERK distribution by using ML, least 
squares (LS), weighted least squares (WLS), Cramér-
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von Mises (CM), Anderson Darling (AD) and righted-
tailed Anderson Darling (RAD) methods. It should be 
noted that among from these methods, the CM, AD 
and RAD methods are called as minimum distance 
methods. The novelty of this paper comes from the 
fact that we compare the performances of classical 
and minimum distance estimation methods for 
estimating the parameters of ERK distribution. 
 
The rest of this paper is organized as follows. In 
Section 2, we give brief description about ERK 
distribution and discuss the estimation methods 
used in this paper. Section 3 presents Monte-Carlo 
simulation study in order to identify the most 
efficient estimation methods and also we analyze a 
real data set to make an implementation of these 
methodologies. Final comments and conclusions are 
given in Section 4.   
 
2. Material and Methods     
 
In this section, we give some brief description about 
ERK distribution. Also, we consider the estimation 
for the parameters of ERK distribution by using six 
different estimation methods. 
 
2.1. Exponentiated reduced Kies distribution     
 
Let 𝑋  be a random variable from ERK distribution 
with parameters 𝛼  and 𝛽 . The cumulative 
distribution function (cdf), probability density 
function (pdf), survival function and hazard function 
of 𝑋 are defined as follows  
 

𝐹(𝑥) = [1 − 𝑒−(
𝑥

1−𝑥
)

𝛼

]
𝛽

,  0 < 𝑥 < 1,  𝛼, 𝛽 > 0,  (1)  

 

𝑓(𝑥) = 𝛼𝛽
𝑥𝛼−1

(1−𝑥)𝛼+1 𝑒−(
𝑥

1−𝑥
)

𝛼

[1 − 𝑒−(
𝑥

1−𝑥
)

𝛼

]
𝛽−1

,    (2) 

                      

𝑆(𝑥) = 1 − [1 − 𝑒−(
𝑥

1−𝑥
)

𝛼

]
𝛽

,                 (3) 

 

ℎ(𝑥) =
𝛼𝛽

𝑥𝛼−1

(1−𝑥)𝛼+1𝑒
−(

𝑥
1−𝑥)

𝛼

[1−𝑒
−(

𝑥
1−𝑥)

𝛼

]

𝛽−1

1−[1−𝑒
−(

𝑥
1−𝑥)

𝛼

]

𝛽 ,       (4)                                                  

 
respectively. The ERK distribution reduces to RK 
distribution when 𝛽 =1. The hazard function of ERK 
distribution can be increasing or decreasing 
depending on the parameters. If 𝛼 ∈ (0,1]  and 𝛽 ∈
(0,1) , the distribution has decreasing hazard 
function. If 𝛼 >1 and 𝛽 >1, it has increasing hazard 
function.  
 
[11] plotted the skewness and kurtosis values of ERK 
distribution for different parameter settings. It can 
be seen from these figures that in the context of 
skewness, the ERK distribution can be positively or 

negatively skewed. In view of kurtosis, the 
distribution may be short or long tailed. For better 
understanding the shape of ERK distribution, we 
draw the pdfs of ERK distribution when 𝛼 =0.5, 3 
and 𝛽 =0.5, 1.5, 3, 10, see Figure 1. 

 
Figure 1. Plots of ERK distribution when 𝛼 =0.5 and 
𝛼 =3 for different values of 𝛽. 

 
2.2. Maximum likelihood estimators 
 
Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) be a random sample of size 𝑛 
from ERK distribution with parameters 𝛼  and 𝛽 . 
Then, the log-likelihood function (ℓ) of the observed 
sample is 
 

ℓ = 𝑛 ln 𝛼 + 𝑛 ln 𝛽 + (𝛼 − 1) ∑ ln 𝑥𝑖

𝑛

𝑖=1

 

−(𝛼 + 1) ∑ ln(1 − 𝑥𝑖)

𝑛

𝑖=1

− ∑ (
𝑥𝑖

1 − 𝑥𝑖

)
𝛼

𝑛

𝑖=1

 

+(𝛽 − 1) ∑ ln (1 − 𝑒
−(

𝑥𝑖
1−𝑥𝑖

)
𝛼

)

𝑛

𝑖=1

.                (5) 

 
The ML estimators of the parameters 𝛼  and 𝛽  are 
obtained from the following likelihood equations 
 

𝜕ℓ

𝜕𝛼
=

𝑛

𝛼
+ ∑ ln(𝑧𝑖)

𝑛

𝑖=1

− ∑ 𝑧𝑖
𝛼 ln(𝑧𝑖)

𝑛

𝑖=1
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+(𝛽 − 1) ∑
𝑧𝑖

𝛼 ln(𝑧𝑖)𝑒−𝑧𝑖
𝛼

1 − 𝑒−𝑧𝑖
𝛼

𝑛

𝑖=1

= 0,               (6) 

𝜕ℓ

𝜕𝛽
=

𝑛

𝛽
+ ∑ ln(1 − 𝑒−𝑧𝑖

𝛼
)

𝑛

𝑖=1

= 0,                     (7) 

where, 𝑧𝑖 = (
𝑥𝑖

1−𝑥𝑖
). Obviously, from (7) we obtain 

 

�̂�(𝛼) = −
𝑛

∑ ln(1 − 𝑒−𝑧𝑖
𝛼

)𝑛
𝑖=1

.                          (8) 

 
By putting (8) into (6), we get 
 

𝑛

𝛼
+ ∑ ln(𝑧𝑖)

𝑛

𝑖=1

− ∑ 𝑧𝑖
𝛼 ln(𝑧𝑖)

𝑛

𝑖=1

− 𝑚 = 0.     (9) 

 
Here, 

𝑚 = (
𝑛+∑ ln(1−𝑒−𝑧𝑖

𝛼
)𝑛

𝑖=1

∑ ln(1−𝑒−𝑧𝑖
𝛼

)𝑛
𝑖=1

) ∑
𝑧𝑖

𝛼 ln(𝑧𝑖)𝑒−𝑧𝑖
𝛼 

1−𝑒−𝑧𝑖
𝛼

𝑛
𝑖=1 .  

 
Therefore, the ML estimator of 𝛼 , say �̂� , can be 
obtained as a solution of the non-linear equation of 
the form ℎ(𝛼) = 𝛼, where 
 

ℎ(𝛼) =
𝑛

∑ 𝑧𝑖
𝛼 ln(𝑧𝑖)𝑛

𝑖=1 + 𝑚 − ∑ ln(𝑧𝑖)𝑛
𝑖=1

.           (10) 

 

It is obvious that (10) cannot be solved explicitly. 
Therefore, for the ML estimator of 𝛼 , we resort to 
iterative methods such as Newton-Raphson. Once, 
we obtain �̂�, then �̂� can be obtained from (8). 
 
2.3. Least squares estimators 
 
Let 𝑥(1) < 𝑥(2) < ⋯ < 𝑥(𝑛) be the order statistics of a 

random sample of size 𝑛 from ERK distribution. The 
LS estimators of the parameters 𝛼  and 𝛽  are 
obtained by minimizing following equation with 
respect to the parameters of interest 
 

𝑆(𝛼, 𝛽) = ∑ (𝐹(𝑥(𝑖)) −
𝑖

𝑛 + 1
)

2𝑛

𝑖=1

.              (11) 

 

Here, 
𝑖

𝑛+1
, (𝑖 = 1, … , 𝑛) are the expected values of 

𝐹(𝑥(𝑖)). By incorporating the cdf of ERK distribution 

given in (1) into (11) and taking the derivative of it 
with respect to 𝛼  and 𝛽 , the LS estimators of the 
parameters are obtained by solving following 
nonlinear equations 
 

∑ (𝐹(𝑥(𝑖), 𝛼, 𝛽) −
𝑖

𝑛 + 1
) Δ1(𝑥(𝑖), 𝛼, 𝛽)

𝑛

𝑖=1

= 0, 

∑ (𝐹(𝑥(𝑖), 𝛼, 𝛽) −
𝑖

𝑛 + 1
) Δ2(𝑥(𝑖), 𝛼, 𝛽)

𝑛

𝑖=1

= 0, 

 
where Δ1(𝑥, 𝛼, 𝛽) and Δ2(𝑥, 𝛼, 𝛽) are 
 

Δ1(𝑥, 𝛼, 𝛽) = 𝛽 (
𝑥

1 − 𝑥
)

𝛼

ln (
𝑥

1 − 𝑥
) 𝑒−(

𝑥

1−𝑥
)

𝛼

 

 

                                  (1 − 𝑒−(
𝑥

1−𝑥
)

𝛼

)
𝛽−1

,                       (12) 

Δ2(𝑥, 𝛼, 𝛽) = ln (1 − 𝑒
−(

𝑥

1−𝑥
)

𝛼

) 

                         (1 − 𝑒
−(

𝑥

1−𝑥
)

𝛼

)
𝛽

,                          (13) 

 
respectively. 
 
2.4. Weighted least squares estimators 
 
The WLS estimators of the parameters 𝛼 and 𝛽 are 
obtained by minimizing following equation with 
respect to the parameters of interest 
 
 

𝑊(𝛼, 𝛽) = ∑ 𝑤𝑖 (𝐹(𝑥(𝑖)) −
𝑖

𝑛 + 1
)

2𝑛

𝑖=1

.        (14) 

 
 
Here, 

𝑤𝑖 = 1 𝑉 (𝐹(𝑥(𝑖))) = (𝑛 + 1)2(𝑛 + 2) 𝑖(𝑛 − 𝑖 + 1)⁄⁄ ,  

( 𝑖 = 1, … , 𝑛 ). By incorporating the cdf of ERK 
distribution given (1) into (14) and taking the 
derivative of it with respect to the 𝛼 and 𝛽, the WLS 
estimators of the parameters are obtained by solving 
following nonlinear equations 
 
 

∑
1

𝑖(𝑛 − 𝑖 + 1)
(𝐹(𝑥(𝑖), 𝛼, 𝛽) −

𝑖

𝑛 + 1
)

𝑛

𝑖=1

 

       Δ1(𝑥(𝑖), 𝛼, 𝛽) = 0,  

∑
1

𝑖(𝑛 − 𝑖 + 1)
(𝐹(𝑥(𝑖), 𝛼, 𝛽) −

𝑖

𝑛 + 1
)

𝑛

𝑖=1

 

        Δ2(𝑥(𝑖), 𝛼, 𝛽) = 0, 

 
 
where Δ1(𝑥, 𝛼, 𝛽) and Δ2(𝑥, 𝛼, 𝛽) are the same as in 
(12) and (13), respectively.  
 
2.5. Minimum distance methods 
 
In this subsection, we consider three estimation 
methods for estimating parameters of ERK 
distribution by minimizing the goodness of fit 
statistics. These estimators are obtained based on 
differences between the estimate cdf and the 
empirical cdf and proposed by [12-13]. In recent 
years, these methods are very popular in estimation 
theory. For example, they are used to estimate the 
parameters of Weibull, Marshall-Olkin extended 
Lindley, Marshall-Olkin extended exponential and 
inverse Weibull distributions by [14-17], 
respectively.     
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2.5.1. Cramér-von Mises estimators 
 
The CM estimators of the parameters 𝛼  and 𝛽  are 
obtained by minimizing following equation with 
respect to the parameters of interest 
 

𝐶(𝛼, 𝛽) =
1

12𝑛
+ ∑ (𝐹(𝑥(𝑖)) −

2𝑖 − 1

2𝑛
)

2𝑛

𝑖=1

.     (15) 

The CM estimators of the parameters are obtained by 
solving following nonlinear equations 

 

∑ (𝐹(𝑥(𝑖), 𝛼, 𝛽) −
2𝑖 − 1

2𝑛
) Δ1(𝑥(𝑖), 𝛼, 𝛽)

𝑛

𝑖=1

= 0,  

∑ (𝐹(𝑥(𝑖), 𝛼, 𝛽) −
2𝑖 − 1

2𝑛
) Δ2(𝑥(𝑖), 𝛼, 𝛽)

𝑛

𝑖=1

= 0, 

 
where Δ1(𝑥, 𝛼, 𝛽) and Δ2(𝑥, 𝛼, 𝛽) are the same as in 
(12) and (13), respectively.  

 
2.5.2. Anderson Darling estimators 
 
The AD estimators of the parameters 𝛼  and 𝛽  are 
obtained by minimizing following equation with 
respect to the parameters of interest 
 

𝐴(𝛼, 𝛽) = −𝑛 −
1

𝑛
∑(2𝑖 − 1) log [𝐹(𝑥(𝑖)) (1 − 𝐹(𝑥(𝑖∗)))]

𝑛

𝑖=1

, 

(16) 
where 𝑖∗ = 𝑛 − 𝑖 + 1. 

 
The AD estimators of the parameters are obtained by 
solving following nonlinear equations 

 

∑(2𝑖 − 1) [
Δ1(𝑥(𝑖), 𝛼, 𝛽)

𝐹(𝑥(𝑖), 𝛼, 𝛽)
−

Δ1(𝑥(𝑖∗), 𝛼, 𝛽)

1 − 𝐹(𝑥(𝑖∗), 𝛼, 𝛽)
]

𝑛

𝑖=1

= 0, 

∑(2𝑖 − 1) [
Δ2(𝑥(𝑖), 𝛼, 𝛽)

𝐹(𝑥(𝑖), 𝛼, 𝛽)
−

Δ2(𝑥(𝑖∗), 𝛼, 𝛽)

1 − 𝐹(𝑥(𝑖∗), 𝛼, 𝛽)
]

𝑛

𝑖=1

= 0,  

 
where Δ1(𝑥, 𝛼, 𝛽) and Δ2(𝑥, 𝛼, 𝛽) are the same as in 
(12) and (13), respectively.  

 
2.5.3. Right-tail Anderson Darling estimators 

 
The RAD estimators of the parameters 𝛼  and 𝛽  are 
obtained by minimizing following equation with 
respect to the parameters of interest 

 

𝑅(𝛼, 𝛽) =
𝑛

2
− 2 ∑ 𝐹(𝑥(𝑖))

𝑛

𝑖=1

 

−
1

𝑛
 ∑(2𝑖 − 1) log (1 − 𝐹(𝑥(𝑖∗)))

𝑛

𝑖=1

.          (17) 

 
The RAD estimators of the parameters are obtained 
by solving following nonlinear equations 

 

−2 ∑
Δ1(𝑥(𝑖), 𝛼, 𝛽)

𝐹(𝑥(𝑖), 𝛼, 𝛽)

𝑛

𝑖=1

+
1

𝑛
∑(2𝑖 − 1)

Δ1(𝑥(𝑖∗), 𝛼, 𝛽)

1 − 𝐹(𝑥(𝑖∗), 𝛼, 𝛽)

𝑛

𝑖=1

= 0,  

 

−2 ∑
Δ2(𝑥(𝑖), 𝛼, 𝛽)

𝐹(𝑥(𝑖), 𝛼, 𝛽)

𝑛

𝑖=1

+
1

𝑛
∑(2𝑖 − 1)

Δ2(𝑥(𝑖∗), 𝛼, 𝛽)

1 − 𝐹(𝑥(𝑖∗), 𝛼, 𝛽)

𝑛

𝑖=1

= 0, 

where Δ1(𝑥, 𝛼, 𝛽) and Δ2(𝑥, 𝛼, 𝛽) are the same as in 
(12) and (13), respectively.  
 
3. Results 
 
In this section, we give the results of the Monte-Carlo 
simulation study and the real data application. 

 
3.1. Simulation study 
 
Here, we present the results of Monte-Carlo 
simulation to compare the performances of the 
different estimation methods discussed in the 
previous section. To do this, we compute the means 
and mean square errors (MSE) of the estimators for 
each parameter. The sample sizes are taken as 
𝑛 =25, 50, 100 and 500. In the context of parameter 
settings, we take 𝛼 =0.5 and 3 and 𝛽 =0.5, 1.5 and 5. 
All the computations are done based on ⟦100,000/𝑛⟧ 
Monte-Carlo runs where ⟦. ⟧ represents the integer 
value function. We generate a sample of size 𝑛 from 
ERK distribution using inverse cdf method via 
following expression  
 

𝑥 =
𝜂

1+𝜂
,  

 

where 𝜂 = [− ln(1 − 𝑈1 𝛽⁄ )]
1 𝛼⁄

 and 𝑈  is a standard 

uniform observation.  
 
It should be noticed that the ML, LS, WLS, CV, AD and 
RAD estimates of the parameters are obtained by 
using fminsearch function in the optimization 
toolbox of MatlabR2013a software. The results are 
reported in Tables 1 and 2. 
 
It is observed from Tables 1 and 2 that when 𝑛 =25 
and 50, the AD and RAD estimates have the smallest 
bias. On the other hand, the LS and CV estimates have 
the largest bias. As the sample size increases, all the 
estimates have negligible bias.  
  
In the context of efficiency, The AD is the most 
efficient method for 𝛼  when 𝑛 = 25 according to 
Tables 1 and 2. However, for the other sample sizes, 
the ML estimate outperforms other estimates. It is 
followed by the AD and RAD. These estimates are 
highly competitive compared to ML in view of the 
MSEs of �̂� . It should be stated that the LS and CV 
estimates do not perform well for all sample sizes.  
 

In terms of the efficiency of �̂� , the ML is the most 
efficient estimator with the lowest MSE values for all 
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sample sizes. It is followed by the AD and RAD when 
𝛽 = 0.5. However, when 𝛽 = 1.5 and 5, the RAD 
estimates do not perform well. In this case, the AD 
and WLS estimates show the strongest performance 

after the ML estimates. It should be noted that the LS 
and CV estimators of 𝛽  demonstrate the weakest 
performance with the highest MSE values for all 
sample sizes.  

 
Table 1. Simulated mean and MSE values of �̂� and �̂�; 𝛼 =0.5, 𝛽 =0.5, 1.5 and 5.* 

𝑛  ML LS WLS CV AD RAD 
    𝛼 =0.5,  𝛽 =0.5   

25 

𝛼 0.5905 0.5750 0.5707 0.6776 0.5488 0.5592 
 (0.0600) (0.1672) (0.1419) (0.2990) (0.0585) (0.0709) 

𝛽 0.4845 0.5259 0.5178 0.4868 0.5114 0.5118 
 (0.0241) (0.0397) (0.0335) (0.0415) (0.0295) (0.0309) 

50 

𝛼 0.5403 0.5311 0.5283 0.5716 0.5197 0.5217 
 (0.0138) (0.0423) (0.0287) (0.0665) (0.0145) (0.0130) 

𝛽 0.4914 0.5122 0.5068 0.4921 0.5064 0.5065 
 (0.0114) (0.0200) (0.0159) (0.0208) (0.0143) (0.0144) 

100 

𝛼 0.5178 0.5114 0.5123 0.5278 0.5104 0.5104 
 (0.0048) (0.0095) (0.0067) (0.0115) (0.0057) (0.0051) 

𝛽 0.4969 0.5045 0.5017 0.4944 0.5018 0.5020 
 (0.0056) (0.0098) (0.0076) (0.0100) (0.0073) (0.0072) 

500 

𝛼 0.5006 0.5017 0.5012 0.5047 0.5005 0.4997 
 (0.0007) (0.0018) (0.0012) (0.0019) (0.0011) (0.0009) 

𝛽 0.4989 0.4981 0.4982 0.4960 0.4985 0.4986 
 (0.0009) (0.0019) (0.0014) (0.0019) (0.0014) (0.0013) 

    𝛼 =0.5,  𝛽 =1.5   

25 

𝛼 0.5302 0.5018 0.5063 0.5346 0.5101 0.5146 
 (0.0089) (0.0123) (0.0106) (0.0172) (0.0082) (0.0085) 

𝛽 1.5338 1.5283 1.5290 1.5358 1.5291 1.5558 
 (0.1240) (0.1354) (0.1289) (0.1554) (0.1249) (0.1611) 

50 

𝛼 0.5145 0.5000 0.5039 0.5153 0.5051 0.5073 
 (0.0035) (0.0050) (0.0041) (0.0057) (0.0038) (0.0037) 

𝛽 1.5244 1.5220 1.5223 1.5251 1.5220 1.5360 
 (0.0573) (0.0665) (0.0620) (0.0711) (0.0613) (0.0754) 

100 

𝛼 0.5041 0.4978 0.5002 0.5053 0.5005 0.5013 
 (0.0015) (0.0023) (0.0019) (0.0024) (0.0018) (0.0018) 

𝛽 1.5156 1.5119 1.5127 1.5131 1.5123 1.5173 
 (0.0256) (0.0300) (0.0279) (0.0310) (0.0277) (0.0322) 

500 

𝛼 0.5005 0.4982 0.4994 0.4997 0.4991 0.4996 
 (0.0003) (0.0005) (0.0003) (0.0005) (0.0003) (0.0003) 

𝛽 1.5004 1.5003 1.5000 1.5005 1.4999 1.5017 
 (0.0060) (0.0072) (0.0066) (0.0072) (0.0066) (0.0074) 

    𝛼 =0.5,  𝛽 =5   

25 

𝛼 0.5152 0.4958 0.4995 0.5153 0.5031 0.5071 
 (0.0031) (0.0040) (0.0035) (0.0046) (0.0030) (0.0036) 

𝛽 5.4127 5.1357 5.1790 5.4827 5.2217 5.4498 
 (1.8325) (2.0503) (1.8843) (2.8631) (1.6815) (3.2998) 

50 

𝛼 0.5076 0.4981 0.5007 0.5076 0.5018 0.5034 
 (0.0014) (0.0018) (0.0016) (0.0020) (0.0015) (0.0017) 

𝛽 5.1626 5.0237 5.0575 5.1801 5.0735 5.1510 
 (0.6753) (0.7676) (0.6877) (0.8956) (0.6646) (0.9679) 

100 

𝛼 0.5041 0.4990 0.5010 0.5038 0.5011 0.5017 
 (0.0007) (0.0009) (0.0008) (0.0009) (0.0008) (0.0008) 

𝛽 5.0765 5.0035 5.0304 5.0787 5.0330 5.0653 
 (0.2900) (0.3433) (0.3053) (0.3695) (0.2982) (0.4092) 

500 

𝛼 0.4994 0.4990 0.4992 0.4999 0.4992 0.4989 
 (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) 

𝛽 5.0184 5.0103 5.0150 5.0251 5.0149 5.0122 
 (0.0583) (0.0757) (0.0652) (0.0771) (0.0649) (0.0863) 

*MSEs of the estimates are given in the bracket. 
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Table 2. Simulated mean and MSE values of �̂� and �̂�; 𝛼 =3, 𝛽 =0.5, 1.5 and 5.* 
𝑛  ML LS WLS CV AD RAD 
    𝛼 =3,  𝛽 =0.5   

25 

𝛼 3.5553 3.4967 3.4695 4.1034 3.3002 3.3815 
 (2.2127) (6.8165) (6.0934) (11.7191) (2.3803) (3.4381) 

𝛽 0.4856 0.5275 0.5191 0.4889 0.5131 0.5135 
 (0.0236) (0.0398) (0.0334) (0.0413) (0.0289) (0.0304) 

50 

𝛼 3.2195 3.1696 3.1569 3.4027 3.1105 3.1177 
 (0.4823) (1.4699) (0.9933) (2.1393) (0.5398) (0.4739) 

𝛽 0.4913 0.5106 0.5056 0.4905 0.5049 0.5053 
 (0.0107) (0.0200) (0.0158) (0.0207) (0.0143) (0.0144) 

100 

𝛼 3.1486 3.1149 3.1122 3.2168 3.0950 3.0974 
 (0.1897) (0.4591) (0.3020) (0.5598) (0.2366) (0.1964) 

𝛽 0.4897 0.5001 0.4970 0.4899 0.4974 0.4976 
 (0.0055) (0.0106) (0.0081) (0.0109) (0.0077) (0.0076) 

500 

𝛼 3.0168 3.0041 3.0099 3.0218 3.0054 3.0046 
 (0.0261) (0.0698) (0.0435) (0.0718) (0.0409) (0.0336) 

𝛽 0.5020 0.5045 0.5033 0.5024 0.5036 0.5036 
 (0.0010) (0.0020) (0.0015) (0.0020) (0.0015) (0.0014) 

    𝛼 =3,  𝛽 =1.5   

25 

𝛼 3.1931 3.0186 3.0423 3.2169 3.0743 3.1008 
 (0.3322) (0.4230) (0.3576) (0.5883) (0.3067) (0.3113) 

𝛽 1.5347 1.5282 1.5290 1.5356 1.5294 1.5564 
 (0.1209) (0.1315) (0.1255) (0.1509) (0.1221) (0.1575) 

50 

𝛼 3.0909 2.9950 3.0199 3.0870 3.0260 3.0465 
 (0.1275) (0.1826) (0.1492) (0.2086) (0.1330) (0.1324) 

𝛽 1.5039 1.5083 1.5068 1.5111 1.5062 1.5221 
 (0.0531) (0.0618) (0.0572) (0.0661) (0.0562) (0.0692) 

100 

𝛼 3.0501 3.0115 3.0266 3.0566 3.0255 3.0328 
 (0.0543) (0.0820) (0.0651) (0.0890) (0.0605) (0.0603) 

𝛽 1.5134 1.5129 1.5132 1.5142 1.5125 1.5195 
 (0.0253) (0.0308) (0.0282) (0.0319) (0.0278) (0.0337) 

500 

𝛼 3.0122 3.0037 3.0096 3.0126 3.0075 3.0120 
 (0.0100) (0.0144) (0.0111) (0.0147) (0.0111) (0.0108) 

𝛽 1.4924 1.4951 1.4942 1.4953 1.4942 1.4966 
 (0.0045) (0.0057) (0.0051) (0.0057) (0.0051) (0.0060) 

    𝛼 =3,  𝛽 =5   

25 

𝛼 3.0916 2.9757 2.9948 3.0931 3.0197 3.0426 
 (0.1130) (0.1427) (0.1231) (0.1657) (0.1099) (0.1280) 

𝛽 5.3580 5.0884 5.1165 5.4314 5.1715 5.3735 
 (1.6426) (1.8748) (1.6370) (2.6461) (1.4839) (2.7755) 

50 

𝛼 3.0533 2.9971 3.0118 3.0547 3.0184 3.0327 
 (0.0512) (0.0690) (0.0576) (0.0752) (0.0541) (0.0611) 

𝛽 5.2098 5.0923 5.1173 5.2531 5.1310 5.2354 
 (0.7635) (0.8816) (0.7882) (1.0478) (0.7542) (1.1626) 

100 

𝛼 3.0132 2.9870 2.9954 3.0155 2.9969 3.0006 
 (0.0228) (0.0328) (0.0266) (0.0336) (0.0258) (0.0281) 

𝛽 5.0759 5.0126 5.0319 5.0885 5.0355 5.0695 
 (0.2813) (0.3478) (0.3089) (0.3758) (0.2990) (0.4303) 

500 

𝛼 2.9994 2.9956 2.9981 3.0013 2.9969 2.9971 
 (0.0051) (0.0072) (0.0058) (0.0072) (0.0058) (0.0059) 

𝛽 4.9940 4.9849 4.9910 4.9996 4.9878 4.9922 
 (0.0582) (0.0727) (0.0623) (0.0733) (0.0613) (0.0817) 

*MSEs of the estimates are given in the bracket. 
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3.2. Real data application 
 
Now, we model the relief times (in hours) for 50 
arthritic patients with ERK distribution. This data set 
was first given by [18] to make an implementation of 
the estimation of the parameters of Burr XII 
distribution. The data set is shown as follows: 
 
Table 3. The relief times data set 

0.70   0.84   0.58   0.50   0.55   0.82   0.59   0.71   0.72   0.61 
0.62   0.49   0.54   0.36   0.36   0.71   0.35   0.64   0.85   0.55 
0.59   0.29   0.75   0.46   0.46   0.60   0.60   0.36   0.52   0.68 
0.80   0.55   0.84   0.34   0.34   0.70   0.49   0.56   0.71   0.61 
0.57   0.73   0.75   0.44   0.44   0.81   0.80   0.87   0.29   0.50 

 
Before starting the analyses, we fit the ERK model to 
the data set. To do this, we draw the ERK q-q plot in 
Figure 2. It is observed from Figure 2 that ERK 
distribution provides very good fit to model the relief 
times data set.  
 

 
Figure 2. The ERK q-q plot for relief times data set. 

 
Then, we obtain the ML, LS, WLS, CM, AD and RAD 
estimates of the parameters. Furthermore, to 
determine the most efficient estimation methods, we 
use the model selection criteria. They are Akaike 
information criterion (AIC), Bayesian information 
criterion (BCI), corrected ACI (AICs) and Hannan-
Quinn criterion (HQC). It should be noted that the 
smallest values of these criteria represent the best 
fit. The results are given in Table 4. 
 
Table 4. Parameter estimates and model selection criteria 
values for relief time data 

 𝛼 �̂� ACI BCI ACIc HQC 

ML 0.89 2.89 -38.58 -26.93 -38.32 -37.12 
LS 0.87 2.57 -37.85 -26.20 -37.59 -36.39 

WLS 0.88 2.71 -38.35 -26.70 -38.09 -36.89 
CV 0.89 2.61 -38.06 -26.41 -37.80 -36.60 
AD 0.87 2.67 -38.18 -26.53 -37.92 -36.72 

RAD 0.83 2.51 -36.88 -25.24 -36.63 -35.43 

 
It is obvious from Table 4 that the ML estimates have 
the smallest model selection criteria values. In other 
words, the ERK model based on the ML estimates is 
the most appropriate model among the others. 
Furthermore, they are followed by the WLS and AD 
estimates. For illustration of these results, we draw 
the histogram of the data set with fitted pdfs in 
Figure 3. According to Figure 3 that while the pdfs 
based on ML, WLS and AD estimates provides good 
fit, the pdfs based on LS, CV and RAD remain 
incapable to model the data set.   

 

 
Figure 3. Histogram of relief time data with fitted pdfs. 

 
4. Discussion and Conclusion 
 
In this paper, we consider the estimation of the 
parameters of ERK distribution by using classical 
methods ML, LS and WLS, and minimum distance 
methods CM, AD and RAD. The performances of the 
estimators are compared via Monte-Carlo simulation 
study. It is concluded from the simulation study that 
the ML estimators demonstrate the best 
performances among them. Furthermore, AD and 
WLS estimators work quite well. It should be stated 
that the minimum distance method AD is highly 
competitive method compared to ML. However, LS 
and CV estimators do not perform well. These results 
are supported with the real data example.   
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