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Abstract
In this work, we consider some power series with algebraic coefficients from a certain
algebraic number field, whose radiuses of convergence are infinite. We show that under
certain conditions these series take transcendental values at non-zero algebraic number
arguments, and we determine the classes to which these transcendental values belong
in Mahler’s classification. Then we consider these series for certain Liouville number
arguments and obtain similar results.
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1. Introduction
The transcendental numbers are divided into three disjoint classes, called S-numbers, T -

numbers, and U -numbers, according to the well-known classification set up by Mahler [5]
in 1932. (See Bugeaud [2] and Schneider [11] for information about Mahler’s classification
of the transcendental numbers.) The main purpose of the present work is to give new
results for obtaining S-numbers, T -numbers, and U -numbers in Mahler’s classification of
the transcendental numbers.

Oryan [6] considered some power series with rational coefficients, whose radiuses of
convergence are infinite and showed that under certain conditions these series take tran-
scendental values at non-zero algebraic number arguments, and he determined the classes
to which these transcendental values belong in Mahler’s classification. (See also Oryan [7]
which is related to Oryan [6].) In the present work, in Theorem 3.1, we extend these results
of Oryan [6] to the power series with algebraic coefficients from a fixed algebraic number
field by making use of the result Zeren [13, Teil II, Satz 1] and the method of Zeren [15].
Then, in Theorem 3.4, we consider the series treated in Theorem 3.1 for certain Liouville
number arguments by making use of the results Oryan [8, Teil II, Satz 3, Folgerung 3] and
Oryan [9, Theorem 3, Corollary 3]. (See Perron [10] and Schneider [11] for information
about Liouville numbers.) Our main results are stated and proved in Section 3, and the
preliminary results we need to prove the main results of this work are given in Section 2.
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2. Preliminary results
Let P (x) = anxn + · · · + a0 be a polynomial with rational integral coefficients. The

height H(P ) of P is defined by H(P ) = max (|an|, . . . , |a0|), and the size s(P ) of P is
defined by s(P ) = |an| + · · · + |a0|. Suppose that α is an algebraic number. Let P (x)
be the minimal defining polynomial of α such that its coefficients are rational integers
and relatively prime, and its highest coefficient is positive. Then the height H(α) of α is
defined by H(α) = H(P ), the size s(α) of α is defined by s(α) = s(P ), and the degree
deg(α) of α is defined as the degree of P . Let K be an algebraic number field, and let
α be in K. Then the field height HK(α) of α for K is defined as the height of the field
polynomial of α for K, and the field size sK(α) of α for K is defined as the size of the
field polynomial of α for K.

Theorem 2.1 (LeVeque [4], Chapter 4 The Thue-Siegel-Roth Theorem). Let K be an
algebraic number field, and let α be an algebraic number. Then for each χ > 2, the
inequality

|α − ζ| <
1

(H(ζ))χ

has only finitely many solutions ζ in K.

Theorem 2.2 (Baker [1]). Let ξ be a complex number, χ > 2 be a real number,
and α1, α2, . . . be distinct numbers in an algebraic number field K with field heights
HK(α1), HK(α2), . . . such that

|ξ − αi| <
1

(HK(αi))χ (i = 1, 2, . . .)

and
lim sup

i→∞

log HK(αi+1)
log HK(αi)

< ∞.

Then ξ is either an S−number or a T−number.

Lemma 2.3 (LeVeque [3]). Let α be an algebraic number of degree m, and let α{1} =
α, . . . , α{m} be its conjugates. Then

|α| ≤ 2H(α),

where |α| = max
(
|α{1}|, . . . , |α{m}|

)
.

Lemma 2.4 (Zeren [14]). Let α1, . . . , αk be algebraic numbers in an algebraic number field
K, and let η be any algebraic number such that

η = f(α1, . . . , αk)
g(α1, . . . , αk)

,

where f(x1, . . . , xk) and g(x1, . . . , xk) are polynomials in x1, . . . , xk with rational integral
coefficients. Then

HK(η) < 2m

(
k∏

i=1
(li + 1)

)m

Hm
k∏

i=1
(sK(αi))li ,

where m is the degree of K over the field Q of rational numbers, li (i = 1, . . . , k) is
the maximum of the degree of f(x1, . . . , xk) in xi and that of g(x1, . . . , xk) in xi, and H
is the maximum of the absolute values of the coefficients of f(x1, . . . , xk) and those of
g(x1, . . . , xk).

Lemma 2.5 (Zeren [14]). Let α and β be distinct algebraic numbers in an algebraic number
field K. Then

|α − β| ≥ 1
τ(m)HK(α)HK(β)

,
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where m is the degree of K over Q and τ(m) = 2m−1(m + 1)2.

Lemma 2.6 (Zeren [14]). Let α be an algebraic number in an algebraic number field K.
Then

sK(α) ≤ (s(α))
m
n ,

where m and n are the degrees of K and α over Q, respectively.

We have the following corollary obtained from Lemma 2.6.

Corollary 2.7 (Zeren [14]). Let α be an algebraic number in an algebraic number field
K. Then

HK(α) ≤ (2H(α))m ,

where m is the degree of K over Q.

Lemma 2.8 (Zeren [14], Folgerung, p. 83). Let α be an algebraic number in an algebraic
number field K. Then

H(α) < 2m(m + 1)HK(α),
where m is the degree of K over Q.

3. The main results
Let K be an algebraic number field, and let

f(x) =
∞∑

k=0

ηk

ak
xek (3.1)

be a power series, where ηk (k = 0, 1, 2, . . .) is a non-zero algebraic integer in K, ak > 1
(k = 0, 1, 2, . . .) is a rational integer, and {ek}∞

k=0 is a strictly increasing sequence of
non-negative rational integers. Suppose that the following conditions

σ := lim inf
k→∞

log ak+1
log ak

> 1, (3.2)

θ := lim sup
k→∞

log H(ηk)
log ak

< 1, (3.3)

and
lim

k→∞

log ak

ek
= ∞ (3.4)

hold. Then the radius of convergence of the power series f(x) is infinite (Zeren [15]):
By (3.2), there exist a sufficiently small real number ε1 > 0 with σ − ε1 > 1 and a

positive rational integer N1 = N1(ε1) such that
log ak+1 > (σ − ε1) log ak (3.5)

for k ≥ N1. It follows from (3.5) that
log ak > (σ − ε1)k−N1 log aN1 (3.6)

for k > N1. By (3.6),
lim

k→∞
ak = ∞, (3.7)

and by (3.5),
ak+1 > aσ−ε1

k > ak (k ≥ N1). (3.8)
We deduce from (3.7) and (3.8) that

lim
k→∞

ak+1
ak

= ∞. (3.9)

By (3.3), there exist a sufficiently small real number ε2 > 0 with θ + ε2 < 1 and a positive
rational integer N2 = N2(ε2) such that

H(ηk) < aθ+ε2
k (3.10)
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for k ≥ N2. By Lemma 2.3 and (3.10), we have for sufficiently large k

0 < ek

√∣∣∣∣ηk

ak

∣∣∣∣ ≤ ek

√
2H(ηk)

ak
<

ek
√

2
ek

√
a1−θ−ε2

k

. (3.11)

We infer from (3.4) and (3.11) that

lim
k→∞

ek

√∣∣∣∣ηk

ak

∣∣∣∣ = 0. (3.12)

Then the radius of convergence of the power series f(x) is infinite.
Let Ak (k = 1, 2, 3, . . .) denote the least common multiple of the rational integers

a0, a1, . . . , ak. By (3.6), we get

al < a

((
1

σ−ε1

)k−l
)

k (3.13)
for k > l ≥ N1. By (3.7) and (3.13), we have for sufficiently large k

Ak ≤ a0a1 · · · aN1−1aN1 · · · ak ≤ C0a
( 1

σ−ε1
)k−N1 +···+ 1

σ−ε1
+1

k ≤ a
ε3+ σ−ε1

σ−ε1−1
k , (3.14)

where C0 = a0a1 · · · aN1−1 > 1 and ε3 > 0 is a sufficiently small real number.

Theorem 3.1. Let f(x) be a power series satisfying (3.1), (3.2), (3.3), and (3.4). Let α
be a non-zero algebraic number, and suppose that

t <
(σ − 1)(1 − θ)

2 (1 + θ)
, (3.15)

where t is the degree of K(α) over Q. Then f(α) is a transcendental number, and we
have:

a) If

µ := lim sup
k→∞

log ak+1
log ak

< ∞, (3.16)

then f(α) is either an S−number or a T−number.
b) If

lim sup
k→∞

log ak+1
log ak

= ∞, (3.17)

then f(α) is a U−number of type less than or equal to t.

To prove Theorem 3.1, we make use of the methods in Zeren [13, Teil II, Satz 1, pp.
486-490] and Zeren [15].

Proof. Our proof shall appear in four steps as follows.
1) We shall define the algebraic numbers

βn :=
n∑

k=0

ηk

ak
αek ∈ K(α) (n = 1, 2, 3, . . .). (3.18)

Since βn ∈ K(α) (n = 1, 2, 3, . . .), we have deg(βn) ≤ t (n = 1, 2, 3, . . .). By multiplying
both sides of (3.18) by An, we obtain

Anβn =
n∑

k=0
An

ηk

ak
αek (n = 1, 2, 3, . . .).

Then we have
βn = g1(η0, η1, . . . , ηn, α)

g2(η0, η1, . . . , ηn, α)
,
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where

g1(x0, x1, . . . , xn, y) =
n∑

k=0
An

xk

ak
yek and g2(x0, x1, . . . , xn, y) = An

are polynomials in x0, x1, . . . , xn, y with rational integral coefficients. Hence, by Lemma
2.4, we get

HK(α)(βn) < 2t
(
2n+1

)t
(en + 1)t At

n

(
sK(α)(α)

)en
n∏

k=0
sK(α)(ηk) (3.19)

for n = 1, 2, 3, . . .. By (3.19), the inequality (en + 1) ≤ 2en (n = 1, 2, 3, . . .), and Lemma
2.6, we have

HK(α)(βn) < 24entAt
n

(
sK(α)(α)

)en
n∏

k=0
(s(ηk))t (n = 1, 2, 3, . . .). (3.20)

It follows from (3.20), s(ηk) ≤ (deg(ηk) + 1) H(ηk) (k = 0, 1, . . . , n), and deg(ηk) ≤ t
(k = 0, 1, . . . , n) that

HK(α)(βn) < Cent
1 At

n (H(η0))t (H(η1))t · · · (H(ηn))t (n = 1, 2, 3, . . .), (3.21)

where C1 = 24(t + 1)2sK(α)(α) > 1. By (3.10) and (3.21), we get

HK(α)(βn) < Cent
2 At

n(a0a1 · · · an)(θ+ε2)t (3.22)
for n ≥ N2, where C2 = C1H(η0) · · · H(ηN2−1) > 1. By (3.4), there exists a sufficiently
small real number ε4 > 0 such that

Cen
2 < aε4

n (3.23)
for sufficiently large n. By (3.14), (3.22), (3.23), and the inequality An ≤ a0a1 · · · an

(n = 1, 2, 3, . . .), we have for sufficiently large n

HK(α)(βn) < a

((
ε3+ σ−ε1

σ−ε1−1

)
(1+θ+ε2)+ε4

)
t

n . (3.24)
2) By (3.1) and (3.18), we get

|f(α) − βn| =

∣∣∣∣∣∣
∞∑

k=n+1

ηk

ak
αek

∣∣∣∣∣∣ ≤
∞∑

k=n+1

|ηk|
ak

|α|ek (n = 1, 2, 3, . . .). (3.25)

It follows from Lemma 2.3, (3.4), (3.10), and (3.25) that

|f(α) − βn| ≤ 1
a1−θ−ε5

n+1

(
1 +

(
an+1
an+2

)1−θ−ε5

+
(

an+1
an+3

)1−θ−ε5

+ · · ·
)

(3.26)

for sufficiently large n, where ε5 > 0 is a sufficiently small real number with ε2 < ε5 < 1−θ.
By (3.9), (

an+1
an+2

)1−θ−ε5

<
1
2

(3.27)

holds for sufficiently large n. We infer from (3.7), (3.26), and (3.27) that

|f(α) − βn| ≤ 1
a1−θ−ε5

n+1

(
1 + 1

2
+
(1

2

)2
+ · · ·

)
≤ 1

a1−θ−ε6
n+1

(3.28)

for sufficiently large n, where ε6 > 0 is a sufficiently small real number with ε5 < ε6 < 1−θ.
By (3.8), (3.24), and (3.28), we conclude that

|f(α) − βn| <
(
HK(α)(βn)

)− (σ−ε1)(1−θ−ε6)((
ε3+ σ−ε1

σ−ε1−1
)

(1+θ+ε2)+ε4
)

t (3.29)

for sufficiently large n.
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3) Since βn − βn−1 = ηn

an
αen ̸= 0 (n = 2, 3, . . .), we have βn−1 ̸= βn (n = 2, 3, . . .). It

follows from step 2) that

|f(α) − βn−1| =
∣∣∣∣∣

∞∑
k=n

ηk

ak
αek

∣∣∣∣∣ ≤
∞∑

k=n

∣∣∣∣ηk

ak
αek

∣∣∣∣ ≤ 1
a1−θ−ε6

n

for sufficiently large n. Hence, we get for sufficiently large n

0 < |βn − βn−1| =
∣∣∣∣ηn

an
αen

∣∣∣∣ ≤ 1
a1−θ−ε6

n

. (3.30)

We deduce from (3.30) and Lemma 2.5 that
1

τ(t)HK(α)(βn)HK(α)(βn−1)
≤ 1

a1−θ−ε6
n

(3.31)

holds for sufficiently large n, where τ(t) = 2t−1(t + 1)2. By (3.8), (3.24), and (3.31), we
see that

HK(α)(βn) > C3a
(σ−ε1)(1−θ−ε6)−

((
ε3+ σ−ε1

σ−ε1−1

)
(1+θ+ε2)+ε4

)
t

n−1 (3.32)
for sufficiently large n, where C3 = 1

τ(t) > 0.
It follows from (3.24) and (3.32) that

HK(α)(βn+1)
HK(α)(βn)

> C3a
(σ−ε1)(1−θ−ε6)−2

((
ε3+ σ−ε1

σ−ε1−1

)
(1+θ+ε2)+ε4

)
t

n (3.33)

for sufficiently large n. By (3.15), we have 2t(1 + θ) < (σ − 1)(1 − θ). Hence, by the
appropriate choices of ε1, ε2, ε3, ε4, and ε6, the exponent of an in (3.33) is positive. Thus,
by (3.7) and (3.33),

HK(α)(βn+1) > HK(α)(βn)
holds for sufficiently large n. Then the algebraic numbers βn are all distinct from each
other from some n onward and

lim
n→∞

HK(α)(βn) = ∞. (3.34)

Hence, by (3.34) and Corollary 2.7, we obtain
lim

n→∞
H(βn) = ∞. (3.35)

4) By (3.15),

2 <
(σ − 1)(1 − θ)

t(1 + θ)
.

Thus, there exists a real number ε > 0 such that

2 + ε <
(σ − 1)(1 − θ)

t(1 + θ)
− ε. (3.36)

By the appropriate choices of ε1, ε2, ε3, ε4, and ε6, we have
(σ − ε1)(1 − θ − ε6)((

ε3 + σ−ε1
σ−ε1−1

)
(1 + θ + ε2) + ε4

)
t

>
(σ − 1)(1 − θ)

t(1 + θ)
− ε. (3.37)

By (3.29), (3.36), and (3.37),

|f(α) − βn| <
1(

HK(α)(βn)
)2+ε (3.38)

holds true for infinitely many different βn in K(α). Hence, by (3.35), (3.38), Theorem 2.1,
and Lemma 2.8, f(α) must be transcendental.
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Let (3.16) hold. By (3.7), (3.15), (3.16), (3.24), (3.32), and the appropriate choices of
ε1, ε2, ε3, ε4, and ε6, we see that

lim sup
n→∞

log HK(α)(βn+1)
log HK(α)(βn)

≤ µ2

(σ−1)(1−θ)
t(1+θ) − 1

< µ2 < ∞. (3.39)

We infer from (3.38), (3.39), and Theorem 2.2 that f(α) is either an S-number or a
T -number. This completes the proof of a) in Theorem 3.1.

Let (3.17) hold. By (3.17), there exists a subsequence
{ log ani+1

log ani

}∞

i=1
of the sequence{

log an+1
log an

}∞

n=1
such that

lim
i→∞

log ani+1
log ani

= ∞. (3.40)

It follows from (3.24) and (3.28) that

|f(α) − βni | <
(
HK(α)(βni)

)− 1−θ−ε6((
ε3+ σ−ε1

σ−ε1−1
)

(1+θ+ε2)+ε4
)

t

log ani+1
log ani (3.41)

for sufficiently large i. We deduce from (3.35), (3.40), (3.41), and Lemma 2.8 that f(α) is
a U−number of type less than or equal to t since deg(βni) ≤ t (i = 1, 2, 3, . . .). (Here we
use Koksma’s classification of the transcendental numbers, set up by Koksma [?], which is
equivalent to Mahler’s. The reader can refer to Bugeaud [2], Schneider [11], and Wirsing
[12] for detailed information about these two classifications of the transcendental numbers
and their equivalence. Moreover, the reader is recommended to consult LeVeque [3] and
Bugeaud [2] for detailed information about U -numbers.) This completes the proof of b)
in Theorem 3.1. �

Example 3.2. Let p be a prime number, a > 1 and m > 0 be rational integers, and α

be a non-zero algebraic number. If we take K = Q( m
√

p), ηk =
(

m
√

p
)k (k = 0, 1, 2, . . .),

ak = a((3t+1)k) (k = 0, 1, 2, . . .), where t is the degree of Q( m
√

p, α) over Q, ek = 2k

(k = 0, 1, 2, . . .), and x = α, then all the conditions of Theorem 3.1 are satisfied. Thus∑∞
k=0

( m
√

p)k

a((3t+1)k) α(2k) is either an S-number or a T -number.

Example 3.3. In Example 3.2, if we take ak = a((k+1)k) (k = 0, 1, 2, . . .) and ek =
(k + 1)2 (k = 0, 1, 2, . . .), then this yields another example for Theorem 3.1. Thus∑∞

k=0
( m

√
p)k

a((k+1)k) α((k+1)2) is a U -number of type less than or equal to t.

Theorem 3.4. Let K be an algebraic number field of degree m, and let

f(x) =
∞∑

k=0

ηk

ak
xek

be a power series, where ηk (k = 0, 1, 2, . . .) is a positive real algebraic integer in K, ak > 1
(k = 0, 1, 2, . . .) is a rational integer, and {ek}∞

k=0 is a strictly increasing sequence of non-
negative rational integers. Suppose that the conditions (3.2), (3.3), and (3.4) hold. Let ξ
be a positive Liouville number such that∣∣∣∣ξ − pk

qk

∣∣∣∣ <
1

qekωk
k

(k = 1, 2, 3, . . .), (3.42)

where pk > 0 (k = 1, 2, 3, . . .) and qk > 1 (k = 1, 2, 3, . . .) are rational integers and {ωk}∞
k=1

is an infinite sequence of positive real numbers with limk→∞ ωk = ∞, and

aδ1
k ≤ qek

k ≤ aδ2
k (k = 1, 2, 3, . . .), (3.43)
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where δ1 and δ2 are real numbers with 0 < δ1 ≤ δ2. Moreover, assume that

m <
(σ − 1)(1 − θ)
2 (1 + θ + δ2)

. (3.44)

Then f(ξ) is a transcendental number, and we have:
a) If

µ := lim sup
k→∞

log ak+1
log ak

< ∞, (3.45)

then f(ξ) is either an S-number or a T -number.
b) If

lim sup
k→∞

log ak+1
log ak

= ∞, (3.46)

then f(ξ) is a U -number of type less than or equal to m.

Proof. 1) We shall consider the polynomials

fn(x) =
n∑

k=0

ηk

ak
xek (n = 1, 2, 3, . . .).

Define the algebraic numbers

βn = fn

(
pn

qn

)
=

n∑
k=0

ηk

ak

(
pn

qn

)ek

∈ K (n = 1, 2, 3, . . .). (3.47)

Since βn ∈ K (n = 1, 2, 3, . . .), we have deg(βn) ≤ m (n = 1, 2, 3, . . .). By multiplying
both sides of (3.47) by Anqen

n , we obtain

Anqen
n βn =

n∑
k=0

Anqen
n

ηk

ak

(
pn

qn

)ek

(n = 1, 2, 3, . . .).

Then we have
βn = g1(η0, η1, . . . , ηn)

g2(η0, η1, . . . , ηn)
,

where

g1(x0, x1, . . . , xn) =
n∑

k=0
Anqen

n

xk

ak

(
pn

qn

)ek

and g2(x0, x1, . . . , xn) = Anqen
n

are polynomials in x0, x1, . . . , xn with rational integral coefficients. Hence, by Lemma 2.4,
we get

HK(βn) < 2m
(
2n+1

)m
Hm

n∏
k=0

sK(ηk) (n = 1, 2, 3, . . .), (3.48)

where
H = max

k=0,...,n

(
Anqen

n ,
Anqen

n

ak

(
pn

qn

)ek
)

. (3.49)

By (3.42), we have
pn

qn
< ξ + 1 (n = 1, 2, 3, . . .). (3.50)

By (3.48), (3.49), (3.50), and Lemma 2.6, we obtain

HK(βn) < Cenm
1 Am

n qenm
n

n∏
k=0

(s(ηk))m (n = 1, 2, 3, . . .), (3.51)

where C1 = 23 (ξ + 1) > 1. It follows from (3.10), (3.43), (3.51), s(ηk) ≤
(deg(ηk) + 1) H(ηk) (k = 0, 1, . . . , n), and deg(ηk) ≤ m (k = 0, 1, . . . , n) that

HK(βn) < Cenm
2 aδ2m

n Am
n (a0a1 · · · an)(θ+ε2)m (3.52)
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for n ≥ N2, where C2 = C1(m + 1)2H(η0) · · · H(ηN2−1) > 1. By (3.4), (3.14), (3.52), and
the inequality An ≤ a0a1 · · · an (n = 1, 2, 3, . . .), we conclude that

HK(βn) < a

((
ε3+ σ−ε1

σ−ε1−1

)
(1+θ+ε2)+ε4+ σ−ε1

σ−ε1−1 δ2

)
m

n (3.53)

for sufficiently large n, where ε4 > 0 is a sufficiently small real number.
2) We have

|f(ξ) − βn| ≤ |f(ξ) − fn(ξ)| + |fn(ξ) − βn| (n = 1, 2, 3, . . .). (3.54)

Similarly as in step 2) in the proof of Theorem 3.1, we get

|f(ξ) − fn(ξ)| =
∞∑

k=n+1

ηk

ak
ξek ≤ 1

2a1−θ−ε5
n+1

<
1

2a
(σ−ε1)(1−θ−ε5)
n

(3.55)

for sufficiently large n, where ε5 > 0 is a sufficiently small real number with ε5 < 1 − θ.
By (3.12), there exists a real number C3 > 1 such that

ηk

ak
< C3 (k = 0, 1, 2, . . .). (3.56)

By (3.42), (3.50), and (3.56), we get

|fn(ξ) − βn| ≤ (en + 1)2C3
1

qenωn
n

(ξ + 1)en (n = 1, 2, 3, . . .). (3.57)

Since limn→∞
en
√

(en + 1)2 = 1, there exists a real number C4 > 1 such that

(en + 1)2 < Cen
4 (3.58)

for sufficiently large n. By (3.4), (3.43), (3.57), (3.58), and limn→∞ ωn = ∞, we have for
sufficiently large n

|fn(ξ) − βn| <
Cen

5
qenωn

n
<

aε6
n

2aδ1ωn
n

<
1

2a
(σ−ε1)(1−θ−ε5)
n

, (3.59)

where C5 = C4C3(ξ + 1) > 1 and ε6 > 0 is a sufficiently small real number.
It follows from (3.54), (3.55), and (3.59) that

|f(ξ) − βn| <
1

a
(σ−ε1)(1−θ−ε5)
n

(3.60)

for sufficiently large n. By (3.53) and (3.60), we get for sufficiently large n

|f(ξ) − βn| < (HK(βn))
− (σ−ε1)(1−θ−ε5)((

ε3+ σ−ε1
σ−ε1−1

)
(1+θ+ε2)+ε4+ σ−ε1

σ−ε1−1 δ2
)

m
.

3) We can assume that the sequence
{

pn

qn

}∞

n=1
is strictly increasing or strictly decreasing

by working with an appropriate subsequence of
{

pn

qn

}∞

n=1
if necessary. Hence, βn−βn−1 ̸= 0

(n = 2, 3, . . .). We have

0 < |βn − βn−1| ≤ |f(ξ) − βn| + |f(ξ) − βn−1| (n = 2, 3, . . .). (3.61)

By (3.8), (3.60), and (3.61), we get for sufficiently large n

0 < |βn − βn−1| <
2

a
(σ−ε1)(1−θ−ε5)
n−1

. (3.62)

We deduce from (3.62) and Lemma 2.5 that
1

τ(m)HK(βn)HK(βn−1)
<

2
a

(σ−ε1)(1−θ−ε5)
n−1

(3.63)
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holds for sufficiently large n, where τ(m) = 2m−1(m + 1)2. By (3.53) and (3.63),

HK(βn) > C6a
(σ−ε1)(1−θ−ε5)−

((
ε3+ σ−ε1

σ−ε1−1

)
(1+θ+ε2)+ε4+ σ−ε1

σ−ε1−1 δ2

)
m

n−1 (3.64)

for sufficiently large n, where C6 = 1
2τ(m) > 0. Hence, similarly as in step 3) in the proof

of Theorem 3.1, we see that the algebraic numbers βn are all distinct from each other from
some n onward and

lim
n→∞

H(βn) = ∞. (3.65)

4) Similarly as in step 4) in the proof of Theorem 3.1, there exists a real number ε > 0
such that

|f(ξ) − βn| <
1

(HK(βn))2+ε (3.66)

holds true for infinitely many different βn in K. Hence, by (3.65), (3.66), Theorem 2.1,
and Lemma 2.8, f(ξ) must be transcendental.

Let (3.45) hold. By (3.7), (3.44), (3.45), (3.53), (3.64), and the appropriate choices of
ε1, ε2, ε3, ε4, and ε5, we see that

lim sup
n→∞

log HK(βn+1)
log HK(βn)

≤ µ2

(σ−1)(1−θ)
m(1+θ+δ2) − 1

< µ2 < ∞. (3.67)

We infer from (3.66), (3.67), and Theorem 2.2 that f(ξ) is either an S-number or a T -
number. This completes the proof of a) in Theorem 3.4.

Let (3.46) hold. By (3.46), there exists a subsequence
{ log ani+1

log ani

}∞

i=1
of the sequence{

log an+1
log an

}∞

n=1
such that

lim
i→∞

log ani+1
log ani

= ∞. (3.68)

By (3.53), (3.55), and (3.68), we have

|f(ξ) − fni(ξ)| ≤ 1
2a1−θ−ε5

ni+1
<

1
2 (HK(βni))

ri
(3.69)

for sufficiently large i, where

ri = log ani+1
log ani

1 − θ − ε5((
ε3 + σ−ε1

σ−ε1−1

)
(1 + θ + ε2) + ε4 + σ−ε1

σ−ε1−1δ2
)

m

with limi→∞ ri = ∞. It follows from (3.53) and (3.59) that

|fni(ξ) − βni | <
1

2a
δ1ωni −ε6
ni

<
1

2 (HK(βni))
si

(3.70)

for sufficiently large i, where

si = δ1ωni − ε6((
ε3 + σ−ε1

σ−ε1−1

)
(1 + θ + ε2) + ε4 + σ−ε1

σ−ε1−1δ2
)

m

with limi→∞ si = ∞. By (3.54), (3.69), and (3.70), we get for sufficiently large i

|f(ξ) − βni | <
1

(HK(βni))
ti

, (3.71)

where ti = min (ri, si) with limi→∞ ti = ∞. We deduce from (3.65), (3.71), and Lemma 2.8
that f(ξ) is a U -number of type less than or equal to m since deg(βni) ≤ m (i = 1, 2, 3, . . .).
This completes the proof of b) in Theorem 3.4. �
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