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Abstract
In this paper, we mainly investigate Morita-like equivalence and Morita context for right
fair semigroups. If two right fair semigroups S and T are Morita-like equivalent, that is,
there is a category equivalence F : US − Act 
: UT -Act : G, we characterize the two
functors F and G using Hom functor and tense product functor. Also, we investigate
Morita context for right fair semigroups and obtain equivalence between two right unitary
act categories.
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1. Introduction
Morita equivalence theory characterizes the relationship of module categories of two

rings with 1. Morita theory is very useful in studying ring theory. Later, many authors
tried to extend Morita equivalence theory to rings without 1. Fuller [4] obtained equiva-
lence between a completely additive subcategory of the module category over a ring (not
necessarily with 1) and a full unitary module category over a ring with 1. Abrams [1],
Ánh and Márki [2] obtained Morita equivalences by replacing the usual module categories
with the categories of unital modules. Xu, Shum and Turner-Smith [17] further extended
Morita theory and introduced Morita-like equivalence of module categories. García, Marín
and Ouyang etc. [5,14,15] studied xst-rings, which is named after Xu, Shum and Turner-
Smith.

Morita theory has also been extended to semigroup theory [3, 7–13, 16]. Banaschewski
[3] and Knauer [8] independently studied Morita theory of monoids and got the same con-
clusions. Since then, many results on Morita theory of semigroups have been obtained.
Talwar [16] generalized this theory to semigroups with local units. Lawson [12] reformu-
lated Morita theory of semigroups with local units in [16] and characterized equivalence of
two semigroups with local units by joint enlargement. Recently, Liu [13] got equivalence
between two subcategories of unital act categories over two arbitrary semigroups based
on Morita context. Laan and Márki [11] introduced the notion of fair semigroups, which
corresponds to xst-rings. They investigated Morita equivalence of these semigroups. It is
worth to further consider Morita-like equivalence for fair semigroups. In this paper, we
will use the tools in [15] to study Morita-like equivalence and Morita context for these
semigroups.
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The paper is constructed as follows. In Section 2, we give some basic notions and results
on fair semigroups which is used in this paper. In Section 3, the Morita-like equivalence
is investigated and some properties of Morita-like equivalence are obtained. We study
Morita context for right fair semigroups and obtain equivalence between two unitary act
categories in Section 4.

2. Preliminaries
Let S be a semigroup. A set M is a right S-act if there is a map from M × S to M,

denoted (m, s) → ms, such that m(st) = (ms)t (∀s, t ∈ S, m ∈ M). If M is a right S-act,
we write MS . If M = MS, we call M to be unitary. If for all m ∈ M, there exists s ∈ S
such that ms = m, we call M to be s-unital.

One can similarly define left S-acts.
For two right S-acts M and N, f : M → N is said to be S-morphism if f satisfies

f(ms) = f(m)s, (∀m ∈ M, s ∈ S). The set of all S-morphisms from MS to NS is denoted
by HomS(M, N). The set of all S-morphisms from M to itself is denoted by EndS(M).
Let S-Act be the category of right S-acts on a semigroup S.

The unitary right S-acts together with the S-morphisms form a full subcategory of
S-Act, which we shall denote by US-Act.

Let S and T be two semigroups. An S-T -biact is a set M which is both left S-act and
right T -act and (sm)t = s(mt) for all s ∈ S, t ∈ T and all m ∈ M. A biact is said to
be unital if it is left and right unital. If M and N are S-T -biact, a map f : M → N
is called a biact morphism if f satisfies f(sm) = sf(m) and f(mt) = f(m)t for all
m ∈ M, s ∈ S, t ∈ T.

An equivalence ρ on MS is a congruence if for all s ∈ S, m, n ∈ M,

(m, n) ∈ ρ ⇒ (ms, ns) ∈ ρ.

If ρ is a congruence on M, then M/ρ is also a right S-act. The act M/ρ is called a quotient
act.

For a right S-act AS and a left S-act SB, the tensor product A ⊗S B exists. In fact,
A ⊗S B = (A × B)/σ, where σ is the congruence on A × B generated by

R = {((xs, y), (x, sy))|x ∈ A, y ∈ B, s ∈ S}.

We denote the element (x, y)σ of A ⊗S B by x ⊗ y.
By Proposition 1.4.10 of [6], we have that a ⊗ b = c ⊗ d ⇐⇒ (a, b) = (c, d) or there is

a sequence
(a, b) = (x1, y1) → (x2, y2) → · · · → (xn, yn) = (c, d)

such that either ((xi, yi), (xi+1, yi+1)) ∈ T or ((xi+1, yi+1), (xi, yi)) ∈ T, where 1 ≤ i ≤
n − 1.

If A is a right S-act and B is an S-T -biact, then A ⊗S B is a right T -act with

(a ⊗ b)t = a ⊗ bt;

similarly, if A is a T -S-biact and B is a left S-act, then A ⊗S B is a left T -act with

t(a ⊗ b) = ta ⊗ b

(Proposition 3.1, [16]).
Let S, T be two semigroups. For an S-T -biact SMT and a left S-act SN , we have that

HomS(M, N) is a left T -act with action (t · f)(m) = f(m · t); for an S-T -biact SMT and a
right S-act NT , we have that HomT (M, N) is a right S-act with action (f ·s)(m) = f(s·m);
for a right S-act MS and a T -S-biact T NS , we have that HomS(M, N) is a left T -act with
action (t · f)(m) = t · f(m); for a left T -act T M and a T -S-biact T NS , we have that
HomT (M, N) is a right S-act with action (f · s)(m) = f(m) · s.
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A functor F is said to be faithful if it is injective. A semigroup S is called factorisable
if every element of S is a product of two elements.

Corresponding to the notion of xst-rings investigated by García and Marín in [5], Laan
and Márki [11] introduced the notion of fair semigroups.

Definition 2.1. [11] Let S be a semigroup. If every subact of an unitary right S-act is
unital, S is said to be a right fair semigroup.

Similarly, we can define left fair semigroups. A fair semigroup is a semigroup S that is
both a left fair semigroup and a right fair semigroup.

By Proposition 2.3 in [11], S is a fair semigroup if and only if every right unital s-act
is s-unital.

An ideal I of S is said to be unitary if I is unitary as S-act. Let U(SS) be the
disjoint union of all right unitary ideals of S. It is obvious that U(SS) is the largest right
unitary ideal of S. Similarly, we can define the left ideal U(SS). If S is factorisable, then
U(SS) = U(SS) = S.

Let S be a right fair semigroup. Laan and Márki [11] proved that U(SS) is a two-sided
ideal and U(SS) = U(SS). We denote U(SS) = U(SS) by U(S). By Corollary 2.13 in [11],
we have

U(S) = {s ∈ S | s = su = vs for some u, v ∈ S}.

The set U(S) is said to be the unitary part of S.
A right S-act MS is nonsingular, if m = m′ (m, m′ ∈ M) whenever ms = m′s for all

s ∈ S ([11]). A semigroup S has common weak right local units, if for all s, t ∈ S, there is
an element u ∈ S such that s = su and t = tu ([11]). Let S be a fair semigroup such that
U(S) has common weak right local units. By Proposition 3.2 in [11], every act in US-Act
is nonsingular. Define µM : M ⊗S S → M by m ⊗ s 7→ ms. Let

FS-Act = {M ∈ S-Act | M ⊗ S ∼= M}.

If S has common weak right local units, then FS-Act = US-Act ([11]).
We generalize the definition of Morita-like equivalence to semigroup theory.

Definition 2.2. Let S and T be two fair semigroups. S and T are Morita-like equivalent
if US-Act is equivalent to UT -Act.

3. Morita-like equivalence for fair semigroups
Let MS be a right S-act. Denote by U(MS) the union of all unitary subacts of MS .

Then U(M) is the largest subact of MS which is unitary. The following proposition gives
a characterization of U(MS), which is analogous to Proposition 2.2 in [15].

Proposition 3.1. Let S be a fair semigroup. For M ∈ US-Act, we have U(MS) =
MU(SS). In particular, if S is a factorisable right fair semigroup, then U(MS) = MS.

Proof. Since MU(SS) is a unitary subact of MS , we have that MU(SS) ⊆ U(MS).
If N is a unitary subact of MS , we get NU(SS) ⊆ NS = N. Assume NU(SS) ̸= N .

There exitsts an element x ∈ N = NS but x ̸∈ NU(S). Hence, we have x = n1s1,
where n1 ∈ N and s1 ∈ S. Since U(S) is a right ideal and n1s1 ̸∈ NU(S), we have
n1 ∈ N\NU(S) and s1 ̸∈ U(S). For n1 ∈ NS\NU(S), we have n1 = n2s2, where n2 ∈ N
and s2 ∈ S\U(S).

Continuing in this way, we can get two sequences n1, n2, . . . , nk, . . . ∈ N and
s1, s2, . . . , sk, . . . ∈ S such that nksksk−1 · · · s1 ̸∈ NU(SS), for any positive integral k. By
Theorem 2.6 of [11], we can find some u ∈ S such that sk · · · s1 = sk · · · s1u. By Lemma
2.12 (2) in [11], we get sksk−1 · · · s1 ∈ U(S). This is a contradiction. Hence, NU(SS) = N .

For any unitary subact N of MS , we have
N = NU(SS) ⊆ MU(SS) ⊆ U(MS).
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Particularly, let N = U(MS), we have U(MS) = MU(SS). �

If R is a right xst-ring and M is an R-module, there is a natural equivalence M ∼=
HomR(U(R), M)U(R) ([15]). The following statement gives a similar result for right fair
semigroup S, where U(S) has common weak right local units.

Proposition 3.2. Let S be a right fair semigroup such that U(S) has common weak right
local units. For M ∈ US-Act, define

θM : MS −→ HomS(U(SS), MS)U(SS)
by putting θM (x)(s) = xs, where x ∈ M and s ∈ U(SS), then θM is a natural S-
isomorphism. Moreover,

θ : IUS−Act −→ HomS(U(SS), −)U(SS)
is a natural equivalence.

Particularly, if S is a factorisable right fair semigroup, we have
θ : IUS−Act −→ HomS(S, −)S

is a natural equivalence.

Proof. Firstly, we show that θM is injective. For all x, y ∈ M, if θM (x) = θM (y), we
have θM (x)(s) = θM (y)(s), for all s ∈ U(SS). That is, xs = ys. Hence, we get x = y by
Proposition 3.2 in [11].

Next, we show that θM is surjective. We know that HomS(U(SS), MS)U(SS) is the
largest unitary subact of HomS(U(SS), MS) by Proposition 3.1. For all
g ∈ HomS(U(SS), MS)U(SS), suppose that g = g

′
s

′
, where g

′ ∈ HomS(U(S), MS), s
′ ∈

U(SS), there exits u ∈ S satisfying s
′ = s

′
u by Lemma 2.12 in [11]. Hence,

g = g
′
s

′ = g
′
s

′
u = gu.

Since S is a right fair semigroup, there exists a positive integer n such that un ∈ U(SS)
by Corollary 2.10 in [11]. Also, we have g = gun. Therefore,

g(x′) = (gun)(x′) = g(unx
′) = g(un)x′ = θM (g(un))(x′),

where x
′ ∈ U(SS). This concludes that g = θM (g(un)) and so HomS(U(SS), MS)U(S) ⊆

ImθM .
Since ImθM is a subact of HomS(U(SS), MS)U(SS), we have

ImθM = HomS(U(SS), MS)U(SS).
This implies that θM is surjective.

Clearly, θM is a natural isomorphism. �
Remark 3.3. (i) If S is a factorisable right fair semigroup, then

SS
∼= HomS(S, SS)S = EndS(SS)S.

(ii) Let S be a right fair semigroup. For M ∈ US-Act, if T MS is a T -S-biact, then
θM : MS −→ HomS(U(SS), MS)U(SS)

is a T -S-isomorphism.

Let {Mi | i ∈ I} be a family of S-Act, the coproduct
⨿
i∈I

Mi is the disjoint union of Mi.

Let S be a semigroup. For all M ∈ US-Act, if M is an epimorphic image of
⨿

P, we
call the unitary S-act P to be a generator of US-Act.

Proposition 3.4. Let S be a right fair semigroup, and P be an object in US-Act. Then
the following are equivalent:

(1) P is a generator of US-Act.
(2) The functor HomS(PS , −) is faithful.
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Proof. (1) =⇒ (2) For M, N ∈ US-Act, suppose that f and g are two S-morphisms from
M to N such that Hom(P, f) = Hom(P, g). For all m ∈ M, since P is a generator, there
is an S-morphism µ :

⨿
P −→ M such that m = µ(p). Hence

f(m) = fµ(m) = gµ(m) = g(m).

This implies that f = g. Therefore, Hom(P, −) is faithful.
(2) =⇒ (1) Let I = HomS(PS , SS) and µ : P (I) −→ S be a morphism indexed by the

elements of I. If µ is not epic, we have

Hom(P, S) −→ Hom(P, S/Imµ)

For all f1, f2 ∈ Hom(P, S), we have µf1 = µf2. This is contrary to that Hom(P, −) is
faithful. �

By Proposition 3.5 in [11], we can now establish the following result:

Proposition 3.5. Let S be a right fair semigroup such that S′ = U(SS) has common weak
right local units.

(1) Every right unitary S-act is a right unitary S′-act, and vice versa.
(2) HomS(M, N) = HomS′ (M, N), for any M ,N ∈ US-Act.

(3) S
′ is a generator in US-Act.

Proof. We can obtain (1) and (2) by the proof of Proposition 3.5 in [11].
(3) For all M ∈ US-Act, we have that M is also a unitary right S′-act by (1). So M

is s-unital by Proposition 2.3 in [11]. Let g : S′M −→ M defined by s 7→ ms. This proves
that S′ generates M. �

Let S and T be two semigroups. If SPT and T QS are biacts, τ : P ⊗T Q −→ S and
µ : Q ⊗S P −→ T are biact morphisms correspondingly as written

τ(p ⊗ q) =< p, q >, µ(q ⊗ p) = [q, p]

such that
< p1, q > ·p2 = p1 · [q, p2], [q1, p] · q2 = q1· < p, q2 >,

for all p, p1, p2 ∈ P and q, q1, q2 ∈ Q. The set (S, T, SPT , T QS , τ, µ) is said to be a Morita
context.

Note that U(T ) is a unitary U(T )-act, it follows that U(T ) is also s-unital as U(T )-
act. That is, for all t ∈ U(T ), there is t

′ ∈ U(T ) such that t = tt
′
. Hence, for all

f ∈ HomT (Q, M)U(T ), there is t ∈ U(T ) such that ft = f.
Corresponding to Theorem 3.1 in [15], we give the following theorem. We use a different

way to prove this result.

Theorem 3.6. Let S and T be two semigroups. Suppose (S, T, SPT , T QS , τ, µ) is a Morita
context, where τ : P ⊗T Q −→ S and µ : Q ⊗S P −→ T are biact morphisms such that
Imτ = U(SS) and Imµ = U(TT ). Then we have the following natural functor isomor-
phisms:

− ⊗S P ∼= HomS(QS , −)U(TT ), − ⊗T Q ∼= HomT (PT , −)U(SS).

Proof. Define a map τM : M ⊗S P −→ HomS(QS , MS)U(TT ) by m ⊗ p 7−→ mτ(p ⊗ −)t,
that is

τM (m ⊗ p) = mτ(p ⊗ −)t,
where t ∈ U(T ) such that mτ(p ⊗ −)t = mτ(p ⊗ −).

We claim that τM is well-defined.
Suppose that m ⊗ p = m

′ ⊗ p
′ , we have (m, p) = (m′

, p
′) in which case

mτ(p ⊗ −)t = m
′
τ(p′ ⊗ −)t
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or
m = m1s1, s1p = t1p1,

m1t1 = m2s2, s2p1 = t2p2,
· · · · · ·

mn−1tn−1 = mnsn, snpn−1 = tnp
′
,

mntn = m
′
,

where m1, m2, · · · , mn ∈ M, p1, p2, · · · , pn ∈ P, s1, s2, · · · , sn, t1, t2, · · · , tn ∈ S. Then

mτ(p ⊗ −) = m1s1τ(p ⊗ −) = m1τ(s1p1 ⊗ −) = m1τ(t1p1 ⊗ −)
= m1t1τ(p1 ⊗ −) = m2s2τ(p1 ⊗ −)
= · · · · · ·
= mnsnτ(pn−1 ⊗ −) = mnτ(snpn−1 ⊗ −)

= mnτ(tnp
′ ⊗ −) = mntnτ(p′ ⊗ −) = m

′
τ(p′ ⊗ −).

Define µ : HomS(QS , MS)U(TT ) −→ M⊗SP by f 7−→ f(q)⊗p, where f ∈ HomS(QS , MS),
t ∈ U(T ) such that ft = f and t = µ(q ⊗ p). Suppose ft1 = f = ft2, where t1 =
µ(q ⊗ p), t2 = µ(q′ ⊗ p

′). We have

f(q) ⊗ p = (f · t)(q) ⊗ p = f(t · q) ⊗ p = f(µ(q′ ⊗ p
′)q) ⊗ p

= f(q′
τ(p′ ⊗ q)) ⊗ p = f(q′)τ(p′ ⊗ q) ⊗ p

= f(q′) ⊗ p
′
µ(q ⊗ p) = f(q′) ⊗ p

′
µ(q′ ⊗ p

′)

= f(q′)τ(p′ ⊗ q
′) ⊗ p

′ = f(q′
τ(p′ ⊗ q

′)) ⊗ p
′

= f(tq′) ⊗ p
′ = ft(q′) ⊗ p

′ = f(q′) ⊗ p
′
.

So µ is well-defined.
For all m ⊗ p ∈ M ⊗S P, we have

µτ(m ⊗ p) = µ(mτ(p ⊗ −)t) = µ(mτ(p ⊗ −)µ(q′ ⊗ p
′))

= mτ(p ⊗ q
′) ⊗ p

′ = m ⊗ τ(p ⊗ q
′)p′

= m ⊗ pµ(q′ ⊗ p
′) = (m ⊗ p)t,

where t = µ(q′ ⊗ p
′) with mτ(p ⊗ −)t = mτ(p ⊗ −). Hence, we have µτ=Im⊗p.

For all f ∈ HomT (Q, M)U(T ), suppose ft = f and t = µ(q ⊗ p). We have

τµ(f) = τµ(ft) = τ(f(q) ⊗ p) = f(q)τ(p ⊗ −)t.

For all x ∈ Q, we have

f(q)τ(p ⊗ x) = f(qτ(p ⊗ x)) = f(µ(q ⊗ p)x) = f(tx) = ft(x).

Thus, f(q)τ(p ⊗ −) = ft(−) = f(−). It concludes τµ = IHomS(QS ,MS)U(TT ).

The naturality is obvious. Hence, we get − ⊗S P ∼= HomS(QS , −)U(TT ).
Similarly, we have − ⊗T Q ∼= HomT (PT , −)U(SS). �

We can obtain the following corollary by the above theorem.

Corollary 3.7. Let S and T be two fair semigroups. Assume (S, T, SPT , T QS , τ, µ) is a
Morita context, where SPT and T QS are unitary biacts, µ : Q⊗S P → T and τ : P ⊗T Q →
S are biact morphisms such that Imτ = U(SS) and Imµ = U(TT ). We have the following
natural functor isomorphisms:

− ⊗S P ∼= HomS(QS , −)U(T ), − ⊗T Q ∼= HomT (PT , −)U(S),
Q ⊗S − ∼= U(T )HomS(SP, −), P ⊗T − ∼= U(S)HomT (T Q, −).
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Theorem 3.3 in [15] gives some properties of Morita-like equivalence of right-xst rings.
We shall give the corresponding properties for right fair semigroups.

Theorem 3.8. Let S and T be two right fair semigroups such that U(SS) and U(TT )
have common weak right local units. Assume S and T are Morita-like equivalence via
F : US-Act 
 UT -Act : G. Let P = F (U(SS)) and Q = G(U(TT )). Then

(1) PT and QS are respectively generators in UT -Act and US-Act.
(2) End(PT )U(SS) ∼= U(SS) and End(QS)U(TT ) ∼= U(TT ) as semigroups.
(3) SPT and T QS are unitary biacts.
(4) SPT

∼= HomS(QS , U(SS))U(TT ) and T QS
∼= HomT (PT , U(TT ))U(SS).

(5) F ≈ HomS(QS , −)U(TT ) and G ≈ HomT (PT , −)U(SS).
(6) SPT and T QS induce a Morita context (S, T, SPT , T QS , τ, µ) such that τ and µ are

biact homorphisms such that Imτ = U(SS) and Imµ = U(TT ), respectively.
Moreover, if we define multiplications in Q ⊗S P and P ⊗T Q, respectively:

(y ⊗ x)(y′ ⊗ x′) = y ⊗ τ(x ⊗ y′)x′, (x ⊗ y)(x′ ⊗ y′) = x ⊗ µ(y ⊗ x′)y′,
where x, x′ ∈ P and y, y′ ∈ Q, then Q ⊗S P and P ⊗T Q are semigroups, and µ and τ are
semigroup homomorphisms.

(7) F ≈ − ⊗S P and G ≈ − ⊗T Q.

Proof. We denote U(SS)=S′ and U(TT )=T ′.
(1) For M, N ∈ UT -Act. Suppose f, g ∈ HomT (M, N) and f ̸= g. Since

G : HomT (M, N) 7−→ HomS(G(M), G(N))
is an abelian group isomorphism, we have G(f) ̸= G(g). By Proposition 3.5, we have that
S′ is a generator in US-Act. It follows that HomS(S′

S , −) is faithful by Proposition 3.4.
Hence, HomS(S′, −)G(f) ̸= HomS(S′, −)G(g). Therefore, F (G(f))F (h) ̸= F (G(g))F (h),
where h is a morphism from S

′ to G(M). That is, fF (h) ̸= gF (h). This concludes that
Hom(F (S′), −) is faithful and P = F (S′) is a generator.

Similarly, QS is a generator in US-Act.
(2) Since F : US-Act 
 UT -Act : G is category equivalence and Q = G(T ′), we

have EndT (T ′) ∼= EndT (Q). By Proposition 3.2, we obtain EndT (T ′
T )T ′ ∼= T ′. Therefore,

EndS(QS)T ′ ∼= T ′ as semigroups.
Similarly, EndT (PT )S′ ∼= S′.
(3) In virtue of (1) and (2), we know that SPT and T QS are unitary biacts.
(4) Since

HomS(QS , S′
S) ∼= HomT (F (QS), F (S′

S)) ∼= HomT (T ′
T , PT ),

we obtain

HomS(QS , S′
S)T ′ ∼= HomT (F (QS), F (S′

S))T ′ ∼= HomT (T ′
T , PT )T ′ ∼= SPT ,

in virtue of Proposition 3.2.
Similarly, we have

HomS(QS , S
′
S)T ′ ∼= HomT (F (QS), F (S′

S))T ′ ∼= HomT (T ′
T , PT )T ′ ∼= SPT .

(5) By Proposition 3.2, for all M ∈ US-Act, we can get the natural isomorphisms

F (MS) ∼= HomT (T ′
T , F (MS))T ′ ∼= HomT (G(T ′

T ), GF (MS))T ′ ∼= HomS(QS , MS)T ′

This implies that F ≈ HomS(QS , −)T ′ and G ≈ HomT (PT , −)S′
.

(6) By (2) and (4), we can identify T QS with HomT (PT , T
′
T )S′ and S

′ with End(PT )S′ .
Set

< , >: Q × P −→ T
′
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by < y, x >= yx, and

[ , ] : P × Q −→ S
′

by [x, y]x′ = x < y, x
′

>= x(yx
′) for x, x

′ ∈ P and y ∈ Q.
Clearly, < , > and [ , ] are both balanced mappings.
Define

τ : P ⊗T Q −→ S
′
, µ : Q ⊗S P −→ T

′

by

τ(x ⊗ y) = [x, y], µ(y ⊗ x) =< y, x >= yx.

Since SPT and T QS are unitary biacts, τ and µ are biact morphisms. We can easily check
that (S, T, SPT , T QS , τ, µ) is a Morita context.

Since PT is a generator in UT -Act, we have

T ′
T =

∪
g∈HomT (PT ,T ′

T ) gP .

For all t ∈ T
′
, there exist x ∈ P and g ∈ HomT (PT , T

′
T ) such that t = gx. Since SP is a

unitary left S-act, we can write x = sx
′
, for some s ∈ S, x

′ ∈ P. Hence,

t = g(sx
′) =< g, sx

′
>=< gs, x

′
>= µ(gs ⊗ x

′).

So µ is surjective.
Since QS is a generator in US-Act, for all s ∈ S

′
, we have s = fy, where f ∈

HomS(QS , S
′
S) and y ∈ Q. As Q is a unitary left T ′-act, there exist t ∈ T

′ and y
′ ∈ Q

such that y = ty
′
. Therefore, we can write s = fty

′ . Since T
′ has common weak right

local units, there exists e ∈ T
′ such that te = t for all t ∈ T

′
.

Let e = µ(q ⊗ p), where q ∈ Q and p ∈ P. Since ft ∈ HomS(QS , SS)T ′ and ftq ∈ S, we
have

s = (fte)y′ = (ft < q, p > y
′ = ftq[p, y

′ ] = [ftqp, y
′ ] = τ((ftq)p ⊗ y

′).

So τ is surjective.
In addition, we can verify that Q ⊗S P and P ⊗T Q are semigroups about the multipli-

cations defined above. So µ and τ are semigroup isomorphisms.
(6) From the proof process of Theorem 3.6, (5) and (6), we know that

F ∼= HomS(QS , −)T ′ ∼= − ⊗S P

and
G ∼= HomT (PT , −)S′ ∼= − ⊗T Q

are naturally isomorphisms. �

4. Morita context for fair semigroups
Definition 4.1. A right S-act M is said to be strong s-unital, if for all m1, m2 ∈ M, there
exists s ∈ S such that m1s = m2s.

Definition 4.2. A Morita context (S, T, SPT , T QS , τ, µ) is unital, if SPT and T QS are
unitary biacts.

Ouyang etc. [15] obtained Morita-like equivalence based on Morita context for right-xst
rings (Theorem 3.4). We also get similar result for right fair semigroups, but we need the
assumption that U(S) has common weak right local units.



Morita-like equivalence for fair semigroups 27

Theorem 4.3. Let S and T be two right fair semigroups such that U(S) and U(T ) have
common weak right local units. Assume (S, T, SPT , T QS , τ, µ) is a Morita context, where
SPT and T QS are strong s-unital and Im τ = U(SS) and Imµ = U(TT ). We have the
following conditions:

(1) QS and PT are respectively generators of US-Act and UT -Act.
(2) P ⊗T Q

τ∼= SU(SS)S and Q ⊗S P
µ∼= T U(TT )T as biacts.

Furthermore, if we define multiplications in P ⊗T Q and Q ⊗S P respectively by:
(x ⊗ y)(x′ ⊗ y′) = x ⊗ µ(y ⊗ x′)y′, (y ⊗ x)(y′ ⊗ x′) = y ⊗ τ(x ⊗ y′)x′,

where x, x′ ∈ P and y, y′ ∈ Q, then P ⊗T Q and Q ⊗S P are semigroups, and τ and µ are
semigroup isomorphisms.

(3) SPT
∼= HomS(QS , U(SS))U(TT ) and T QS

∼= HomT (PT , U(TT ))U(SS) as biacts.
(4) U(TT ) ∼= End(QS)U(TT ) and U(SS) ∼= End(PT )U(SS) as semigroups.
(5) The functor pair (− ⊗S P, − ⊗T Q) defines an equivalence − ⊗S P : US-Act 


UT -Act : − ⊗T Q. That is, S and T are Morita-like equivalence semigroups.
(6) The functor pair (HomS(QS , −)U(TT ), HomT (PT , −)U(SS)) defines an equivalence

HomS(QS , −)U(TT ) : US-Act 
 UT -Act : HomT (PT , −)U(SS). That is, S and T are
Morita-like equivalence semigroups.

(7) The lattice of right ideals of U(SS) (resp., U(TT )) is isomorphic to the lattice of
subacts of PT (resp., QR).

Furthermore, these induce lattice isomorphisms between the lattices of two-sided ideals
of U(SS) (resp., U(TT )) and the lattice of subacts of SPT (resp., T QS).

Proof. For convenience, put S′ = U(SS) and T ′ = U(TT ).
(1) Define fp : Q −→ S′ by q 7→ τ(p ⊗ q). We have

fp(qs) = τ(p ⊗ qs) = τ(p ⊗ q)s.

Hence, fp ∈ HomS(Q, S
′). For all s ∈ S

′ = Imτ, we have s = τ(p ⊗ q) = fp(q). Define
θ : QHom(Q,S

′ ) −→ S
′ by q 7−→ fp(q). Therefore, QS generates S′.

Since S
′ is a generaor in US-Act by Proposition 3.5, we have that QS generates M and

QS is a generator in US-Act.
Similarly, PT is a generator in UT -Act.
(2) Suppose x = q ⊗ p, y = q

′ ⊗ p
′ and µ(x) = µ(y). As P is strong s-unital, there exists

t ∈ T
′ such that pt = p

′
t. Set t = µ(v ⊗ u). Then

x = q ⊗ p = q ⊗ pt = q ⊗ pµ(v ⊗ u) = q ⊗ τ(p ⊗ v)u = qτ(p ⊗ v) ⊗ u

= µ(q ⊗ p)v ⊗ u = µ(q′ ⊗ p
′)v ⊗ u = q

′ ⊗ p
′
τ(v ⊗ u) = y.

So µ is injective. This implies that µ is a biact isomorphism and so Q ⊗S P ∼= T ′ as
biact.

Next, to prove that Q ⊗S P is a semigroup, for any x, x′, x′′ ∈ P and y, y′, y′′ ∈ Q, we
have

((y ⊗ x)(y′ ⊗ x′))(y′′ ⊗ x′′) = (y ⊗ τ(x ⊗ y′)x′)(y′′ ⊗ x′′)
= y ⊗ τ(x ⊗ y′)τ(x′ ⊗ y′′)x′′

= (y ⊗ x)(y′ ⊗ τ(x′ ⊗ y′′)x′′)
= (y ⊗ x)((y′ ⊗ x′)(y′′ ⊗ x′′)).

Hence, the multiplication satisfies the associative law. This proves that Q ⊗S P is a
semigroup.

Similarly, P ⊗T Q is also a semigroup.
Clearly, µ and τ preserve the multiplication operations, respectively. So µ and τ are

semigroup isomorphisms.
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(3) Define θ : P → HomS(QS , S
′
S) by p 7→ θ(p) for p ∈ P , where θ(p)(q) = τ(p ⊗ q) for

q ∈ Q.
Clearly, θ is a morphism.
Suppose θ(p) = θ(p′), we have τ(p ⊗ q) = τ(p′ ⊗ q

′), for all q ∈ Q. Since P is strong
s-unital, there exists t ∈ T

′ such that pt = p
′
t, where t = µ(v ⊗ u). Hence

p = pt = pµ(v ⊗ u) = τ(p ⊗ v)u = τ(p′ ⊗ v)u = p
′
µ(v ⊗ u) = p

′
t = p

′
.

It follows that θ is injective. Thus Imθ ∼= P is a unitary S-T -subbiact of HomS(QS , S
′
S).

From Proposition 3.1, we know that HomS(QS , S
′
S)T ′ is the largest unitary right T -subact

of HomS(QS , S
′
S). Then Imθ ⊆ HomS(QS , S

′
S)T ′ . For f ∈ HomS(QS , S

′
S)T ′

, since T
′ is

s-unital, there exists e ∈ T
′ such that fe = f . Suppose e = µ(y ⊗ x), where y ∈ Q and

x ∈ P . Let x
′ = f(y)x. Then x′ ∈ P and

θ(x′)(y) = θ(f(y)x)(y) = τ(f(y)x ⊗ y)
= f(y)τ(x ⊗ y) = f(yτ(x ⊗ y))
= f(µ(y ⊗ x)y) = f(ey)
= (fe)(y) = f(y).

Therefore, f = θ(x′) and Imθ = HomS(QS , S
′
S)T ′ . Hence, SPT

∼= HomS(QS , S
′
S)T ′ .

Similarly, we can prove T QS
∼= HomT (PT , T ′

T )S′.
(4) Define λ : T ′ → End(QS) by λ(t)(y) = ty for y ∈ Q. For t, u ∈ T ′, suppose

λ(t) = λ(u). Then ty = λ(t)(y) = λ(u)(y) = uy for y ∈ Q. By assumption, ∃ e ∈ T ′ such
that te = t and ue = u. Let e = µ(y ⊗ x), where y ∈ Q, x ∈ P . Then

t = te = tµ(y ⊗ x) = µ(ty ⊗ x) = µ(uy ⊗ x) = uµ(y ⊗ x) = ue = u.

This proves that λ is injective and Imλ ∼= T
′
. Hence, Imλ is a subsemigroup of End(QS).

Since Imλ is a right unitary T
′-act, Imλ is a subact of End(QS)T ′ by Proposition 3.2. For

all f ∈ End(QS)T ′
, there exists e ∈ T

′ such that fe = f. Suppose e = µ(y ⊗ x), where
y ∈ Q and x ∈ P. Set t

′ = µ(f(y) ⊗ x). For all q ∈ Q, we have

λ(t′)(q) = t′q = µ(f(y) ⊗ x)q = f(y)τ(x ⊗ q)
= f(yτ(x ⊗ q)) = f(µ(y ⊗ x)q) = f(eq) = (fe)(q) = f(q).

Hence, f = λ(t′) and Imλ = End(QS)T ′ . Then T
′ ∼= End(QS)T ′ as semigroup.

Similarly, U(SS) ∼= End(PT )U(SS) as semigroup.
(5) Firstly, we prove − ⊗S P ⊗T Q ∼= IUS-Act. Since P ⊗ Q ∼= S

′
, we can prove

M ⊗S S
′ ∼= M , for all MS ∈ US-Act.

Define σ : M ⊗S S
′ → M by

σ(m ⊗ s) = ms, for m ⊗ s ∈ M ⊗S S
′
.

Clealy, σ is a morphism. By Proposition 3.5, M is a right unitary S-act. Hence, σ is
surjective.

Assume σ(m ⊗ s) = ms = m
′
s

′ = σ(m′ ⊗ s
′). Since S

′ has common weak right local
units, there exists e ∈ S

′ such that se = s
′
e. Hence,

m ⊗ s = m ⊗ se = ms ⊗ e = m
′
s

′ ⊗ e = m
′ ⊗ s

′
e = m

′ ⊗ s
′
.

So σ is injective. Therefore,

(M ⊗S P ) ⊗T Q ∼= M ⊗S (P ⊗T Q)
I⊗τ∼= M ⊗S S′ σ∼= M .
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The naturality is obvious. So we get the desired result.
Similarly, we can get − ⊗T Q ⊗S P ∼= IUT -Act.
(6) By (5) and Theorem 3.6, we can prove (6).
(7) Set

I = {I | I is a right ideal of S
′};

N = {N | N is a subact of P}.

Define f : I −→ N by I 7−→ IP, where IP = {ip|i ∈ I, p ∈ P} and g : N −→ I by
N 7−→ τ(N ⊗T Q), where τ(N ⊗T Q) = {τ(n ⊗ q)|n ∈ N, q ∈ Q}.

Clearly, f and g are inverse lattice isomorphisms between I and N.
Similarly, the lattice of right ideals of T ′ is isomorphic to the lattice of subacts of QS .
Obviously, these isomorphisms induce lattice isomorphisms between the lattice of ideals

of S′ (resp., T ′) and the lattice of subacts of SPT (resp., T QS). �
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