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1. Introduction
Let A be the class functions of the form

f (z) = z +
∞∑

n=2
anz

n, (1.1)

which are analytic in the open unit disk E = {z ∈ C : |z| < 1} . By S, S∗ (α), C (α) , we
denote the subclasses of A which consist of univalent, starlike and convex functions of
order α, (0 ≤ α < 1) , respectively. For details see [5].
If f and g are two analytic functions in E, we say that f is subordinate to g, written
symbolically as f(z) ≺ g(z), if there exists a Schwarz function w, which is analytic in E

with w (0) = 0 and |w (z)| < 1 such that f(z) = g(w(z)) for all z ∈ E. Furthermore, if the
function g is univalent in E, then we have the following equivalence, see [13].

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(E) ⊂ g(E).
The convolution (or the Hadamard product) of two functions f (z) and g (z) where f (z)is
given by (1.1) and g (z) = z +

∞∑
n=2

bnz
n is defined as

(f ∗ g) (z) = z +
∞∑

n=2
anbnz

n., z ∈ E .
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Furthermore, we recall the two interesting subclasses of S consisting, respectively, of func-
tions which are k-uniformly convex and k-starlike in E denote it by k − UCV and k − ST

introduced in [9] . So, we have

k − UCV = {f (z) ∈ S: Re

[
1 + zf ′′(z)

f ′(z)

]
> k

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ , z ∈ E, 0 ≤ k < ∞}.

k − ST = {f (z) ∈ S: Re

[
zf ′(z)
f(z)

]
> k

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ , z ∈ E, 0 ≤ k < ∞}.

It is obvious for k = 0, the class k − UCV reduces to the class of convex univalent
functions C and class of starlike functions ST. Moreover for k = 1 corresponds to the class
of uniformly convex functions UCV introduced by Goodman [6] and studied extensively
by Rønning [20] . The class k − ST was investigated in [10]. For k ∈ [0,∞) , S. Kanas in
[9, 10] defined the conic domain Ωk as follows

Ωk =
{
u+ ιv;u > k

√
(u− 1)2 + v2

}
. (1.2)

For a fixed value of k, the domain Ωk represents the conic region bounded by ellipse for
k > 1, hyperbolic when 0 ≤ k < 1, parabolic for the value k = 1and the right half plane
when k = 0. Now the domain Ωk,α, related to Ωk is defined as:

Ωk,α = (1 − α) Ωk + α,

where

α =
{

[0, 1) , if k ∈ [0, 1] ,[
0, 1 −

√
k2−1
k

)
if k > 1. (1.3)

condition (1.3) on α is imposed to ensure that the point (0, 1) is inside the domain Ωk,α(see
[16,17]). Extremal functions for these conic regions denoted by pk,α (z) , are analytic in E

and map E onto Ωk,α such that pk,α (0) = 1 and p′
k,α (0) > 1. pk,α (z) is given as:

pk,α (z) =



1+(1−2α)z
1−z , k = 0,

1 + 2(1−α)
π2

(
log 1+

√
z

1−
√

z

)2
, k = 1,

1 + 2(1−α)
1−k2 sinh2

[(
2
π arccos k

)
arctan h

√
z
]
, 0 < k < 1,

1 + (1−α)
k2−1 sin

 π
2R(t)

u(z)√
t∫

0

1√
1−x2

√
1−(tx)2dx

+ 1−γ
k2−1 , k > 1,

(1.4)

where u (z) = z−
√

t
1−

√
tz
, t ∈ (0, 1) , z ∈ E and z is chosen such that k = cosh πR′(t)

4R(t) , where R (t)
is the Legendre’s complete elliptic integral of the first kind and R′ (t) is complementary
integral of R (t) ; see [9] and [8] . Let P (pk,α (z)) denotes the class of all those functions
p (z) which are analytic in E with p (0) = 1 such that p (z) ≺ pk,α (z) for z ∈ E. Clearly
it can be seen that P (pk,α (z)) ⊂ P where P is the class of Caratheodory functions with
positive real part, see [5]. It can easily be seen that if p ∈ P (pk,α (z)) , then p ≺ pk,α.
Therefore it can be written as

P (pk,α (z)) ⊂ P

(
k + α

1 + k

)
.

Noor in ([15]) extended the class P (pk,α (z)) by defining the following class.
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Definition 1.1. Let p (z) be analytic in E with p (0) = 1. Then p ∈ Pm (pk,α (z)) if and
only if, for m ≥ 2, k ≥ 0 and α given by (1.3)

p (z) =
(
m

4
+ 1

2

)
p1 (z) −

(
m

4
− 1

2

)
p2 (z) ,

where p1 (z) , p2 (z) ∈ P (pk,α (z)) . Taking k = 0 and α = 0, we obtain the class Pm

introduced by Pinchuk in [18]. Also P2 (pk,α (z)) = P (pk,α (z)) .

Definition 1.2. For λ, µ > 0 and σ ∈ Z = {· · · − 2,−1, 0, 1, 2, · · · } P. Sharma et al.
[19, 21] defined a linear operator £σ

λ,µ : A → A as:

£σ
λ,µf (z) =



Iλ,µ£σ+1
λ,µ f (z) for σ = −1,−2, · · ·

Dλ,µ£σ+1
λ,µ f (z) for σ = 1, 2, · · · ,

f (z) for m = 0,

(1.5)

where integral operator Iλ,µ is given as

Iλ,µf (z) = λ

µ
z

1− λ
µ

z∫
0

t
λ
µ

−2
f (t) dt

and differential operator

Dλ,µf (z) = µ

λ
t
2− λ

µ
d

dz

(
z

λ
µ

−1
f (z)

)
.

Let for b > 0, a, c ∈ C, the Erdelyi-Kober type integral operator J
a,c
b f (z) : A → A be

defined for Re (c− b) > 0 and Re (b) > −b as

J
a,c
b f (z) = Γ (c+ b)

Γ (a+ b)
1

Γ (c− a)

1∫
0

(1 − t)c−a−1 ta−1f
(
ztb
)
dt. (1.6)

The linear operator £σ
λ,µ (a, c, b) : A → A is the composition of two linear operators defined

above by
£σ

λ,µ (a, c, b) f (z) = £σ
λ,µ

(
J

a,c
b f (z)

)
= J

a,c
b

(
£σ

λ,µf (z)
)
,

and the series is given by

£σ
λ,µ (a, c, b) f (z) = z + Γ (c+ b)

Γ (a+ b)

∞∑
n=2

(
1 + µ (n− 1)

λ

)σ Γ (a+ nb)
Γ (c+ nb)

anz
n. (1.7)

It follows from (1.7), that

z
[
£σ

λ,µ (a, c, b) f (z)
]′

= λ

µ
£σ+1

λ,µ (a, c, b) f (z) +
(

1 − λ

µ

)
£σ

λ,µ (a, c, b) f (z) , (1.8)

and

z
[
£σ

λ,µ (a, c, b) f (z)
]′

= a+ b

b
£σ

λ,µ (a+ 1, c, b) f (z) − a

b
£σ

λ,µ (a, c, b) f (z) . (1.9)

Different analytical classes associated with the linear operator can also be found in [1], [2],
[12] and [11].
Using the linear operator £σ

λ,µ (a, c, b) we will define the following classes of analytic
functions.
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Definition 1.3. Let λ, µ, b > 0, a, c ∈ C, σ ∈ Z, k ∈ [0,∞) ,m ≥ 2 and Re (c− a) ≥ 0
with Re (a) > −b. Then for α given by (1.3)

k − UR
m,σ
λ,µ (a, c, b, α) =

f (z) ∈ A :
z
[
£σ

λ,µ (a, c, b) f (z)
]′

£σ
λ,µ (a, c, b) f (z)

∈ Pm (pk,α)

 .
Definition 1.4. Let f (z) ∈ A. Then f (z) ∈ k − UV

m,σ
λ,µ (a, c, b, α) , a, c ∈ C, λ, µ, b > 0 if

and only if (
z
[
£σ

λ,µ (a, c, b) f (z)
]′)′

(
£σ

λ,µ (a, c, b) f (z)
)′ ∈ Pm (pk,α) .

It can be easily seen that
f (z) ∈ k − UV

m,σ
λ,µ (a, c, b, α) ⇔ zf ′ (z) ∈ k − UR

m,σ
λ,µ (a, c, b, α) . (1.10)

Special cases:

i) For m = 2, σ = λ = µ = 1, α = 0 it reduces to the the class k − UCV which was
introduced in [9].

ii) Taking σ = λ = µ = 1, it coincides with the class of functions of k-uniform bounded
boundary rotation m with order α , see details in [15].
Similarly, by giving specific values to the parameters involved in k−UV

m,σ
λ,µ (a, c, b, α) and

k − UR
m,σ
λ,µ (a, c, b, α), we obtain many well-known as well as new subclasses of analytic,

univalent functions, see [3-22].
We shall assume, throughout this study unless otherwise stated, that λ, µ, b > 0, a, c ∈ C,
σ ∈ Z, k ∈ [0,∞) ,m ≥ 2 and Re (c− a) ≥ 0 with Re (a) > −b.
Now to establish our main results, we need the following lemmas.

2. Preliminary lemmas
Lemma 2.1. [5] Let u = u1 + iu2, v = v1 + iv2 and Ψ (u, v) be a complex valued function
satisfying the conditions:
(i) ψ (u, v) is continuous in a domain D ⊂ C2,
(ii) (1, 0) ∈ D and ReΨ (1, 0) > 0,
(iii) ReΨ (iu2, v1) ≤ 0, whenever (iu2, v1) ∈ D and v1 ≤ −1

2
(
1 + u2

2
)
.

If h (z) = 1 + c1z + · · · is a function analytic in E such that (h(z), zh′(z)) ∈ D and
ReΨ (h(z), zh′(z)) > 0 for z ∈ E, then Reh(z) > 0 in E.

Lemma 2.2. [7] Let σ, λ with any complex numbers with λ ̸= 0 and 0 ≤ γ ≤ Re (λk/ (k + 1) + σ) .
If ϕ (z) is analytic in E with ϕ (0) = 1 and satisfies(

ϕ (z) + zϕ′ (z)
λϕ (z) + σ

)
≺ pk,γ (z) , (2.1)

and φk,γ (z) is an analytic solution of

φk,γ (z) +
zφ′

k,γ (z)
λφk,γ (z) + σ

= pk,γ (z) ,

then φk,γ (z) is univalent,
ϕ (z) ≺ φk,γ (z) ≺ pk,γ (z) ,

and φk,γ (z) is the best dominant of (2.1), where φk,γ (z) is given as

φk,γ (z) =


 1∫

0

exp
tz∫

t

pk,γ (u) − 1
u

du

 dt
−1

+ σ

λ

 .
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Lemma 2.3. [4] Let f (z) be univalent and 0 ≤ r < 1. Then there exists a number z1
with |z1| = r such that for all, |z| = r, we have

|z − z1| |f (z)| ≤ 2r2

1 − r2 .

3. Main results
Theorem 3.1. Let k ∈ [0,∞) ,m ≥ 2. Then k−UR

2,σ+1
λ,µ (a, c, b, α) ⊂ k−UR

2,σ
λ,µ (a, c, b, α) .

Proof. Let f (z) ∈ k − UR
2,σ+1
λ,µ (a, c, b, α) . Setting

z
[
£σ

λ,µ (a, c, b) f (z)
]′

£σ
λ,µ (a, c, b) f (z)

= p (z) ,

where p (z) is analytic in E with p (0) = 1. Then using (1.8) ,we have
£σ+1

λ,µ (a, c, b) f (z)
£σ

λ,µ (a, c, b) f (z)
= µ

λ

(
p (z) + λ

µ
− 1

)
Logarithmic differentiation and simple computation yields

z
(
£σ+1

λ,µ (a, c, b) f (z)
)′

£σ+1
λ,µ (a, c, b) f (z)

= p (z) + zp′ (z)
p (z) +

(
λ
µ − 1

) .
Since f (z) ∈ k − UR

2,σ+1
λ,µ (a, c, b, α) ,we have

p (z) + zp′ (z)
p (z) +

(
λ
µ − 1

) ≺ pk,α (z) ,

where pk,α (z) is defined by (1.4). Now applying Lemma 2.2 with ρ = 1 and σ =
(

λ
µ − 1

)
,

we have
p (z) ≺ qk (z) ≺ pk,α (z) ,

where qk (z) being best dominant and is given by

qk (z) =


 1∫

0

t
λ
µ

−1 exp
tz∫

z

pk,α (ξ) − 1
ξ

dξ

−1

+ (1 − λ

µ
)

 .
This shows that p (z) ∈ P (pk,α) (z ∈ E) and consequently f ∈ k − UR

2,σ
λ,µ (a, c, b, α) in

E. �
Theorem 3.2. If f (z) ∈ k − UV

2,σ+1
λ,µ (b, c, b, α) , then f (z) ∈ k − UV

2,σ
λ,µ (a, c, b, α) .

Proof. In view relation (1.10) and Theorem 3.1, we have

f (z) ∈ k − UV
2,σ+1
λ,µ (b, c, b, α) ⇔ zf ′ (z) ∈ k − UR

2,σ+1
λ,µ (b, c, b, α)

⇒ zf ′ (z) ∈ k − UR
2,σ
λ,µ (b, c, b, α)

⇔ f (z) ∈ k − UV
2,σ
λ,µ (b, c, b, α) .

�
Using (1.9) and the same technique as in Theorem 3.1 and Theorem 3.2 we can easily
prove the following results.

Theorem 3.3. Let f (z) ∈ A. Then

k − UR
2,σ
λ,µ (a+ 1, c, b, α) ⊂ k − UR

2,σ
λ,µ (a, c, b, α) .
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Theorem 3.4. Let f (z) ∈ k − UR
2,σ+1
λ,µ (a, c, b, α) . Then f (z) ∈ R

2,σ
λ,µ (a, c, b, β1) in E,

where

β1 = 2 (µ+ 2β0 (λ− µ))
(2 (λ− µ) − 2β0µ+ µ) +

√
(2 (λ− µ) − 2β0µ+ µ) + 8µ (µ+ 2β0 (λ− µ))

. (3.1)

Proof. Proceeding as in Theorem 3.1, we have

p (z) + zp′ (z)
p (z) + λ−µ

µ

∈ P (pk,α) ⊂ P (β0) , β0 = k + α

1 + k
.

Let us take
p (z) = (1 − β1) q (z) + β1.

Then
µ1

[
q (z) + ω1zq

′ (z)
q (z) + ω2

]
+ µ2 ∈ P in E .

where µ1 = 1−β1
1−β0

, µ2 = β1−β0
1−β0

, ω1 = 1
1−β1

and ω2 = λ
µ(1−β1) −1. We now form the functional

Ψ(u; v) by choosing u = q (z), v = zq′ (z) and note that the first two conditions of Lemma
2.1 are clearly satisfied. We check condition (iii) as follows.

Ψ (u, v) = µ1

[
u+ ω1v

u+ ω2

]
+ µ2.

Now
ReΨ (iu, v) = µ1ω1ω2v

u2 + ω2
2

+ µ2

As µ1 > 0, ω1 > 0, so applying v1 = −1
2
(
1 + u2

2
)

and after simple computation we obtain

ReΨ (iu2, v1) ≤ −µ1ω1ω2 (1 + u2)
2
(
u2

2 + ω2
2
) + µ2

= 2µ2ω
2
2 − µ1ω1ω2 + (2µ2 − µ1ω1ω2)u2

2
2
(
u2

2 + ω2
2
)

= A+Bu2
2

C
, (3.2)

where
A = 2µ2ω

2
2 − µ1ω1ω2,

B = (2µ2 − µ1ω1ω2) ,

C = 2
(
u2

2 + ω2
2

)
.

The right hand side of (3.2) is negative if A ≤ 0 and B ≤ 0. From A ≤ 0, we obtain β1
as given by (3.1) , and B ≤ 0 ensures that 0 ≤ β1 < 1. Since all the conditions of Lemma
2.1 are satisfied, it follows that q (z) ∈ P, and consequently f (z) ∈ R

2,σ
λ,µ (a, c, b, β1) . This

completes the proof. �

Theorem 3.5. Let f (z) ∈ k − UV
2,σ+1
λ,µ (a, c, b, α) . Then f (z) ∈ V

2,σ
λ,µ (a, c, b, β1) in E,

where β1 is defined by (3.1) .

Proof immediately follows by using Theorem 3.4 and relation (1.10).

Theorem 3.6. Let f (z) ∈ k − UR
m,σ
λ,µ (a, c, b, α) . Then there exist s1 (z), s2 (z) ∈ k −

USσ
λ,µ (a, c, b, α) such that

£σ
λ,µ (a, c, b) f (z) =

(
£σ

λ,µ (a, c, b) s1 (z)
)m+2

4

(
£σ

λ,µ (a, c, b) s2 (z)
)m−2

4
, m ≥ 2, k ∈ [0,∞) .
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Proof. Let s (z) ∈ k − USσ
λ,µ (a, c, b, α) . Then

z
(
£σ

λ,µ (a, c, b) s (z)
)′

£σ
λ,µ (a, c, b) s (z)

≺ pk,α (z) ,

this implies that

£σ
λ,µ (a, c, b) s (z) ≺ z exp

z∫
0

pk,α (t) − 1
t

dt.

Let µm be the class of real-valued functions µ(t) of bounded variation on [−π, π] satisfying
the conditions

π∫
−π

dµ(t) = 2 and
π∫

−π

|dµ(t)| ≤ m.

£σ
λ,µ (a, c, b) f (z) ≺ z exp

z∫
0

pk,α (t) − 1
t

dµ(t), µ ∈ µm

We can write the real-valued function of bounded variation as
µ(t) = µ1(t) − µ2(t).

where µ1(t) and µ2(t) are nonnegative increasing functions. Thus

£σ
λ,µ (a, c, b) f (z)

z
=

exp
z∫
0

pk,α(t)−1
t dµ1(t),

exp
z∫
0

pk,α(t)−1
t dµ2(t),

= N (z)
D (z)

, (3.3)

where
π∫

−π

(dµ1(t) − dµ2(t)) = 2, and
π∫

−π

|dµ1(t) + dµ2(t)| ≤ m.

Since µ ∈ µm. These, in turn, imply that
π∫

−π

dµ1(t) ≤ m+ 2
2

=, and
π∫

−π

dµ2(t) ≤ m− 2
2

. (3.4)

From (3.3), we note that
π∫

−π
dµ1(t) and

π∫
−π

dµ2(t) are the boundary rotation of the image

of E under the mappings

ω1 =
z∫

0

N (η) dη and ω2 =
z∫

0

D (η) dη,

respectively. From (3.4) the functions

ω1 = (N (z))
4

m+2 and ω2 = (D (z))
4

m−2 ,

are the derivatives of functions whose boundary rotations are 2. In other words, these are
the derivatives of functions belonging to k − UCV (α). Let

£σ
λ,µ (a, c, b) s1 (z) = z (N (z))

4
m+2 and £σ

λ,µ (a, c, b) s2 (z) = z (D (z))
4

m−2 .

This means s1 (z), s2 (z) ∈ k − USσ
λ,µ (a, c, b, α). Hence

£σ
λ,µ (a, c, b) f (z) =

(
£σ

λ,µ (a, c, b) s1 (z)
)m+2

4

(
£σ

λ,µ (a, c, b) s2 (z)
)m−2

4
, m ≥ 2, k ∈ [0,∞) .
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This completes the proof. �
Theorem 3.7. Let f (z) ∈ k − UV

m,σ
λ,µ (a, c, b, α) and have the form (1.1). Then

an = O (1) .nα1−2, (n → ∞) ,
where

α1 =
{(1 − α

1 + k

)(
m

2
+ 1

)}
,

and O (1) is a constant depending on k, m and α. The exponent is best possible when
k = 0 = α.

Proof. Let

£σ
λ,µ (a, c, b) f (z) = F (z) = z + Γ (c+ b)

Γ (a+ b)

∞∑
n=2

(
1 + µ (n− 1)

λ

)σ Γ (a+ nb)
Γ (c+ nb)

anz
n.

Since using the result [3] F (z) ∈ k − UVm (α) ⊂ Vm (α1) , α1 = k+α
1+k , there exist F1 (z) ∈

Vm such that
F ′ (z) =

(
F ′

1 (z)
)1−α1 =

(
F ′

1 (z)
) 1−α

1+k .

Setting

G (z) =
(
z
(
zF ′ (z)

)′)′

=
(
zF ′ (z)H (z)

)′
, H (z) = (zF ′ (z))′

F ′ (z)
∈ Pm

(
k + α

1 + k

)
= F ′ (z)

[
H2 (z) + zH ′ (z)

]
. (3.5)

Now from Theorem (3.7) , we have

F (z) =

(
£σ

λ,µ (a, c, b) s1 (z)
)m+2

4

(
£σ

λ,µ (a, c, b) s2 (z)
)m−2

4
, for s1 (z) , s2 (z) ∈ k − USσ

λ,µ (a, c, b, α)

=

(
£σ

λ,µ (a, c, b) g1 (z)
)( 1−α

1+k )( m+2
4 )

(
£σ

λ,µ (a, c, b) g2 (z)
)( 1−α

1+k )( m−2
4 ) , for g1 (z) , g2 (z) ∈ C. (3.6)

Now for z = reiθ,

n3 |an| = 1
2πrn

∣∣∣∣∣∣
2π∫
0

F (z) e−iθdθ

∣∣∣∣∣∣ . (3.7)

Using( 3.6 )and (3.5) in (3.7), we have

n3 |an| = 1
2πrn

2π∫
0

∣∣∣∣(£σ
λ,µ (a, c, b) g1 (z)

)( 1−α
1+k )( m+2

4 )∣∣∣∣∣∣∣∣(£σ
λ,µ (a, c, b) g2 (z)

)( 1−α
1+k )( m−2

4 )∣∣∣∣
∣∣∣H2 (z) + zH ′ (z)

∣∣∣ dθ.
Using distortion results for the convex functions and Lemma as given in [14] with α1 = k+α

1+k

and r = 1 − 1
n , we obtain the required result. �

Theorem 3.8. Let f (z) ∈ k − UV
m,σ
λ,µ (a, c, b, α) and let qth Hankel determinant of f (z)

for q ≥ 1 and n ≥ 1, be defined by . Then for m ≥ 2 ,
Hq (n) = O (1)n, (n → ∞) ,

where O (1) is a constant depending only on n, m and α.



64 S. Mahmood, S. Mustafa

Proof. Let

£σ
λ,µ (a, c, b) f (z) = F (z) = z + Γ (c+ b)

Γ (a+ b)

∞∑
n=2

(
1 + µ (n− 1)

λ

)σ Γ (a+ nb)
Γ (c+ nb)

anz
n.

Hence, using a result due to [3], it follows that, for F (z) ∈ k − UVm (α) ⊂ Vm (α1) ,
α1 = k+α

1+k , there exist F1 (z) ∈ Vm such that

F ′ (z) =
(
F ′

1 (z)
)1−α1 =

(
F ′

1 (z)
) 1−α

1+k

F ′ (z) =

(
s1(z)

z

)( m+2
4 )( 1−α

1+k )

(
s2(z)

z

)( m−2
4 )( 1−α

1+k ) , for s1, s2 ∈ S∗

Setting

G (z) =
(
z
(
zF ′ (z)

)′)′

=
(
zF ′ (z)H (z)

)′
, H (z) = (zF ′ (z))′

F ′ (z)
∈ Pm

(
k + α

1 + k

)
= F ′ (z)

[
H2 (z) + zH ′ (z)

]
. (3.8)

=

(
s1(z)

z

)( m+2
4 )( 1−α

1+k )

(
s2(z)

z

)( m−2
4 )( 1−α

1+k )
[
H2 (z) + zH ′ (z)

]
, for s1, s2 ∈ S∗ (3.9)

Now for z = reiθ, j ≥ 1 and z1 any complex number, we consider

|△j (n, z1, G (z))| =

∣∣∣∣∣∣ 1
2πrn+j

2π∫
0

(z − z1)j G (z) e−(n+j)θdθ

∣∣∣∣∣∣
≤ 1

2πrn+j

2π∫
0

|z − z1|j |s1 (z)|j |s1 (z)|(
m+2

4 )( 1−α
1+k )−j

|s2 (z)|(
m−2

4 )( 1−α
1+k )

∣∣∣H2 (z) + zH ′ (z)
∣∣∣ dθ

Using Lemma 2.6, Lemma 2.7 and well-known distortion result for starlike functions in
(4.6), we obtain for

(
m+2

4

) (
1−α
1+k

)
> j

|△j (n, z1, G (z))| ≤ 1
2πrn+j

(
2r2

1 − r2

)j (4
r

)( m−2
4 )( 1−α

1+k )

×
2π∫
0

|s1 (z)|(
m+2

4 )( 1−α
1+k )−j ∣∣H2 (z) + zH ′ (z)

∣∣ dθ.
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using distortion bounds for starlike function we have

|△j (n, z1, G (z))| ≤ 1
2πrn+j

(
2r2

1 − r2

)j (4
r

)( m−2
4 )( 1−α

1+k )

×
2π∫
0

(
r

(1 − r)2

)( m+2
4 )( 1−α

1+k )−j ∣∣∣H2 (z) + zH ′ (z)
∣∣∣ dθ

≤ 1
rn−j−( 1−α

1+k )

( 1
1 − r

)( m+2
2 )( 1−α

1+k )−j

(2)(
m−2

2 )( 1−α
1+k )−j

 1
2π

2π∫
0

∣∣∣H2 (z) + zH ′ (z)
∣∣∣ dθ


≤ 1
rn−2j−( 1−α

1+k )

( 1
1 − r

)( m+2
2 )( 1−α

1+k )−j

(2)(
m−2

2 )( 1−α
1+k )−j

1 −
(
m2 (1 − α)2 − 1

)
r2

1 − r2


which can be written as

|△j (n, z1, G (z))| ≤ C (m, k, α, j) 1
rn−2j−( 1−α

1+k )

( 1
1 − r

)( m+2
2 )( 1−α

1+k )−j−1

= O (1)
( 1

1 − r

)( m+2
2 )( 1−α

1+k )−j−1

Now choosing z1 = n
n+1e

iθn (n → ∞) , r = 1 − 1
n we have

|△j (n, z1, G (z))| = O (1)n( m+2
2 )( 1−α

1+k )−j−1.

where O (1) represents the constant depending on α,m and n. �

Using Lemma 2.3 and similar technique of Theorem 3.7, we can easily prove the following
result.

Theorem 3.9. Let f (z) ∈ k − UR
m,σ
λ,µ (a, c, b, α) having the series( 1.1). Then for m ≥ 2

||an+1| − |an|| ≤ C (α,m, n)nα1−2,

where C (α,m, n) is a constant depending on α,m and n .

Theorem 3.10. Let f (z) ∈ k − UV
m,σ
λ,µ (a, c, b, α) and g (z) ∈ k − UR

m,σ
λ,µ (a, c, b, α) . Then

(
£σ

λ,µ (a, c, b)F (z)
)

=
z∫

0

(
£σ

λ,µ (a, c, b) g (t)
t

)η (£σ
λ,µ (a, c, b)h (t)

t

)κ

dt, (3.10)

in the class k − UV
m,σ
λ,µ (a, c, b, δ) , where

δ = 1 − (η + κ) (1 − α) . (3.11)

Proof. From (3.10), we can write(
z
(
£σ

λ,µ (a, c, b)F (z)
)′
)′

(
£σ

λ,µ (a, c, b)F (z)
)′ = η

z
(
£σ

λ,µ (a, c, b) g (z)
)′

£σ
λ,µ (a, c, b) g (z)

+κ
z
(
£σ

λ,µ (a, c, b)h (z)
)′

£σ
λ,µ (a, c, b)h (z)

+1−(η + κ) .

(3.12)
Since f (z) ∈ k−UV

m,σ
λ,µ (a, c, b, α) ⊂ k−UR

m,σ
λ,µ (a, c, b, α) and g (z) ∈ k−UR

m,σ
λ,µ (a, c, b, α) ,

we have £σ
λ,µ (a, c, b) f (z) ,£σ

λ,µ (a, c, b) g (z) ∈ k − URm (α) and therefore we obtain
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z
(
£σ

λ,µ (a, c, b) g (z)
)′

£σ
λ,µ (a, c, b) g (z)

,
z
(
£σ

λ,µ (a, c, b)h (z)
)′

£σ
λ,µ (a, c, b)h (z)

∈ Pm (pk,α) . Let

z
(
£σ

λ,µ (a, c, b) g (z)
)′

£σ
λ,µ (a, c, b) g (z)

= (1 − α) q1 (z) + α, q1 (z) ∈ Pm (pk)

z
(
£σ

λ,µ (a, c, b)h (z)
)′

£σ
λ,µ (a, c, b)h (z)

= (1 − α) q2 (z) + α, q1 (z) ∈ Pm (pk) .

from (3.12), we have

1
1 − δ


(
z
(
£σ

λ,µ (a, c, b)F (z)
)′
)′

(
£σ

λ,µ (a, c, b)F (z)
)′ − δ

 = η

(η + κ)
q1 (z) + κ

(η + κ)
q2 (z) , (3.13)

where δ is given by (3.11) . Now by using the well-known fact that the class Pm (pk) is a
convex set together with (3.13), we obtain the required result. �
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