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Abstract

In this paper, we introduce various theorems that associate the generalized Riemann-
Liouville fractional integral operator and the generalized Weyl fractional integral oper-
ator with some well-known integral transforms including generalized Laplace transform,
Widder potential transform, generalized Widder transform, Hankel transform and Bessel
transform. We evaluate certain integrals of some elementary functions and some special
functions as applications of these theorems and their results.
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1. Introduction

The name fractional calculus is used for integrals and derivatives of arbitrary order. The
idea of the fractional calculus first arises in the 17%" century and rapidly improves from
that day on. In the last two decades, in addition to theoretical development, fractional
integrals and derivatives are widely used in applied science and engineering studies such as
viscoelastic systems, signal processing, control processing, fractional stochastic systems,
and ecology [10-12].

Unlike the classical calculus, there are various definitions of fractional order integrals
and fractional order derivatives. In this paper, we give place to two of the main definitions
of fractional integrals which are Riemann-Liouville fractional integral and Weyl fractional
integral. Also, we define two new fractional integrals motivated from these definitions
and we present some new identities that include fractional integrals, fractional derivatives
and some integral transforms such as Laplace transform, £o transform, Widder potential
transform and Bessel transform.
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2. Preliminaries

Before giving the main results, we introduce some definitions about fractional integrals,
fractional derivatives and integral transforms.

Definition 2.1. Weyl fractional integral operator of order y is defined in the form

1 o0 _
5 / (& — )" f()da, (2.1)

where y > 0, u € C and Re(p) > 0 [11].

Wi f(x) =

Definition 2.2. Riemann-Liouville fractional integral operator of order p is defined in

the form
1

DHf() = [ /0 'y - 2P () da, (22)

where y > 0 and, p € C and Re(p) > 0 [11,14].

In the following, we introduce two new fractional integrals namely the generalized Weyl
fractional integral and the generalized Riemann-Liouville fractional integral.

Definition 2.3. The generalized Weyl fractional integral can be defined as follows:

Wiaalf(2): 0} = F(lu) / T a(a? — ) f(), (2.3)

where y > 0 and, pu € C and Re(u) > 0.

Definition 2.4. The generalized Riemann-Liouville fractional integral is defined as fol-

lows:
1

Ruaf )i} = 5o et =2 @y, (2.4)

where y > 0, ;€ C and Re(u) > 0.

In the definitions (2.1) — (2.4), I'(z) is the Gamma Euler function given by the following
integral,

I'(z) = / e tt* Lt (2.5)
0
where z € C and Re(z) > 0.

Definition 2.5. Weyl fractional derivative of order « is defined by the formula
mn

WO fa) = W), (2.6

where n € N, a € C, Re(a) > 0 and n — 1 < Re(a) <n [11].

Definition 2.6. Riemann-Liouville fractional derivative of order « is defined by the for-
mula

a* n—a
oDy f(x) = %D (=) f (=), (2.7)
where n € N, a € C, Re(a) > 0 and n — 1 < Re(ar) < n [11].

In the formulas (2.6) and (2.7), fractional derivatives are defined by means of fractional
integral operators.

Definition 2.7. The Laplace transform of f(z) is defined by the following formula [1],
Sf@iw) = [ e (e, (2.8
Definition 2.8. The L9 transform of f(x) is defined by the following formula [14,15],

Colf@iv} = | " eV f)da. (2.9)
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The Ly transform and the Laplace transform are related by the equation [3],

1

Eol ()} = QLA )i7). (210)

Definition 2.9. The Widder Potential transform of f (x) is defined by [13],
P . 2.11
Uit = [~ 5 (211)

Definition 2.10. The Stieltjes integral transform is defined by [1, 8],

S / . 2.12
U@t = [T 1 (2.12)

The Widder Potential transform and the Stieltjes transform are related by the following
relation [7],

1
P9} = RS 207). (213)
Definition 2.11. The 2n-Generalized Widder potential transform of f(z) is defined by
[2,3],

[0.9]
b — 2 f(x)

The P, transform, which is the special case of 2n-Generalized Widder potential trans-
form that appears with the choice of n = 2, and the Steiltjes transform are related by the
following relation [6],

1
Pa{f(@)iy} = ;8 {1y} (2.15)
Definition 2.12. The generalized Widder potential transform of f(x) is defined by [5],
Puolf(z);y} = / 382 _|_ y ) ————~—dx, wherev e C. (2.16)

The Widder potential transform is the special case of generalized Widder potential
transform that appears with the choice of v = 1.

Definition 2.13. The Hankel transform of f(x) is defined by [4],

YA f@i} = [ @) 2o @) (217)

where J,(z) is the Bessel function of the first kind that has the following series represen-
tation,
00 " T v+2n 1
J; = —1 - —_— here R — 1). 2.18
@=XC0(5) arpraryy e Re0)> kD @19

Definition 2.14. The Bessel transform of f(z) is defined by the identity [4],

Kl @i} = [ ay) 2K ) fa)do (219)

where K, (z) is the modified Bessel function of the second kind and defined as
mly(z) — L(z)

2 sin(mv)

in which I,,(z) is the modified Bessel function of the first kind and defined by the series
representation

K, (z) = (2.20)

X

o v+2n 1
I(x)= ngo (2) T tn D)’ where Re(v) > —(n+1). (2.21)
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Definition 2.15. The error function Erf(z) is defined by the equation [9],
Frf(z) = —— / e (2.22)
v . .

Definition 2.16. The complementary error function Erfc(z) is defined by the equation
[9];

Exfe(z) = \/27? /I T, (2.23)

3. Identities on generalized fractional integrals and the £, transform

By the following lemma, we give a relation between the generalized Weyl fractional
integral and the generalized Laplace transform.

Lemma 3.1. If Re(u) > 0 for u € C, the following identity holds true, provided that the
integrals involved converge absolutely,

J(x), } (3.1)

Wy2{Lo{f(2);u};y} = %132 {mmy

Proof. By definitions (2.3) and (2.9), we have

Wpa{Lo{f(z);ulsy} = F(lu) /yoo u(u® — y?)rt {/OOO :Ue_“2$2f(x)dx} du. (3.2)

By making the change of variable u? — y? = t? in (3.2), we get that

Wia{ Lol f(x);ulsy} = F(lu) /0 T2yt [ /0 % e f(a:)d:c] dt.

Then, by changing the order of integration that is permissible by absolute convergence of
the integrals involved, we get

Wo{La{f(x);u}y} = F(lu) /0 ™ pe R f(2) [ /0°° 121 120 dt} N
= 1“(1;1) /OOO xe_$2y2f(az) [Lg{t%‘_l); x}} dx.

Applying the relation (2.10) and using the equation (1) of [7, p. 137], we obtain

1 o0 2.2 1
W,9{L ) ubyl = —/ ze VY f(x [L th=L g2 ]d:p
n2{Laf{f(@); u}; y} T Jo fla) | 544 ¥
1 o0 2,2 1
= — ze Y f(x) | =T :U_2"] dx
o o) |51 ()
Lo @) 1. [ f()
B z%y = .
=3/, Te o dx—2L2{x2M,y}
which proves the statement. U

Next theorem gives a Parseval-Goldstein type relation between the L2 transform and
the generalized Riemann-Liouville fractional integral defined by (2.4).

Theorem 3.2. If Re(u) > 0 for p € C, the following Parseval-Goldstein type relation
holds true, provided that the integrals involved converge absolutely,

[T s (@ L2 tatuseyae = S0 [Tope (Db a @)

u2
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Proof. By the definition (2.4), we have
I= [T R (F )it} L2 {glu)st) d
_ /0 “ [F(lu) /O {2 = g2y f(x)dm} £ {g(u); 1} dt. (3.4)

By changing the order of integration that is permissible under the absolute convergence
assumption, we obtain

g r(lm /Ooo 2f(x) U;O HE2 — 2210 {g(u): ) dt} do
= (_Fl():)_l /OOO zf(z) [/;O t(z? — ) 1Ly {g(u); t} dt] dx.

Then, by using the definition (2.3) and Lemma (3.1), we get

= (-1 [T @)Wz (L g(u)it) o) do

= (12>M_1 /OOO xf(x)Lo {“(L(;Z), :L‘} dx

which proves the statement. ]

Theorem 3.3. The following Parseval-Goldstein type relation holds true, provided that
each of the integrals involved converge absolutely,

o { R { @iy fivf - *2/; "Bt () dn, (3.5)

Proof. By setting =1 and g(u) = sin(2uy) in (3.3), we obtain

/ tR12{f(z);t} Lo {sin(2uy);t} dt = B / xf(x)Lo {snlizuy)’ x} dx. (3.6)
0 0
Now, by the relation (2.10) and the relation (32) of [7, p.153], we have
: 1 : 2
Lo {sin(2uy); t} = §L {sm(%/ﬁy);t }
1
= 5\/%yt*?’e*lﬁ/ﬁ, Re(t2) > 0. (3.7)

Likewise, by the relation (2.10) and the relation (34) of [7, p.154], we have

Lo {sm(Quy)t} — EL {sin(Q\/ﬁy);tg}

u? 2 U

_1 Y 2
= 27TEI“f <$) , Re(t?) > 0. (3.8)
Then, by substituting (3.7) and (3.8) in (3.6), we get
/ tR12{f(x);t} (1ﬁyt3ey2/t2> dt = 1/ xf(x) (177 Erf (y)) dx
0 ’ 2 2 Jo 2 T
oo oo
/ tRi{f(z);t} t3e v/ gt = ﬁ/ xf(z) Erf <y) dx.
0 2y Jo T
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Finally, by making change of variable t = 1/u on the left hand side of equation above and
using the definition (2.9), we obtain

/Ooo %:Rl,g {f(x); i} we—Y 0 gy — g /0°° af(x) Ef (i) da

Lo {iyl,z {f($)§ i} ;y} = \2/5/000 x f(x) Erf (3;‘) dz,

|

as desired.

O
Example 3.4. Following equation holds true under the conditions of Theorem (3.3),
/ T Erf(t)dt = by (”) where 0 < Re(v) < 1 (3.9)
0 VAl -v) \2)’ ' '
Proof. By choosing f(z) = x7%~! in Theorem (3.3), we get
1 1 o0
Lo {RLQ {x_”_l; } ;y} = ﬁ A D (y) dzx. (3.10)
u u 2y Jo x

Now, by using the definitions (2.4) and (2.9) on the left hand side of the equation (3.10),

we get
1 1 1 1/u
(i) =e (3 ([ ") o)
U U u 0

ol
1 b
:(1_V)L2{u 2;y}.

Then, by using the relation (2.10) and the equation (1) of [7, p.137], we have

1 —v—1 1 1 v/2—1.,2
— =Y = ; A1
L2{ule’2{w ’u}’y} 2(1—1/)£{u 4 } (3.11)

“aa (3)7

and by making change of variable z = yt~! on the right hand side of the equation (3.10),
we get

VA (y) VA S -2
-— VE | = =—-— t Y Erf t
2 Jo x of | 2 dz 2% Jo (yt™") rf(¢)(yt™*) d
= \/72‘/ / 2 Exf(t) dt. (3.12)
0

From the equations (3.11) and (3.12) we have,

2

which proves the statement.
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4. An identity on fractional integrals and the 2n-generalized widder po-
tential transform

Theorem 4.1. If Re(t?) > |Im(y?)|, then the identity
1 e I e (Y
Py t—szl,g {f(z);t};yp = 2y2/0 xf(x)tan e dz (4.1)

holds true, provided that each of the integrals involved converges absolutely.

Proof. By choosing i = 1 and g(u) = sin(u?y?) in the equation (3.3), we obtain

/ Ry (F(); 1) La {sin(uy); t} dt (4.2)
0

2/ o f( {Sln(uy) }d:c

Now, by the relation (2.10) and the formula (1) of [7, p.150], we have

1
2O : 2. 42
Lo {sm(u Yy ),t} = 2[/ {sm(uy )it } (4.3)
1y 2 2
= 218 Re(t) > [Im(y7)].
Likewise, by using the relation (2.10) and the equation (16) of [7, p.152], we have
(0202 : 2
L2{S1n(u2y )7m}:15{81n(uy )7.,1;2} (44)
U 2 u

1 -1 yQ
= 5 tan <$2> .

By substituting (4.3) and (4.4) in (4.2) and using definition (2.14), we get

oo 2
/0 4+t4leg{f( thdt = / ) tan™ <i2> dx

‘.]’4{;23%12 {f(x);t}; y} / ) tan™ <iz> dx

0

Example 4.2. If —3 < Re(v) < 1, then the following equation holds true under the
conditions of Theorem (4.1),

0o 2 v+1
1y —TY (v — 1))
Ytan ! [ 5 | de = ——F— — . 4.
/0 x¥ tan <$2> x 5+ 1) csc( 1 (4.5)
Proof. If we choose f(z) = 2*~! on the left hand side of equation (4.1), we get

ol o) <o ([ ).

Then, by using the definitions (2.4) and (2.14) respectively, we obtain

Py {752931,2 {m”fl;t} } 9’4{ 1 (5?:1) y} (4.6)

= Jlr -4 {# 1y},

1%
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and by using the identity (2.15) and the equation (5) of [8, p.216], we get
1 1
P —R V*l.t . Y 75(1/71)/4_ 4
4{t2 1,2{513 I }7y} 4(V+1) { 7y}

- (D, )

Finally, by substituting (4.7) in equation (4.1), we obtain

v—1 00 2
Yy (V 1)) 1 / v —1 Yy
! i = t Z)d
4(V 1) CSC ( 1 2y2 0 T tan .1,‘2 X,

which proves the statement. U

5. Identities for various integral transforms and fractional integrals
Lemma 5.1. If Re(u) < 1, Re(t?) > —Re(s?) and Re(x?) > —Re(s?), then the identity

—1)»1
PR )1} 5} = 01— 1 {05}, (5.1
holds true, provided that each of the integrals involved converges absolutely.

—s2u?

Proof. By choosing g(u) = e
/O 1Ry {F(2): 8182 {1} (5.2)

o —1 0o —s2y?
_ 12)“ /0 xf(m)LQ{eu% ;gg}dx.

Now by (2.10) and the relation (1) of [7, p.143], we have
752u2_ _ 1 732u_ 2
Lg{e ,t} =L {e it } (5.3)
1
= 5(t2 + 5571, Re(t?) > —Re(s?).
Likewise, by (2.10) and the relation (3) of [7, p.144], we have

2,2 2
678 u 1 e*S u 9
1
= 51“(1 — ) (z% 4 s*)*71, Re(x?) > —Re(s?).
By substituting results (5.3) and (5.4) into the equation (5.2), we get

/0 TR (@)t} 4 52 dt (5.5)

(1!

=T [ af @) sty e,

Then, the equation (5.1) can be shown directly by using the definitions (2.11), (2.16) and
the relation (5.5) . O

in the equation (3.3), we get

Theorem 5.2. If Re(u) < 1, Re(t?) > —Re(s?) and Re(2?) > —Re(s?) for p,s,t € C,
then the Parseval-Goldstein type identity
| @)ty Rz {g(ws ) (5.6

_ -1 o0
= S0 ) [ s 0P e (o)) de



16 A.N. Dernek and G. Bozkurt

holds true, provided that each of the integrals involved converges absolutely.

Proof. Firstly, if we apply the definition (2.11) on the left-hand side of equation (5.6) and
then change the order of integration under the absolute convergence condition, we obtain

7 @ R {1
/ /OO 2 2{g(u);t}tdxdt

22412 —|— t2 Ru2
t
- /0 f(2)P {Ry2 {g(u);t} 12} da. (5.7)
On the other hand, we have the following relation by Lemma (5.1),

/Ooo tP {f(.%'), t}CR,uQ {g(u); t} dt
_/ wf(x ( DA™ ( — ) Pi_p2 {g(u),x}> dr

p—1
=S [T e@P e i i 69
The relation (5.6) is a direct consequence of equations (5.7) and (5.8). O

Corollary 5.3. The following equation holds true under the conditions of Theorem (5.2),

(_Dli'u & y2t2 '
Team /0 1V By () Rz {g(u)it) dt,  (5.9)

where Re(p) < 1 and Ey(z) is the exponential integral function which is defined by the
following identity [15],

Lo {P1p2{g(u);z};y}t =

Eilw)= [ du. (5.10)
Proof. 1If we choose f(z) = e~ in the equation (5.6), we get
/0 tﬂ’{e_xzy?;t Ru2{g(u);t}dt (5.11)
(-pr-t

2
By the equation (2.13) and the relation (11) of [8, p.217], we have

P {ef‘ﬁyz;t} = %8 {efxyz;t2}

1
= 56929151(;,2752). (5.12)

=T =) [ e e (gt e,

Then, the equation (5.11) can be written as,

[t (e B ) R (g st}
0
= (=D"'T(1 = @) L2 {Prop2 {g(uw);a} sy}
by using the definition (2.9) and the relation (5.12). O
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Corollary 5.4. The following equation holds true under the conditions of Theorem (5.2),

Lo {xﬂﬂ’l_u,g {g(u);z}; y} dx (5.13)
= -1 0 242
— I’((ll—):)/o eVt Erfe(yt)Ryu2 {g(u);t} dt, Re(p) < 1

Proof. If we choose f(z) = 2z 'e~®"¥" in the equation (5.6) and use the formula (15) of
8, p.217], we get

—1_—ax3y2, 71 —-1/2 —zy?. 42
(P{x e ,t}—28{x e ,t}
1 1 2t2
= §7Tt e’V Erfe(yt). (5.14)

Now, by substituting the equation (5.14) in the equation (5.6) and using the relation (2.9),
we obtain

: / ? Exfe(yt)Ry2 {g(u); t} dt
K= 1 2,2
= S0 ) [T e R (gt} de
pn—1
_ = 12) (1= @)L {7 P1 s {g(u)ia} sy} da

0

Corollary 5.5. If y >0, —k —1 < Re(v) < =2k +3/2 for k =0,1,2,... and Re(u) < 1
then the identity
2(_1)k7#+1 v+2k
ﬂg{y {t +2 +1/2:Ru,2 {9(“)5 t} ; y} (5-15)
= 36, {2 2P0 {g(u)a} sy}

holds true, provided that each of the integrals involved converges absolutely.

Proof. By taking f(z) = z¥72*J,(zy) in Theorem (5.2), we obtain

/Oo tP {x””kjy(a:y); t} Ru2{g(u);t}dt (5.16)
0

_1\u—1 o
— (12)MP(1 — 1) /o xV+2k+1Jy(:L’y)fP1_M72 {g(u); z} da.

Now, by the relation (2.13) and the identity (10) of [8, p.225], we have
1
v+2k . —— v/2+k 1/2, ). 42
fP{x Jl,(acy),t} = 28 {ac Ju(xy);t }
= (=D 2R K (yt), (5.17)

where y > 0 and —k — 1 < Re(v) < —2k + 3/2 for k € N. Now, by using the equation
(5.17) and the definition (2.19), we obtain

/0 TP (o R ()it R, 2 {g(u)s ) db
— (1) /0 TR (0 R o {g(u)i £ dt

—1)k
_ (yl/l X, {# AR, gluit) sy} (5.18)
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On the other hand, by using the definition (2.17), we get

oo
| )P ()i do (5.19)
0
1
= i {2 12y s {g(w)iad syl
So, the equation (5.15) follows directly from the equations (5.18) and (5.19). O
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