
INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Singh, Vol.2, No.4, 2018

Speed Optimization of 32 Bit Single Precision
Floating Point Multiplier through Pipelining in

VHDL

Tajinder Pal Singh*

* Electrical and Electronics Engineering, Faculty of Electrical Engineering, Chitkara University, India

(tajinderpal.singh@chitkarauniversity.edu.in)

‡ Corresponding Author Tajinderpal Singh, Chitkara University, Tel: +91

8872446979,tajinderpal.singh@chitkarauniversity.edu.in

Received: 03.08.2018 Accepted:28.12.2018

Abstract- The paper is presenting the architectural method for speed optimization of floating point multiplier involves
increasing the frequency by implementing pipelines in the design using VHDL language. The whole algorithm of IEEE 754
standard 32 bit single precision floating point multiplier have two pipelining stages, which improve the frequency rate of clock
to 422.556 MHz and result the output in 2.367ns. The design also handles the overflow/ underflow cases with normalization
for the better accuracy of the result. Xilinx vertex 5 FPGA is targeted for the design and the simulation is done on Xilinx ISE
simulator.

Keywords Floating Point multiplier; VHDL; Pipelining; Xilinx ISE tool.

1. Introduction

This paper explores the effect of pipelining on the
performance of the proposed design of Floating point
multiplier. Mostly latency in the clock affects highly the
design performance. So the branch prediction and fast branch
recovery will continue to increase in importance, which is
called pipelining. In VHDL pipelining the multiple
instructions are runs in parallel. The pipeline is divided in
stages. Each stage completes a part of an instruction in
parallel. The pipe stages are hooked together in which
instructions enter at one end, progress through the stages, and
exit at the other end. Hence increase the instruction
throughput.

In floating point multiplier, multiplication required the
following steps; first to multiply the mantissa or significand
of two multiplicand, second is to add the exponent of both
numbers and subtract the bais and third is to XORing the
sign bit of both numbers. In these steps most of the
calculation time is spent in signifcand multiplication,
moderate in addition and very less in sign calculation. The
pipelining helps to divide the critical path of floating
multiplier into small stages which improve the overall
performance of the design.

In our design of single precision floating point multiplier
we introduce two pipelining stages in the architecture which

achieves the frequency rate of 422.556MHz.The two stage
pipelining increase the instruction throughput of the
proposed design and result the output in 2.367ns. The
complete algorithm & pipelining in floating point multiplier
is discussed in next sections.

2. Operation of Floating point multiplication

Let A & B are two floating point numbers to be
multiplied. E is representing Bias Exponent value of A or B.
M is Mantissa or fraction value of the numbers and S is
representing sign bit. The whole process takes following
steps for the operation of multiplication as shown in the flow
chart given below in figure 1a.

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Singh, Vol.2, No.4, 2018

Fig. 1. Flow chart for Floating Point Multiplier with
pipelining

1. First step in multiply the two floating point numbers
is to check whether the both multiplicand is in the range of
the format according to IEEE754 standard or not as in figure
2 given below.

The value of bias exponent (E) should lie in between 0 to
254(8 bit only). If not the bias exponent is represented by a
special values. For example If the value of bias exponent
(Ebias) is more than 254 than its turn to not a number (NaN)
on the other hand if the value of bias exponent is less than 1
its turn to zero as shown in table 1.

2. Significand multiplication is the second step of the
whole operation, if only both the multiplicands come in the
range of IEEE754 standard. This operation is performed on
the 23 bit mantissa (or fraction) part of the numbers which
gives the 48 bit result in output. The 48 bit result of the
mantissa multiplication is than round off to 23 bit so that it
will fit in the range of IEEE754 32 bit floating point number
format.

With that rounding, normalization is also done to
represent the number in scientific notation, which also
increases the accuracy of the result.

3. The result of significand multiplication is
normalized so that the product will have leading bit one on
the left side of decimal point. If the both multiplicands are
the normalized numbers so the result will have leading one
either on 47 bit or on 46 bit.

• If the leading one is at 46 bit or on the left side of
decimal point the product don’t require any shift. In the other
words we can say there will not any increment in exponent
value.

For example 1 10000111 1.001011000 (normalized
form)

Fig. 2. IEEE 754 standard for 32 bit

Table 1. Appearance properties of accepted manuscripts

Bias Exponent Range

(0 to 254)

Bias Exponent Special Values

If EBias > 254 Not a number(NaN)

If EBias < 1 Zero

146

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Singh, Vol.2, No.4, 2018

Fig. 3. Schematic diagram for significand multiplier.

For example

If the leading one is at 47 bit the product require shift on
right which will increment the exponent by one.

For Example 1 10000110 1001011000 (Non normalized
form)

If the both multiplicand are not a normalized numbers than
for the requirement of normalize the result so that there is a 1
just before the radix point (decimal point) the radix point
move one place to the left increments the exponent by 1;
moving one place to the right decrements the exponent by 1.

4. Next step is to round off the result obtained from
significand multiplication. In rounding the intermediate
product obtained from significand multiplication become of
23 bit from 46 bits.

5. Adding the exponent of two numbers is done on 8
bit part of floating point number. After addition the constant
value of 127 (bias) is subtracted from the addition result.

6. The result obtained from exponent addition is
checked for overflow and underflow. If overflow occurs the
result turned to infinity and when underflow occurs result

turned to zero. The overflow and underflow can be
compensated only under following situations

Table 2. Overflow and underflow detection with effect of
normalization

Exponent
Value
(Eresult)

Over

flow

Under

flow

Compensated
or not in
normalization

Eresult≥255 Yes No No

Eresult=0 No Yes Yes

Eresult<0 No Yes No

3. Pipelining in Floating point multiplier

Time performance enhancement is the requirement of
the design. It has been achieved through the VHDL
pipelining. Pipelining in the proposed design is accomplished
at the two different stages. These two stages pipelining
involving parallel processing of the data improve the
frequency rate of the clock. Hence decrease the overall time
consumption of floating point multiplier and gives better
speed.

The pipelining comes at two different locations is
discussed below in detail in figure 3.

 One after the significand multiplier and before
the exponent adder & rounding.

 Second after the exponent addition and before
the overflow/underflow detection & final result
of multiplication

Fig. 4. Proposed architecture with pipelining

147

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Singh, Vol.2, No.4, 2018

Significand multiplier is one of the critical parts of
floating point multiplier. In this unit most of the calculation
takes place which decrease the overall speed of multiplier. A
parallel branch in between the significand multiplier and
before the exponent adder & rounding helps to overcome the
problem of speed optimization.

After that the other parallel branch in between the
exponent addition and before the overflow/underflow
detection add on in improving the clock rate (up to
422.556MHz) and output the result in just 2.367ns. The
figure 04 given below represents the maximum path delay in
the design in between two parallel stages.

Fig. 5. Path delay in between two pipelining stages

4. Result

The resultant section of the paper is representing the
different figures of results which justifying the design,
performance and accuracy of the proposed design. The figure

05 given below representing the Frequency rate, clock timing
and the combinational path delay of the floating point
multiplier. This result shows that the proposed design is 40%
faster response than previous deigns & 90% faster than
conventional design.

Fig. 6. Timing summary of the proposed design

148

INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION
Singh, Vol.2, No.4, 2018

Fig. 7. Simulation result of multiplitication of two normalized numbers

Fig. 8. Simulation result of multiplitication of two numbers results in infinity

5. Conclusion

The paper presents an implementation of floating point
multiplier, which follow IEEE754 binary interchange format.
The both normalization and rounding techniques are
implemented in the design. The proposed design gives the
output in latency of two clock cycles and the frequency rate
of 422.556MHz is achieved. The whole designed is targeted
to Xilinx vertex 5 FPGA.

References

[1] IEEE 754-2008, IEEE Standard for Floating-Point
Arithmetic, 2008

[2] Mohamed Al-Ashrafy, Ashraf Salem and Wagdy Anis,
“An efficient implementation of floating point
multiplier” 2011 IEEE

[3] H. Poor, An Introduction to Signal Detection and
Estimation, New York: Springer-Verlag, 1985, ch. 4.
(Book Chapter)

[4] B.Sreenivasa Ganesh, J.E.N. Abhilash and G.Rajesh
Kumar, “ Design and implemntation of floating point
multiplier for better response” IJARCET,vol 1, issue 17,
sep 2012.

[5] Naresh Grover, M.K Soni., “ Design of FPGA based 32
bit floating point airthmetic unit and verfication of its
VHDL code using MATLAB” I.J information engineering
and electronics business ,feb 2014,MECS press

[6] Ameya deshmukh and Pooja hatwalne, “ Design and
implemenatatio time efficient floating point multiplier
using VHDL, international journal of latestest trend in
engineering and technology, vol 8 , issue 03, pp 084-090.

149

