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Abstract: In this paper, we consider the estimation for the parameters of
exponentiated reduced Kies (ERK) distribution using maximum likelihood (ML),
least squares (LS), weighted least squares (WLS), Cramér-von Mises (CM), Anderson
Darling (AD) and right-tail Anderson Darling (RAD) methods. The performances of
the estimators are compared via Monte-Carlo simulation study for different
parameter settings and different sample sizes. Finally, a real data set is analyzed for
the implementation of the proposed methods.

Exponentiated Reduced Kies Dagiliminin Parametreleri icin Tahmin Yontemlerinin

Karsilastirilmasi

Anahtar Kelimeler
Exponentiated reduced Kies
dagilim,

Parametre tahmini,
Monte-Carlo simiilasyonu,
Etkinlik

Ozet: Bu makalede, exponentiated reduced Kies (ERK) dagiliminin parametreleri en
cok olabilirlik, en kiiciik kareler, agirliklandirilmis en kiigiik karaler, Cramér-von
Mises, Anderson Darling ve sag-kuyruklu Anderson Darling yontemleri kullanilarak
tahmin edilmistir. Tahmin edicilerin performanslar1 farkli parametre degerleri ve
farkli orneklemler boyutlar1 i¢cin Monte-Carlo simiilasyon c¢alismasi ile
karsilastirilmistir. Son olarak, 6nerilen yontemlerin uygulanmasi i¢in gercek bir veri

seti analiz edilmistir.

1. Introduction

Weibull distribution is one of the most popular
distributions used in engineering, life testing and
natural science with its wide variety of the shapes
[1]. However, Weibull distribution may not be
appropriate for all data sets [2]. Especially, if the data
represents unimodal or bathtub shaped hazard
function, the usage of Weibull distribution may cause
misspecification. To overcome this difficulty, there
have been significant number of studies considering
the extensions or modifications of Weibull models,
such as exponentiated Weibull [3], generalized
Weibull [4], modified Weibull [5], beta Weibull [6],
beta exponentiated Weibull [7] distributions and so
on.

In addition to these studies, [8] considered a
functional form of Weibull distribution which is
called as Kies distribution. The detailed information
about this functional form and the distributional
properties of Kies distribution are investigated by
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[9]. They reported that Kies distribution have
increasing, decreasing and bathtub-shaped hazard
function. This property provides flexibility for
modeling data. Furthermore, [10] proposed a new
distribution, namely reduced Kies (RK) distribution
which is a special case of Kies distribution. The
exponential form of RK distribution is introduced by
[11] and is called as exponentiated reduced Kies
(ERK) distribution. They investigated some
distributional properties of ERK distribution,
obtained the maximum likelihood (ML) estimators
and discussed asymptotic properties of these
estimators. They modeled four different engineering
data sets with ERK distribution and compared its
modeling performance with different statistical
distributions. They represented that the ERK
distribution has better modeling performance than
the commonly used statistical models.

In this paper, we consider the estimation of the
parameters of ERK distribution by using ML, least
squares (LS), weighted least squares (WLS), Cramér-
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von Mises (CM), Anderson Darling (AD) and righted-
tailed Anderson Darling (RAD) methods. It should be
noted that among from these methods, the CM, AD
and RAD methods are called as minimum distance
methods. The novelty of this paper comes from the
fact that we compare the performances of classical
and minimum distance estimation methods for
estimating the parameters of ERK distribution.

The rest of this paper is organized as follows. In
Section 2, we give brief description about ERK
distribution and discuss the estimation methods
used in this paper. Section 3 presents Monte-Carlo
simulation study in order to identify the most
efficient estimation methods and also we analyze a
real data set to make an implementation of these
methodologies. Final comments and conclusions are
given in Section 4.

2. Material and Methods

In this section, we give some brief description about
ERK distribution. Also, we consider the estimation
for the parameters of ERK distribution by using six
different estimation methods.

2.1. Exponentiated reduced Kies distribution

Let X be a random variable from ERK distribution
with parameters a« and f . The cumulative
distribution function (cdf), probability density
function (pdf), survival function and hazard function
of X are defined as follows

x \a1B
F(x)=[1—e_(§) ] ,0<x<1, >0 (1)

£ = ap e @ - & @
SG) =1- [1 - e‘(%c)ur, 3)

ap 2t E) &)
h(x) = s [ ] @

1—[1—e'(%)ar

respectively. The ERK distribution reduces to RK
distribution when f =1. The hazard function of ERK
distribution can be increasing or decreasing
depending on the parameters. If « € (0,1] and 8 €
(0,1) , the distribution has decreasing hazard
function. If ¢ >1 and § >1, it has increasing hazard
function.

[11] plotted the skewness and kurtosis values of ERK
distribution for different parameter settings. It can
be seen from these figures that in the context of
skewness, the ERK distribution can be positively or
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negatively skewed. In view of kurtosis, the
distribution may be short or long tailed. For better
understanding the shape of ERK distribution, we
draw the pdfs of ERK distribution when a =0.5, 3
and  =0.5, 1.5, 3, 10, see Figure 1.

=05

8

Figure 1. Plots of ERK distribution when ¢ =0.5 and
a =3 for different values of §.

2.2. Maximum likelihood estimators

Letx = (x;,x,, ..., X,) be a random sample of size n
from ERK distribution with parameters a and S.
Then, the log-likelihood function (¥) of the observed
sample is

n
€=nlna+nlnﬁ+(a—1)zlnxl~

1

B f <1 fixi)a

i=1
xi

-0y n(1- )
i=1

The ML estimators of the parameters a and f are
obtained from the following likelihood equations

—(a + 1)2 In(1 —x;
i=1

(5)
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n
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_x.). Obviously, from (7) we obtain

where, z; = (1

n
=1 ln(l - e_zia).

pl@) =~ ®

By putting (8) into (6), we get

S+ Z In(z) - Z 28In(z) —m=0. (9)

n+2?:11n(1—972§1) n z ln(zi)e_ztix
m = Zi=1 .

:‘len(l—efz?) 1-e~%"

i
Therefore, the ML estimator of «, say &, can be
obtained as a solution of the non-linear equation of
the form h(a) = a, where

Here,

n
h(a) = n7%In(z) + m -y, In(z)’

(10)

It is obvious that (10) cannot be solved explicitly.
Therefore, for the ML estimator of «, we resort to
iterative methods such as Newton-Raphson. Once,
we obtain &, then f can be obtained from (8).

2.3. Least squares estimators

Let x(;) < x(2) < **+ < x(,,) be the order statistics of a
random sample of size n from ERK distribution. The
LS estimators of the parameters a and [ are
obtained by minimizing following equation with
respect to the parameters of interest

n

S(a, p) = Z (F(xm) - ﬂf (11)

i=1

Here, ﬁ, (i =1,..,n) are the expected values of

F(x(i)). By incorporating the cdf of ERK distribution
given in (1) into (11) and taking the derivative of it
with respect to @ and 3, the LS estimators of the
parameters are obtained by solving following
nonlinear equations

i (F(X(L)’“ B) -

i=1

(F(x(i)' apB) - n;ﬂ) Ay (xy, @ B) =0,

i=1

)Al(x(l),a ﬁ) = 0

n

where A, (x, a, B) and A, (x, a, B) are

Alx,a,B) =P8 (1 ix)aln (1 X )e_(fo)a

—x
B-1

(1 - e‘(ﬁ)a) , (12)

A, (x, @, B) =In (1 - e—(lf—x)a)
8

x a
(1-e& ), (13)
respectively.
2.4. Weighted least squares estimators
The WLS estimators of the parameters a and § are

obtained by minimizing following equation with
respect to the parameters of interest

n . 2

W =) w(Fbo)-52) - a9

i=1

Here,

w,=1/V (F(x(i))) =(m+12n+2)/in—i+1),
(i=1,..,n). By incorporating the cdf of ERK
distribution given (1) into (14) and taking the
derivative of it with respect to the a and g, the WLS
estimators of the parameters are obtained by solving
following nonlinear equations

n
)
1

1
;m<}7(x(i),a,ﬁ) _ —
. Ay (xq@y, @ B) =0,

)

: l
;m<}7(x(i),a,ﬁ) _ —

2y (xqy, @, B) =0,

where A, (x, a, B) and A, (x, a, B) are the same as in
(12) and (13), respectively.

2.5. Minimum distance methods

In this subsection, we consider three estimation
methods for estimating parameters of ERK
distribution by minimizing the goodness of fit
statistics. These estimators are obtained based on
differences between the estimate cdf and the
empirical cdf and proposed by [12-13]. In recent
years, these methods are very popular in estimation
theory. For example, they are used to estimate the
parameters of Weibull, Marshall-Olkin extended
Lindley, Marshall-Olkin extended exponential and
inverse  Weibull distributions by [14-17],
respectively.
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2.5.1. Cramér-von Mises estimators

The CM estimators of the parameters a and f are
obtained by minimizing following equation with
respect to the parameters of interest

+z(p(x(l)>__>2.

The CM estimators of the parameters are obtained by
solving following nonlinear equations

Cla,B) = (15)

(F(X(L),
(F(X(L),

)Al(X(l),(Z ,8) = 0

)Az (x@ @ B) =

AT

where A, (x, @, B) and A, (x, @, B) are the same as in
(12) and (13), respectively.

2.5.2. Anderson Darling estimators

The AD estimators of the parameters « and g are
obtained by minimizing following equation with
respect to the parameters of interest

A(a,B) = —n— %Z(Zi — Dlog[F(xq) (1= F(xa))]
i=1
(16)

wherei*=n—i+1.

The AD estimators of the parameters are obtained by
solving following nonlinear equations

Z(Zi _ [Al(x(i)'a'ﬂ) _
i=1

Ay (xgy, @, B) ] “o
1_F(x(l*),a,ﬁ) ’

F(xq@, @ B)
o Dy(xaypaB)  Ay(xamy . B) ]
2i—1 - =0,
;( l )[F(x(i)’“'ﬁ) 1-F(xg, . p)

where A, (x, a, B) and A, (x, a, B) are the same as in
(12) and (13), respectively.

2.5.3. Right-tail Anderson Darling estimators
The RAD estimators of the parameters a and 8 are

obtained by minimizing following equation with
respect to the parameters of interest

R(a,p) = g -2 Z F(xw)

_% Z(Zi -1) log(l - F(x(i*)))- (17)

The RAD estimators of the parameters are obtained
by solving following nonlinear equations
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4, (x@, @ ) A(xeyaB)
_ZZ F(X(,_),(X ﬂ) ta Z(ZL 1-— F(X(l ),(Z ﬂ)
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where A, (x,a, B) and A (x, a, B) are the same as in
(12) and (13), respectively.

=0,

3. Results

In this section, we give the results of the Monte-Carlo
simulation study and the real data application.

3.1. Simulation study

Here, we present the results of Monte-Carlo
simulation to compare the performances of the
different estimation methods discussed in the
previous section. To do this, we compute the means
and mean square errors (MSE) of the estimators for
each parameter. The sample sizes are taken as
n =25, 50, 100 and 500. In the context of parameter
settings, we take « =0.5and 3 and  =0.5, 1.5 and 5.
All the computations are done based on [100,000/n]
Monte-Carlo runs where [.] represents the integer
value function. We generate a sample of size n from
ERK distribution using inverse cdf method via
following expression

x =
1+n

where n = [~ In(1 - Ul/ﬁ)]l/a
uniform observation.

and U is a standard

It should be noticed that the ML, LS, WLS, CV, AD and
RAD estimates of the parameters are obtained by
using fminsearch function in the optimization
toolbox of MatlabR2013a software. The results are
reported in Tables 1 and 2.

It is observed from Tables 1 and 2 that when n =25
and 50, the AD and RAD estimates have the smallest
bias. On the other hand, the LS and CV estimates have
the largest bias. As the sample size increases, all the
estimates have negligible bias.

In the context of efficiency, The AD is the most
efficient method for @« when n =25 according to
Tables 1 and 2. However, for the other sample sizes,
the ML estimate outperforms other estimates. It is
followed by the AD and RAD. These estimates are
highly competitive compared to ML in view of the
MSEs of &. It should be stated that the LS and CV
estimates do not perform well for all sample sizes.

In terms of the efficiency of #, the ML is the most
efficient estimator with the lowest MSE values for all
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sample sizes. It is followed by the AD and RAD when after the ML estimates. It should be noted that the LS

B =0.5. However, when f =1.5 and 5, the RAD and CV estimators of f demonstrate the weakest
estimates do not perform well. In this case, the AD performance with the highest MSE values for all
and WLS estimates show the strongest performance sample sizes.

Table 1. Simulated mean and MSE values of @ and B; a =0.5,5 =0.5,1.5and 5.*
n ML LS WLS Cv AD RAD
a =0.5, B =0.5
a 0.5905 0.5750 0.5707 0.6776 0.5488 0.5592
(0.0600) (0.1672) (0.1419) (0.2990) (0.0585) (0.0709)
25 B 0.4845 0.5259 0.5178 0.4868 0.5114 0.5118
(0.0241) (0.0397) (0.0335) (0.0415) (0.0295) (0.0309)

a 05403 05311 05283 05716 05197  0.5217
(0.0138) (0.0423) (0.0287) (0.0665) (0.0145) (0.0130)

50 g 04914 05122 05068 04921 05064  0.5065
(0.0114) (0.0200) (0.0159) (0.0208) (0.0143) (0.0144)

« 05178 05114 05123 05278 05104 05104
(0.0048) (0.0095) (0.0067) (0.0115) (0.0057) (0.0051)

100 g 04969 05045 05017 04944 05018  0.5020
(0.0056) (0.0098) (0.0076) (0.0100) (0.0073) (0.0072)

a 0.5006 0.5017 0.5012 0.5047 0.5005 0.4997
(0.0007) (0.0018) (0.0012) (0.0019) (0.0011) (0.0009)
B 0.4989 0.4981 0.4982 0.4960 0.4985 0.4986
(0.0009) (0.0019) (0.0014) (0.0019) (0.0014) (0.0013)
a =0.5 =15

a 0.5302 0.5018 0.5063 0.5346 0.5101 0.5146
(0.0089) (0.0123) (0.0106) (0.0172) (0.0082) (0.0085)
25 B 1.5338 1.5283 1.5290 1.5358 1.5291 1.5558
(0.1240) (0.1354) (0.1289) (0.1554) (0.1249) (0.1611)

a 05145 05000 05039  0.5153 05051  0.5073
(0.0035) (0.0050) (0.0041) (0.0057) (0.0038) (0.0037)

50 g 15244 15220 15223 15251 15220  1.5360
(0.0573) (0.0665) (0.0620) (0.0711) (0.0613) (0.0754)

a@ 05041 04978 05002 05053 05005  0.5013
(0.0015) (0.0023) (0.0019) (0.0024) (0.0018) (0.0018)

100 5 15156 15119 15127 15131 15123 15173
(0.0256) (0.0300) (0.0279) (0.0310) (0.0277) (0.0322)

a 05005 0.4982  0.4994  0.4997 04991  0.4996
(0.0003) (0.0005) (0.0003) (0.0005) (0.0003) (0.0003)
f 15004 1.5003  1.5000  1.5005  1.4999  1.5017
(0.0060) (0.0072) (0.0066) (0.0072) (0.0066) (0.0074)
a =0.5, f =5

a 05152 04958 0.4995 05153 05031  0.5071
(0.0031) (0.0040) (0.0035) (0.0046) (0.0030) (0.0036)
25 p 54127 51357 51790 54827 52217  5.4498
(1.8325) (2.0503) (1.8843) (2.8631) (1.6815) (3.2998)

a 05076 04981 05007 05076 05018  0.5034
(0.0014) (0.0018) (0.0016) (0.0020) (0.0015) (0.0017)

50 g 51626 5.0237 50575 51801 50735 5.1510
(0.6753) (0.7676) (0.6877) (0.8956) (0.6646) (0.9679)

a 05041 04990 05010 05038 05011 05017
(0.0007) (0.0009) (0.0008) (0.0009) (0.0008) (0.0008)

100 5 50765 50035 50304 50787 50330  5.0653
(0.2900) (0.3433) (0.3053) (0.3695) (0.2982) (0.4092)

a 0.4994 0.4990 0.4992 0.4999 0.4992 0.4989
(0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001)
f  5.0184 5.0103 5.0150 5.0251 5.0149 5.0122
(0.0583) (0.0757) (0.0652) (0.0771) (0.0649) (0.0863)
*MSEs of the estimates are given in the bracket.
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Table 2. Simulated mean and MSE values of & and ﬁ; a =3, =0.5,1.5and 5.*

n ML LS WLS cvV AD RAD
a =3, f =0.5
a@ 35553 34967 34695 41034 33002  3.3815
(2.2127) (6.8165) (6.0934) (11.7191) (2.3803) (3.4381)
25 g 04856 05275 05191 04889 05131 05135
(0.0236) (0.0398) (0.0334) (0.0413) (0.0289) (0.0304)
a 32195 31696 31569  3.4027  3.1105 3.1177
(0.4823) (1.4699) (0.9933) (2.1393) (0.5398) (0.4739)
50 g 04913 05106 05056 04905 05049  0.5053
(0.0107) (0.0200) (0.0158) (0.0207) (0.0143) (0.0144)
a 31486 3.1149 31122 32168  3.0950  3.0974
(0.1897) (0.4591) (0.3020) (0.5598) (0.2366) (0.1964)
100 5 04897 05001 04970 04899 04974  0.4976
(0.0055) (0.0106) (0.0081) (0.0109) (0.0077) (0.0076)
a 30168 3.0041 3.0099  3.0218  3.0054  3.0046
500 (0.0261) (0.0698) (0.0435) (0.0718) (0.0409) (0.0336)
B 05020 05045 05033 05024 05036  0.5036
(0.0010) (0.0020) (0.0015) (0.0020) (0.0015) (0.0014)
a =3, =15
a 31931 30186 3.0423 32169  3.0743 3.1008
(0.3322) (0.4230) (0.3576) (0.5883) (0.3067) (0.3113)
25 g 15347 15282 15290 15356 15294  1.5564
(0.1209) (0.1315) (0.1255) (0.1509) (0.1221) (0.1575)
a 3.0909 29950 3.0199  3.0870  3.0260  3.0465
(0.1275) (0.1826) (0.1492) (0.2086) (0.1330) (0.1324)
50 g 15039 1.5083 1.5068 15111 15062 15221
(0.0531) (0.0618) (0.0572) (0.0661) (0.0562) (0.0692)
a 30501 3.0115 3.0266  3.0566  3.0255  3.0328
(0.0543) (0.0820) (0.0651) (0.0890) (0.0605) (0.0603)
100 5 15134 15129 15132 15142 15125 15195
(0.0253) (0.0308) (0.0282) (0.0319) (0.0278) (0.0337)
a 30122 3.0037 3.0096 3.0126  3.0075  3.0120
500 (0.0100) (0.0144) (0.0111) (0.0147) (0.0111) (0.0108)
B 14924 14951 14942 14953 14942  1.4966
(0.0045) (0.0057) (0.0051) (0.0057) (0.0051) (0.0060)
a =3, =5
a  3.0916 29757 29948  3.0931  3.0197 3.0426
(0.1130) (0.1427) (0.1231) (0.1657) (0.1099) (0.1280)
25 p 53580 5.0884 51165 54314 51715 53735
(1.6426) (1.8748) (1.6370) (2.6461) (1.4839) (2.7755)
a 3.0533 29971 3.0118  3.0547  3.0184  3.0327
(0.0512) (0.0690) (0.0576) (0.0752) (0.0541) (0.0611)
50 g 52098 5.0923 51173 52531 51310  5.2354
(0.7635) (0.8816) (0.7882) (1.0478) (0.7542) (1.1626)
a 30132 29870 29954  3.0155 29969  3.0006
(0.0228) (0.0328) (0.0266) (0.0336) (0.0258) (0.0281)
100 g 50759 50126 50319 50885 50355  5.0695
(0.2813) (0.3478) (0.3089) (0.3758) (0.2990) (0.4303)
a 29994 29956 29981  3.0013 29969  2.9971
500 (0.0051) (0.0072) (0.0058) (0.0072) (0.0058) (0.0059)
B 49940 49849 49910 49996  4.9878  4.9922
(0.0582) (0.0727) (0.0623) (0.0733) (0.0613) (0.0817)

*MSEs of the estimates are given in the bracket.
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3.2. Real data application

Now, we model the relief times (in hours) for 50
arthritic patients with ERK distribution. This data set
was first given by [18] to make an implementation of
the estimation of the parameters of Burr XII
distribution. The data set is shown as follows:

Table 3. The relief times data set

0.70 0.84
0.62 0.49
0.59 0.29
0.80 0.55
0.57 0.73

0.58 0.50 0.55
0.54 0.36 0.36
0.75 0.46 0.46
0.84 0.34 0.34
0.75 0.44 0.44

0.82
0.71
0.60
0.70
0.81

0.59
0.35
0.60
0.49
0.80

0.71
0.64
0.36
0.56
0.87

0.72
0.85
0.52
0.71
0.29

0.61
0.55
0.68
0.61
0.50

Before starting the analyses, we fit the ERK model to
the data set. To do this, we draw the ERK g-q plot in
Figure 2. It is observed from Figure 2 that ERK
distribution provides very good fit to model the relief
times data set.

1

. - ’+

é 08t . /=PH—1-E'—
=
= 06
2 +
[=H
04t g F

-~ ’f

+

02 Jl.l 1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

Observed Values

Figure 2. The ERK g-q plot for relief times data set.

Then, we obtain the ML, LS, WLS, CM, AD and RAD
estimates of the parameters. Furthermore, to
determine the most efficient estimation methods, we
use the model selection criteria. They are Akaike
information criterion (AIC), Bayesian information
criterion (BCI), corrected ACI (AICs) and Hannan-
Quinn criterion (HQC). It should be noted that the
smallest values of these criteria represent the best
fit. The results are given in Table 4.

Table 4. Parameter estimates and model selection criteria

values for relief time data

@ B ACI BCI AClc HQC
ML 089 289 -3858 -2693 -3832 -37.12
LS 087 257 -37.85 -2620 -37.59 -36.39
WLS 088 271 -3835 -2670 -38.09 -36.89
cv 089 261 -3806 -2641 -37.80 -36.60
AD 087 267 -3818 -2653 -37.92 -36.72
RAD 0.83 251 -36.88 -2524 -36.63 -35.43

Itis obvious from Table 4 that the ML estimates have
the smallest model selection criteria values. In other
words, the ERK model based on the ML estimates is
the most appropriate model among the others.
Furthermore, they are followed by the WLS and AD
estimates. For illustration of these results, we draw
the histogram of the data set with fitted pdfs in
Figure 3. According to Figure 3 that while the pdfs
based on ML, WLS and AD estimates provides good
fit, the pdfs based on LS, CV and RAD remain
incapable to model the data set.

1215

25 T T
3 [pata
é = MLE
200 Fa| R | LSE |4
memee WLSE
.......... cM
AD
= 15 -=&-= RAD ||
=
@
=]
o
@
Lil__ 1 L -
05k P i
0 -I 1
02 0 0.2 04 0.6 0.8 1 12 14
Data set

Figure 3. Histogram of relief time data with fitted pdfs.
4. Discussion and Conclusion

In this paper, we consider the estimation of the
parameters of ERK distribution by using classical
methods ML, LS and WLS, and minimum distance
methods CM, AD and RAD. The performances of the
estimators are compared via Monte-Carlo simulation
study. It is concluded from the simulation study that
the ML estimators demonstrate the best
performances among them. Furthermore, AD and
WLS estimators work quite well. It should be stated
that the minimum distance method AD is highly
competitive method compared to ML. However, LS
and CV estimators do not perform well. These results
are supported with the real data example.
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