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Abstract

We examine European call options in the jump-diffusion version of the Double Heston
stochastic volatility model for the underlying price process to provide a more flexible model
for the term structure of volatility. We assume, in addition, that the stochastic interest rate
is governed by the Cox– Ross – Ingersoll (CIR) dynamics. The instantaneous volatilities
are correlated with the dynamics of the stock price process, whereas the short-term rate
is assumed to be independent of the dynamics of the price process and its volatility. The
main result furnishes a semi-analytical formula for the price of the European call option in
the hybrid call option/interest rates model. Numerical results show that the model implied
volatilities are comparable for in-sample but outperform out-of-sample implied volatilities
compared to the benchmark Heston model [1], and Double Heston volatility model put
forward by Christoffersen et al. [2] for calls on the S&P 500 index.

1. Introduction

In this paper we derive a semi-analytical pricing formula for European options in a model where the volatility of the stock price process is
specified by a jump diffusion version of double Heston volatility model considered by Christoffersen et al.[2], whereas, the interest rate
is governed by CIR dynamics postulated in Cox et al. [3]. In particular, the model put forward in the present work allows for a non-zero
correlation between the stock price process and its instantaneous volatilities. According to the model given by (2.1), the CIR interest rate
processes are independent of one another, and they are also independent of the stock price process and its volatility, which in turn is jointly
governed by a jump process an extension of Heston’s model. It is well established that the Heston model is not always able to fit the implied
volatility smile very well, particularly at short maturities Gatheral [4]. Further, these models are particularly restrictive in their modeling of
the relationship between the volatility level and the slope of the smirk, crucially the Heston one factor model can generate steep smirks
at a given volatility level but cannot generate both for a given parametrization. Christofferson et al. [2], considered a two-factor structure
for the volatility and demonstrate that the two-factor model gives much more flexibility in controlling the level and slope of the smirk. In
their empirical estimates, one of the factors has a high mean reversion and determines the correlation between the short-term returns and
variance. The other factor has lower mean reversion and determines the correlation between long-term returns and variance. Recchioni et al.
[5] consider a two factor model, specifically, the dynamics of the asset price is described through two stochastic factors, one related to the
stochastic volatility and the second to the stochastic interest rate.
In papers by Bakshi et al. [6], Bates [7] and Duffie et al. [8], the authors showed that stochastic volatility models do not offer reliable prices
for close to expiration derivatives. This motivated Bates [7] and Bakshi et al. [6] to introduce jumps to the dynamics of the underlying.
However, as observed by Andersen and Andreasen [9] and Alizadeh et al. (2002), the addition of jumps to the dynamics of the underlying is
not sufficient to capture the sudden increase in volatility due to market turbulence. Since the overall volatility in financial markets consists of
a highly persistent slow moving and a rapid moving components, Eraker et al. [10] proposed to introduce jump process to the dynamics
of the volatility process in order to enhance the cross-sectional impact on option prices(see also Lewis [11]). A distinct advantage of an
affine specification using Lévy processes as building block leads to analytically tractable pricing formulas for volatility derivatives, such as
VIX options, as well as efficient numerical methods for pricing European options on the underlying asset, Cont et al. [12]. As observed by
Gatheral [4] a more significant aspect as to why we consider jumps, though jumps have very little effect on the shape of the volatility surface
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for long-dated options; the impact on the shape of the volatility surface is all at the short-expiration end, and further might explain why the
skew is so steep for very short expirations and why the very short-dated term structure of skew is inconsistent with any stochastic volatility
model. In this paper we have demonstrated implied volatilities based Double Heston Jump-Diffusion Hybrid Model for the underlying
asset and volatility dynamics clearly outperform implied volatilities based on single and Double Heston volatility models when compared
with market implied volatilities compatible with observations of Carr et al. [13] and Christofferson et al. [2] with regard to out-of-sample
implied volatilities. Van Haastrecht et al. [14] have extended the stochastic volatility model of Schöbel and Zhu [15] to equity/currency
derivatives by including stochastic interest rates and assuming all driving model factors to be instantaneously correlated. Since their model is
based on the Gaussian processes, it enjoys analytical tractability even in the most general case of a full correlation structure. On the other
hand,, when the squared volatility is driven by the CIR process and the interest rate is driven either by the Vasicek [16] or the Cox et al. [3]
process, a full correlation structure leads to intractability of equity options even under a partial correlation of the driving factors, as have
been documented by, among others, Van Haastrecht and Pelsser [17] and Grzelak and Oosterlee [18], [19] who examined, in particular, the
Heston/Vasicek and Heston/CIR hybrid models (see also Grzelak et al. [20], where the Schöbel–Zhu/Hull–White and Heston/Hull–White
models for equity derivatives are studied). Andrei Cozma et al. [21] consider the Heston-CIR stochastic-local volatility model in the context
of foreign exchange markets under a full correlation structure. They derive a full truncation scheme for simulating the stochastic volatility
component and the stochastic domestic and foreign interest rates. More recently Andrei Cozma et al. [21] propose a calibration technique for
four-factor foreign-exchange hybrid local-stochastic volatility models (LSV) with stochastic short rates. However, their model specification
do not include jumps . In this paper we do not follow this line of research here and we focus instead on finding a semi-analytical solution,
since this goal can be achieved under Assumptions (A.1)–(A.6).
In this paper we extend the results put forward in Ahlip-Rutkowski [22] by considering the double Heston Volatility model, further we provide
a complete pricing formula which speeds numerical calibration substantially (refer to Lemma 4.3) Our goal is to derive a semi-analytical
solution for prices of plain-vanilla options in a model in which the volatility components are specified by the extended double Heston model
with log-normal and exponential jumps, whereas the short-term interest rate is governed by the independent CIR processes. The model thus
incorporates important empirical characteristics of stock price return variability: (a) the correlation between the stock price dynamics and its
stochastic volatility, (b) the presence of jumps in the stock price process and in one of the stochastic factors and a second stochastic factor the
usual Heston volatility and (c) the random character of interest rate. The practical importance of this feature of newly developed equity
models is rather clear in view of the existence of complex equity products that have a short lifetime and are sensitive to smiles or skews in
the market.
The paper is organised as follows. In Section 2, we set the option pricing model examined in this work. The options pricing problem
is introduced in Section 3. The main result, Theorem 4.1 of Section 4, furnishes the pricing formula for European call options. And in
particular the result in Lemma 4.3 is crucial in the derivation of the semi analytical pricing formula Section 4,which in turn significantly
speeds up calibration of the model parameters to market and most important the model implied volatility surface . It is worth stressing that
the independence of volatility and interest rates appears to be a crucial assumption from the point of view of analytical tractability and thus it
cannot be relaxed. Numerical illustrations of our method are provided in Section 5 where the Single Heston, Double Heston and Double
Heston jump-diffusion models are compared applied to S&P 500 index data and further our model can fit market implied volatilities across
strikes and maturities particularly well for out-of-sample options.

2. The double Heston-Jump diffusion/CIR model

Let (Ω,F ,P) be an underlying probability space. Let the stock price process S=(St)t∈[0,T ], its instantaneous squared volatility v=(vt)t∈[0,T ],
the short-term interest rate r = (rt)t∈[0,T ] be governed by the following system of SDEs:

dSt = St (rt −λSµS) dt +St
√

vt dW S
t +St

√
v̂t dŴ S

t +StdZS
t ,

dvt =
(
θ −κvt

)
dt +σv

√
vt dW v

t +dZv
t ,

dv̂t =
(
θ̂ − κ̂ v̂t

)
dt +σv̂

√
v̂t dŴ v

t ,

drt =
(
a−brt

)
dt +σr

√
rt dW r

t .

(2.1)

We work under the following standing assumptions:

(A.1) Processes W S = (W S
t )t∈[0,T ], W v = (W v

t )t∈[0,T ] are correlated Brownian motions with a constant correlation coefficient, so that the
quadratic covariation between the processes W S and W v satisfies d[W S,W v]t = ρ dt for some constant ρ ∈ [−1,1].
(A.2) Processes Ŵ S = (Ŵ S

t )t∈[0,T ], Ŵ v = (Ŵ v
t )t∈[0,T ] are correlated Brownian motions with a constant correlation coefficient, so that the

quadratic covariation between the processes Ŵ S and Ŵ v satisfies d[Ŵ S,Ŵ v]t = ρ̂ dt for some constant ρ̂ ∈ [−1,1]. Further the processes
W v = (W v

t )t∈[0,T ] and Ŵ v = (Ŵ v
t )t∈[0,T ] are independent.

(A.3) Processes W r = (W r
t )t∈[0,T ] is independent of the Brownian motions W S, Ŵ S and W v, Ŵ v.

(A.4) The process ZS
t = ∑

NS
t

k=1 JS
k is the compound Poisson process; specifically, the Poisson process NS has the intensity λS > 0 and

the random variables ln(1+ JS
k ), k = 1,2, . . . have the probability distribution N(ln[1+µS]− 1

2 σ2
S ,σ

2
S ); hence the jump sizes (JS

k )
∞
k=1 are

lognormally distributed on (−1,∞) with mean µS >−1.
(A.5) The process Zv

t = ∑
Nv

t
k=1 Jv

k is the compound Poisson process; specifically, the Poisson process Nv has the intensity λv > 0 and the jump
sizes Jv

k are exponentially distributed with mean µv.
(A.6) The Poisson process Nv and sequence of random variables (Jv

k )
∞
k=1 are independent of the Brownian motions W S,W v,Ŵ S,Ŵ v,W r.

(A.7) The model’s parameters satisfy the stability conditions: 2θ > σ2
v > 0, 2θ̂ > σ2

v̂ > 0 and 2a > σ2
r > 0 (see, for instance, Wong and

Heyde [23]).

Note that we postulate that the instantaneous squared volatility processes v, v̂ the short-term interest rate r are independent stochastic
processes. We will argue in what follows that this assumption is indeed crucial for analytical tractability. For brevity, we refer to the model
given by SDEs (2.1) under Assumptions (A.1)–(A.6) as the Double Heston/CIR jump-diffusion hybrid model(DHJDH).



140 Journal of Mathematical Sciences and Modelling

3. Call option

We will first establish the general representation for the value European call option with maturity T > 0 and a constant strike level K > 0.
The probability measure P is interpreted as the spot martingale measure (i.e., the risk-neutral probability). We denote by F= (Ft)t∈[0,T ] the
filtration generated by the Brownian motions W S,W v,Ŵ v,W r and the compound Poisson processes ZS and Zv. We write EP

t ( ·) and Pt( ·) to
denote the conditional expectation and the conditional probability under P with respect to the σ -field Ft , respectively. Hence the arbitrage
price Ct(T,K) of the call option at time t ∈ [0,T ] is given as the conditional expectation with respect to the σ -field Ft of the option’s payoff
at expiration discounted by the money market account, that is,

Ct(T,K) = EP
t

{
exp
(
−
∫ T

t
ru du

)
CT (T,K)

}
= EP

t

{
exp
(
−
∫ T

t
ru du

)
(ST −K)+

}
or, equivalently,

Ct(T,K) = EP
t

{
exp
(
−
∫ T

t
ru du

)
ST1{ST>K}

}
−KEP

t

{
exp
(
−
∫ T

t
ru du

)
1{ST>K}

}
.

Similarly, the arbitrage price of the discount bond maturing at time T equals, for every t ∈ [0,T ],

B(t,T ) = EP
t

{
exp
(
−
∫ T

t
ru du

)}
(see Musiela and Rutkowski ([24], Chapter 14)).
As a preliminary step towards the general valuation result presented in Section 4, we state the following well-known proposition (see, e.g,
Cox et al. [3] or Chapter 10 in Musiela and Rutkowski [24]).

Proposition 3.1. The price at date t of the discount bond maturing at time T > t in the CIR model are given by the following expressions

B(t,T ) = exp
(
m(t,T )−n(t,T )rt

)
,

m(t,T ) =
2a
σ2

r
log

[
γ̃ e

1
2 b(T−t)

γ̃ cosh(γ̃(T − t))+ 1
2 bsinh(γ̃(T − t))

]
,

n(t,T ) =
sinh(γ̃(T − t))

γ̃ cosh(γ̃(T − t))+ 1
2 bsinh(γ̃(T − t))

.

and

γ̃ =
1
2

√
b2 +2σ2

r .

The dynamics of the bond price under the spot martingale measure P is given by

dB(t,T ) = B(t,T )
(
rt dt−σrn(t,T )

√
rt dW r

t
)
,

The following result is also well known (see, for instance, Section 11.3.1 in Musiela and Rutkowski [24]).

Lemma 3.2. The forward rate F(t,T ) at time t for settlement date T equals

F(t,T ) =
St

B(t,T )
. (3.1)

Since manifestly ST = F(T,T ), the option’s payoff at expiration can also be expressed as follows

CT (T,K) = F(T,T )1{F(T,T )>K}−K1{F(T,T )>K}.

Consequently, the option’s value at time t ∈ [0,T ] admits the following representation

Ct(T,K) = EP
t

{
exp
(
−
∫ T

t ru du
)

F(T,T )1{F(T,T )>K}

}
−KEP

t

{
exp
(
−
∫ T

t ru du
)
1{F(T,T )>K}

}
.

In what follows, we will frequently use the notation xt = lnF(t,T ) where t ∈ [0,T ].
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4. Pricing formula for the European call option

In this section we present the main result of the paper, which furnishes a semi-analytical formula for the arbitrage price of the call option of
European style under the Double Heston Jump- Diffusion Hybrid model for the stock price process combined with the independent CIR
model for short-term rate.

Theorem 4.1. Let the model be given by SDEs (2.1) under Assumptions (A.1)–(A.6). Then the price of the European call option equals, for
every t ∈ [0,T ],

Ct(T,K) = StP1
(
t,St ,vt , v̂t ,rt ,K

)
−KB(t,T )P2

(
t,St ,vt , v̂t ,rt ,K

)
where the bond price B(t,T ) is given in Proposition 3.1, and the functions P1 and P2 are given by

P1
(
t,St ,vt , v̂t ,rt ,K

)
=

1
2
+

1
π

∫
∞

0
Re
(

f1(φ)
exp(−iφ lnK)

iφ

)
dφ . (4.1)

and

P2
(
t,St ,vt , v̂t ,rt ,K

)
=

1
2
+

1
π

∫
∞

0
Re
(

f2(φ)
exp(−iφ lnK)

iφ

)
dφ .

where the Ft -conditional characteristic functions f j(φ) = f j(φ , t,St ,vt , v̂t ,rt), j = 1,2 of the random variable xT = ln(ST ) under the
probability measure P̂T (see Definition 4.6) and PT (see Definition 4.4), respectively, are given by

f1(φ) = ct exp
[

λSτ

(
(1+µS)

iφ e−
1
2 (φ

2+iφ)σ 2
S −1

)]
× exp

[
−
(

iφλSµSτ +λvτ

(
ρ(1+ iφ)µv

σv +ρ(1+ iφ)µv

))]
×exp

[
−
(
(1+ iφ)ρ

σv
(vt +θτ)+

(1+ iφ)ρ̂
σv̂

(v̂t + θ̂ τ)

)]
×exp

[
− iφ

(
n(t,T )rt +a

∫ T

t
n(u,T )du

)]
(4.2)

×exp
[
−G1(τ,s1,s2)vt −G2(τ,s3,s4)v̂t −G3(τ,s5,s6)rt

]
×exp

[
−θH1(τ,s1,s2)− θ̂H2(τ,s3,s4)−aH3(τ,s5,s6)]

and

f2(φ) = ct exp
[

λSτ

(
(1+µS)

iφ e−
1
2 (φ

2+iφ)σ 2
S −1

)]
× exp

[
−
(

iφλSµSτ +λvτ

(
iφρµv

σv + iφρµv

))]
× exp

[
−
(
(iφ)ρ

σv
(vt +θτ)+

(iφ)ρ̂
σv̂

(v̂t + θ̂ τ)

)]
×exp

[
(1− iφ)

(
n(t,T )rt +a

∫ T

t
nd(u,T )du

)]
(4.3)

×exp
[
−G1(τ,q1,q2)vt −G2(τ,q3,q4)v̂t −G3(τ,q5,q6)rt

]
×exp

[
−θH1(τ,q1,q2)− θ̂H2(τ,q3,q4)−aH3(τ,q5,q6)

]
where the functions G1,G2,G3,H1,H2,H3, are given in Lemma 4.3 and ct equals

ct = exp
(
iφxt

)
= exp(iφ lnF(t,T )) .

Moreover, the constants s1,s2,s3,s4,s5,s6 are given by

s1 =−
(1+ iφ)ρ

σv
,

s2 =−
(1+ iφ)2(1−ρ2)

2
− (1+ iφ)ρκ

σv
+

1+ iφ
2

,

s3 =−
(1+ iφ)ρ̂

σv̂
, (4.4)

s4 =−
(1+ iφ)2(1− ρ̂)2

2
− (1+ iφ)ρ̂ κ̂

σv̂
+

1+ iφ
2

,

s5 = 0, s6 =−iφ ,
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and the constants q1,q2,q3,q4,q5,q6 equal

q1 =−
iφρ

σv
,

q2 =−
(iφ)2(1−ρ2)

2
− iφρκ

σv
+

iφ
2
,

q3 =−
iφρ̂

σv̂
, (4.5)

q4 =−
(iφ)2(1− ρ̂2)

2
− iφρ̂κ̂

σv̂
+

iφ
2
,

q5 = 0, q6 = iφ −1.

4.1. Auxiliary results

The proof of Theorem 4.1 hinges on a number of lemmas. We start by stating the well known result, which can be easily obtained from
Proposition 8.6.3.4 in Jeanblanc et al. [25]. Let us denote τ = T − t and let us set, for all 0≤ t < T ,

JS(t,T ) :=
NS

T

∑
k=NS

t +1

ln(1+ JS
k ). (4.6)

Note that we use here Assumptions (A.3)–(A.5). The property (A.3) (resp. (A.4)) implies that the random variable JS(t,T ) (resp. Zv
T −Zv

t )
is independent of the σ -field Ft . Let ν1 stand for the Gaussian distribution N

(
ln(1+µS)− 1

2 σ2
S ,σ

2
S
)

and let ν2 stand for the exponential
distribution with the mean µv.

Lemma 4.2. (i) Under Assumptions (A.3) and (A.5), the following equalities are valid

EP
t

{
exp
(
iφJS(t,T )

)}
= EP

t

{
exp
(

iφ ∑
NS

T
k=NS

t +1 ln
(
1+ JS

k
))}

= exp
[
λSτ

∫+∞

−∞

(
eiφz−1

)
ν1(dz)

]
= exp

[
λQτ

(
(1+µS)

iφ e−
1
2 σ 2

S (φ
2+iφ)−1

)]
.

(ii) Under Assumptions (A.4) and (A.5), the following equalities are valid for c = a+bi with a≤ 0

EP
t

{
exp
(
c(Zv

T −Zv
t )
)}

= EP
t

{
exp
(

c∑
Nv

T
k=Nv

t +1 Jv
k

)}
= exp

[
λvτ

∫+∞

0 (ecz−1)ν2(dz)
]

= exp
[
λvτ

(
cµv

1−cµv

)]
.

The next result which is crucial for the derivation of the pricing formula in the main Theorem 4.1 extends Lemma 4.2 in Ahlip and Rutkowski
[22] (see also Duffie et al. [8]) where the model without the jump component in the dynamics of v was examined.

Lemma 4.3. Let the dynamics of processes v, v̂ and r be given by SDEs (2.1) with independent Brownian motions W v, Ŵ v andW r . For any
complex numbers µ1, λ1, µ2, λ2, µ̃, λ̃ , we set

F(τ,vt , v̂t ,rt) = EP
t

{
exp
(
−λ1vT −µ1

∫ T

t
vu du−λ2v̂T −µ2

∫ T

t
v̂u du

−λ̃ rT − µ̃

∫ T

t
ru du

)}
.

Then

F(τ,vt , v̂t ,rt) = exp
[
−G1(τ,λ1,µ1)vt −G2(τ,λ2,µ2)v̂t − (G3(τ, λ̃ , µ̃)rt

]
× exp[−θH1(τ,λ1,µ1)− θ̂H2(τ,λ2,µ2)−aH3(τ, λ̃ , µ̃)

]
where

G1(τ,λ1,µ1) =
λ1[(γ1 +κ)+ eγ1τ (γ1−κ)]+2µ1(eγ1τ −1)

σ2
v λ1 (eγ1τ −1)+ γ−κ + eγ1τ (γ1 +κ)

,

G2(τ,λ2,µ2) =
λ2[(γ2 + κ̂)+ eγ2τ (γ2− κ̂)]+2µ2(eγ2τ −1)

σ2
v̂ λ2 (eγ2τ −1)+ γ2− κ̂ + eγ2τ (γ2 + κ̂)

,

G3(τ, λ̃ , µ̃) =
λ̃ [(γ̃ +b)+ eγ̃τ (γ̃−b)]+2µ̃(eγ̃τ −1)

σ2
r λ̃
(
eγ̃τ −1

)
+ γ̃−b+ eγ̃τ (γ̃ +b)

,
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and

H1(τ,λ1,µ1) =−
2

σ2
v

ln

(
2γ1e[(γ1+κ)τ]/2

σ2
v λ1 (eγ1τ −1)+ γ1−κ + eγ1τ (γ1 +κ)

)

+
2λvµvσ2

v
θ(σ2

v +2µvα1)(σ2
v +2µvβ1)

ln
(
(σ2

v +2β1µv)+Γ1(σ
2
v +2α1µv)eγ1τ

(σ2
v +2β1µv)+Γ1(σ2

v +2α1µv)

)
+

2λvµvβ1

θ(σ2
v +2β1µv)

τ,

H2(τ,λ2,µ2) =−
2

σ2
v̂

ln

(
2γ2e[(γ2+κ̂)τ]/2

σ2
v̂ λ2 (eγ2τ −1)+ γ2− κ̂ + eγ2τ (γ2 + κ̂)

)
,

H3(τ, λ̃ , µ̃) =−
2

σ2
r

ln

(
2γ̃e

(γ̃+b)τ
2

σ2
r λ̃
(
eγ̃τ −1

)
+ γ̃−b+ eγ̃τ (γ̃ +b)

)
,

where we denote γ1 =
√

κ2 +2σ2
v µ1, γ2 =

√
κ̂2 +2σ2

v̂ µ2, γ̃ =
√

b2 +2σ2
r µ̃,

α1 =
−κ+γ1

2 , β1 =
−κ−γ1

2 , Γ1 =
2β1−λ1σ 2

v
λ1σ 2

v−2α1
.

Proof. For the reader’s convenience, we sketch the proof of the lemma. Let us set, for t ∈ [0,T ],

Mt = F(τ,vt , v̂t ,rt)exp
(
−µ1

∫ t

0
vu du−µ2

∫ t

0
v̂u du− µ̃

∫ t

0
ru du

)
. (4.7)

Then the process M = (Mt)t∈[0,T ] satisfies

Mt = EP
t

{
exp
(
−λ1vT −µ1

∫ T

0
vu du−λ2v̂T −µ2

∫ T

0
v̂u du− λ̃ rT − µ̃

∫ T

0
ru du

)}
and thus it is an F-martingale under P. By applying the Itô formula to the right-hand side in (4.7) and by setting the drift term in the dynamics
of M to be zero, we deduce that the function F(τ,v, v̂,r, r̂) satisfies the following partial integro-differential equation (PIDE)

−∂F
∂τ

+
1
2

σ
2
v v

∂ 2F
∂v2 +λv

∫
∞

0

(
F(τ,v+ z,r)−F(τ,v,r)

)
ν2(dz)

+
1
2

σ
2
v̂ v̂

∂ 2F
∂ v̂2 +

1
2

σ
2
r r

∂ 2F
∂ r2 +(θ −κv)

∂F
∂v

+(θ̂ − κ̂ v̂)
∂F
∂ v̂

+(a−br)
∂F
∂ r
− (µ1v+µ2v̂+ µ̃r)F = 0

with the initial condition F(0,v, v̂,r) = exp(−λ1v−λ2v̂− λ̃ r). We search for a solution to this PIDE in the form

F(τ,v,r, r̂) = exp
[
−G1(τ,λ1,µ1)v−G2(τ,λ2,µ2)v̂−G3(τ, λ̃ , µ̃)r

−θH1(τ,λ1,µ1)− θ̂H2(τ,λ2,µ2)−aH3(τ, λ̃ , µ̃)
]

with

G1(0,λ1,µ1) = λ1, G2(0,λ2,µ2) = λ2, G3(0, λ̃ , µ̃) = λ̃ ,

and

H1(0,λ1,µ1) = H2(0,λ2,µ2) = H3(0, λ̃ , µ̃) = 0.

By substituting this expression in the PIDE and using part (ii) in Lemma 4.2, we obtain the following system of ODEs for the functions
G1,G2,G3,H1,H2,H3 (for brevity, we suppress the last three arguments)

∂G1(τ)

∂τ
=−1

2
σ

2
v G2

1(τ)−κG1(τ)+µ1,

∂H1(τ)

∂τ
= G1(τ)+

λv

θ

(
µvG1

1+µvG1(τ)

)
∂G2(τ)

∂τ
=−1

2
σ

2
v̂ G2

2(τ)− κ̂G2(τ)+µ2,

∂H2(τ)

∂τ
= G2(τ),

∂G3(τ)

∂τ
=−1

2
σ

2
r G2

3(τ)−bG3(τ)+ µ̃.

∂H3(τ)

∂τ
= G3(τ),

By solving these equations, we obtain the stated formulae.
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Under the assumptions of Lemma 4.3, it is possible to factorise F as a product of two conditional expectations. This means that the functions
G1 (H1), G2 (H2) and G3 (H3) are of the same form, except that they correspond to different sets of parameters.
We now introduce a convenient change of the underlying probability measure, from the spot martingale measure P to the forward martingale
measure PT .

Definition 4.4. The The T - forward martingale measure PT , equivalent to P on (Ω,FT ), is defined by the Radon-Nikodým derivative
process η = (ηt)t∈[0,T ] where

ηt =
dPT

dP

∣∣∣
Ft

= exp
(
−
∫ t

0
σrn(u,T )

√
ru dW r

u −
1
2

∫ t

0
σ

2
r n2(u,T )ru du

)
. (4.8)

An application of Girsanov’s theorem shows that the process W T = (W T
t )t∈[0,T ], which is given by the equality

W T
t =W r

t +
∫ t

0
σrn(u,T )

√
ru du, (4.9)

is the Brownian motion under the domestic forward martingale measure PT . Using the standard change of a numéraire technique, one can
check that the price of the European foreign exchange call option admits the following representation under the probability measure PT

Ct(T,K) = Bd(t,T )EPT
t
(
F(T,T )1{F(T,T )>K}

)
−KBd(t,T )EPT

t
(
1{F(T,T )>K}

)
. (4.10)

The following auxiliary result is easy to establish and thus its proof is omitted. Recall that JS(t,T ) is given by equality (4.6).

Lemma 4.5. Under Assumptions (A.1)–(A.6), the dynamics of the forward stock price dynamics F(t,T ) under the forward martingale
measure PT are given by the SDE

dF(t,T ) = F(t,T )
(

dZS
t −λS µSdt +

√
vt dW S

t +
√

v̂t dŴ S
t +σd nd(t,T )

√
rt dW T

t

)
or, equivalently,

F(T,T ) = F(t,T )exp
(

JS(t,T )−λSµS(T − t)+
∫ T

t
σ̃F (u,T ) ·dW̃ T

u −
1
2

∫ T

t
‖σ̃F (u,T )‖2 du

)
where the dot · denotes the inner product in R3, (σ̃F (t,T ))t∈[0,T ] is the R3-valued process (row vector) given by

σ̃F (t,T ) =
[√

vt ,
√

v̂t , σrn(t,T )
√

rt
]

and W̃ T = (W̃ T
t )t∈[0,T ] is the R3-valued process (column vector) given by W̃ T =

[
W S, Ŵ S,W T ]∗.

Under Assumptions (A.1)–(A.6), the process W̃ T is the three-dimensional standard Brownian motion under PT . In view of Lemma 4.5, we
have that

B(t,T )EPT
t
(
F(T,T )1{F(T,T )>K}

)
= B(t,T )EPT

t

{
F(t,T )exp

(
JS(t,T )−λSµS(T − t)

+
∫ T

t
σ̃F (u,T ) ·dW̃ T

u −
1
2

∫ T

t
‖σ̃F (u,T )‖2 du

)
1{F(T,T )>K}

}

= St EPT
t

{
exp
(

JS(t,T )−λSµS(T − t)

+
∫ T

t
σ̃F (u,T ) ·dW̃ T

u −
1
2

∫ T

t
‖σ̃F (u,T )‖2 du

)
1{F(T,T )>K}

}
.

To deal with the first term in the right-hand side of (4.10), we introduce another auxiliary probability measure.

Definition 4.6. The modified forward martingale measure P̂T , equivalent to PT on (Ω,FT ), is defined by the Radon-Nikodým derivative
process η̂ = (η̂t)t∈[0,T ] where

η̂t =
dP̂T

dPT

∣∣∣
Ft

= exp
(∫ t

0
σ̃F (u,T ) ·dW̃ T

u −
1
2

∫ t

0
‖σ̃F (u,T )‖2 du

)
.

Using Lemma 4.5 and equation (3.1), we obtain

B(t,T )EPT
t
(
F(T,T )1{F(T,T )>K}

)
= St

EPT
t
(
1{F(T,T )>K}η̂T

)
EPT

t (η̂T )

and thus the Bayes formula and Definition 4.6 yield

B(t,T )EPT
t
(
F(T,T )1{F(T,T )>K}

)
= St EP̂T

t
(
1{F(T,T )>K}

)
.

This shows that P̂T is a martingale measure associated with the choice of the price process St as a numéraire asset.
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Lemma 4.7. The price of the call option satisfies

Ct(T,K) = St P̂T
(
ST > K |Ft

)
−KB(t,T )PT

(
ST > K |Ft

)
or, equivalently,

Ct(T,K) = St P̂T
(
xT > lnK |Ft

)
−KB(t,T )PT

(
xT > lnK |Ft

)
. (4.11)

To complete the proof of Theorem 4.1, it remains to evaluate the conditional probabilities given in formula (4.11). By another application of
Girsanov’s theorem, one can check that the process (S,v, v̂,r) has the Markov property under the probability measures PT and P̂T . In view of
Proposition 3.1 and Lemma 3.2, the random variable xT is a function of ST and rT . Hence it follows that

Ct(T,K) = St P1(t,St ,vt , v̂t ,rt ,K)−KB(t,T )P2(t,St ,vt , v̂t ,rt ,K) (4.12)

where we denote

P1(t,St ,vt , v̂t ,rt ,K) = P̂T (xT > lnK |St ,vt , v̂t ,rt),

P2(t,St ,vt , v̂t ,rt ,K) = PT (xT > lnK |St ,vt , v̂t ,rt).

To obtain explicit formulae for the conditional probabilities above, it suffices to derive the corresponding conditional characteristic functions

f1(φ , t,St ,vt , v̂t ,rt) = EP̂T
t
[

exp(iφxT )
]
,

f2(φ , t,St ,vt , v̂t ,rt) = EPT
t
[

exp(iφxT )
]
.

The idea is to use the Radon-Nikodým derivatives in order to obtain convenient expressions for the characteristic functions in terms of
conditional expectations under the spot martingale measure P. The following lemma will allow us to achieve this goal.

Lemma 4.8. The following equality holds

dP̂T

dP

∣∣∣
Ft

= exp
(∫ t

0

√
vu dW S

u +
∫ t

0

√
v̂u dŴ S

u

)
× exp

(
− 1

2

∫ t

0
(vu + v̂u)du

)
.

Proof. Straightforward computations show that

dP̂T

dP

∣∣∣
Ft

=
dP̂T

dPT

∣∣∣
Ft

dPT

dP

∣∣∣
Ft

= exp
(∫ t

0
σ̃F (u,T ) ·dW̃ T

u −
1
2

∫ t

0
‖σ̃F (u,T )‖2 du

)
× exp

(
−
∫ t

0
σrn(u,T )

√
ru dW r

u −
1
2

∫ t

0
σ

2
r n2(u,T )ru du

)
= exp

(∫ t

0

(√
vu dW S

u +
√

v̂u dŴ S
u +σdnd(u,T )

√
ru dW T

u

))
× exp

(
− 1

2

∫ T

t

(
vu + v̂u +σ

2
r n2(u,T )ru

)
du
)

× exp
(
−
∫ t

0
σrn(u,T )

√
ru dW r

u −
1
2

∫ t

0
σ

2
r n2(u,T )ru du

)
.

Using (4.9), we now obtain

dP̂T

dP

∣∣∣
Ft

= exp
(∫ t

0

√
vu dW S

u +
√

v̂u dŴ S
u

)
× exp

(
− 1

2

∫ t

0

(
vu + v̂u

)
du
)
,

which is the desired expression.

In view of the formula established in Lemma 4.8 and the abstract Bayes formula, to compute f1(φ) = f1(φ , t,St ,vt , v̂t ,rt),
it suffices to focus on the following conditional expectation under P

f1(φ) = EP
t

{
exp
(
iφxT

)
exp
(∫ T

t
√

vu dW S
u +

∫ T
t
√

v̂u dŴ S
u (4.13)

− 1
2
∫ T

t
(
vu + v̂u

)
du
)}

.

Similarly, in view of formula (4.8), we obtain for f2(φ) = f2(φ , t,St ,vt , v̂t ,rt)

f2(φ) = EP
t

{
exp(iφxT )exp

[
−
∫ T

t
σrn(u,T )

√
ru dW r

u −
1
2

∫ T

t
σ

2
r n2(u,T )ru du

]}
. (4.14)

To proceed, we will need the following result, which is an immediate consequence of Lemma 4.5.
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Corollary 4.9. Under Assumptions (A.1)–(A.4), the process xt = lnF(t,T ) admits the following representation under the forward martingale
measure PT

xT = xt +
∫ T

t
σ̃F (u,T ) ·dW̃ T

u −
1
2

∫ T

t
‖σ̃F (u,T )‖2 du+ JS(t,T )−λSµS(T − t)

or, more explicitly,

xT = xt +
∫ T

t
√

vu dW S
u +

∫ T
t
√

v̂u dŴ S
u +

∫ T
t σrn(u,T )

√
ru dW T

u −1
2

∫ T

t

(
vu + v̂u +σ

2
r n2(u,T )ru

)
du

+∑
NS

T
k=NS

t +1 ln(1+ JS
k )−λSµS(T − t).

Using equality (4.13) and Corollary 4.9, we obtain

f1(φ) = EP
t

{
exp
(
iφxT

)
exp
[∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u

− 1
2

∫ T

t

(
vu + v̂u

)
du
]}

so that

f1(φ) = EP
t

{
exp
[

iφ
(

xt +
∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u

)]
×exp

[
iφ
(∫ T

t
σrn(u,T )

√
ru dW T

u

)]
×exp

[
− iφ

2

∫ T

t

(
vu + v̂u +σ

2
r n2(u,T )ru

)
du
]

×exp
[∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u

]
×exp

[
− 1

2

∫ T

t

(
vu + v̂u

)
du
]

×exp
[

iφJS(t,T )− iφλSµS(T − t)
]}

.

We denote α = 1+ iφ , β = iφ and ct = exp(iφxt). After simplifications and rearrangement, the formula above becomes

f1(φ) = ct EP
t

{
exp
[

α

(∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u −
1
2

∫ T

t
vu du− 1

2

∫ T

t
v̂u du

)]
×exp

[
β

(∫ T

t
σrn(u,T )

√
ru dW T

u −
1
2

∫ T

t
σ

2
r n2(u,T )ru du

)]
×exp

[
βJS(t,T )−βλSµS(T − t)

]}
.

In view of Assumptions (A.1)–(A.6), we may use the following representation for the Brownian motion W Q

W S
t = ρ1 W v

t +
√

1−ρ2 Wt (4.15)

where W = (Wt)t∈[0,T ] is a Brownian motion under P independent of the Brownian motions W S,W v,Ŵ v and W r.

Ŵ S
t = ρ2 Ŵ v̂

t +
√

1− ρ̂2 Ŵt

where Ŵ = (Ŵt)t∈[0,T ] is a Brownian motion under P independent of the Brownian motions W v,Ŵ v,W S and W r . Consequently, the
conditional characteristic function f1(φ) can be represented in the following way

f1(φ) = ct EP
t

{
exp
[

αρ

∫ T

t

√
vu dW v

u +α

√
1−ρ2

∫ T

t

√
vu dWu−

α

2

∫ T

t
vu du

]
×exp

[
αρ̂

∫ T

t

√
v̂u dŴ v̂

u +α

√
1− ρ̂2

∫ T

t

√
v̂u dŴu−

α

2

∫ T

t
v̂u du

]
(4.16)

×exp
[

β

(∫ T

t
σrn(u,T )

√
ru dW T

u −
1
2

∫ T

t
σ

2
r n2(u,T )ru du

)]
×exp

[
βJS(t,T )−βλS(T − t)µS

]}
.

By combining Proposition 3.1 with Definition 4.4, we obtain the following auxiliary result, which will be helpful in the proof of Theorem 4.1.
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Lemma 4.10. Given the dynamics (2.1) of processes v, v̂ and r and formula (4.9), we obtain the following equalities∫ T

t

√
vu dW v

u =
1

σv

(
vT − vt −θτ +κ

∫ T

t
vu du − (Zv

T −Zv
t )

)
,∫ T

t

√
v̂u dŴ v̂

u =
1

σv̂

(
v̂T − v̂t − θ̂ τ + κ̂

∫ T

t
v̂u du

)
,∫ T

t
σrnd(u,T )

√
ru dW T

u −
1
2

∫ T

t
σ

2
r n2(u,T )ru du =−n(t,T )rt −

∫ T

t
an(u,T )du+

∫ T

t
ru du.

Proof. The first asserted formula is an immediate consequence of (2.1). For the second, we recall that the function n(t,T ) is known to satisfy
the following differential equation, for any fixed T > 0,

∂n(t,T )
∂ t

− 1
2

σ
2
r n2(t,T )−bn(t,T )+1 = 0

with the terminal condition n(T,T ) = 0. Therefore, using the Itô formula and equality (4.9), we obtain

d(n(t,T )rt) = rt dn(t,T )+n(t,T )drt

= rt

(1
2

σ
2
r n2(t,T )+bn(t,T )−1

)
dt +nd(t,T )(a−brt)dt +n(t,T )σd

√
rt dW r

t

=
1
2

σ
2
r n2(t,T )rt dt− rt dt +n(t,T )adt +n(t,T )σr

√
rt dW r

t

=−1
2

σ
2
r n2(t,T )rt dt− rt dt +n(t,T )adt +n(t,T )σr

√
rt dW T

t .

This yields the second asserted formula, upon integration between t and T . The derivation of the last one is based on the same arguments and
thus it is omitted.

4.2. Proof of theorem 4.1

The proof of Theorem 4.1 is split into two steps in which we deal with f1(φ) and f2(φ), respectively.
Step 1. We will first compute f1(φ). By combining (4.16) with the equalities derived in Lemma 4.10, we obtain the following representation
for f1(φ)

f1(φ) = ct EP
t

{
exp
[
− αρ

σv

[
(vt +θτ)+

(
v̂t + θ̂ τ

)]
× exp

[(
αρκ

σv
− α

2

)∫ T

t
vu du+

(
αρ̂κ̂

σv̂
− α

2

)∫ T

t
v̂u du

]
× exp

[
α

√
1−ρ2

∫ T

t

√
vu dWu +

αρ

σv
vT

]
× exp

[
α

√
1− ρ̂2

∫ T

t

√
v̂u dŴu +

αρ̂

σv̂
v̂T

]
× exp

[
−β

(
n(t,T )rt +

∫ T

t
an(u,T )du

)
+β

∫ T

t
ru du

]
× exp

[
βJS(t,T )−βλSµS(T − t)− αρ

σv
(Zv

T −Zv
t )

]}
.

Recall the well-known property that if ζ has the standard normal distribution then E
(
ezζ
)
= ez2/2 for any complex number z ∈ C.

Consequently, by conditioning first on the sample path of the process (v, v̂,r) and using the independence of the processes (v, v̂,r) and W
under P and Lemma 4.2, we obtain

f1(φ) = ct exp
[

λSτ

(
(1+µS)

β e−
1
2 βγσ 2

S −1
)]

× exp
[
−
(

βλSµSτ +λvτ
ραµv

σv +ραµv
+

αρ

σv
(vt +θτ)+

αρ̂

σv̂
(v̂t + θ̂ τ)

)]
× exp

[
−β

(
n(t,T )rt +

∫ T

t
an(u,T )du

)]
×EP

t

{
exp
[

αρ

σv
vT +

(
α2(1−ρ2)

2
+

αρκ

σv
− α

2

)∫ T

t
vu du

]

× exp
[

αρ̂

σv̂
v̂T +

(
α2(1− ρ̂2)

2
+

αρ̂κ̂

σv̂
− α

2

)∫ T

t
v̂u du

]
× exp

[
β

∫ T

t
ru du

]}
.
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where we denote γ = 1− iφ . This in turn implies that the following equality holds

f1(φ) = ct exp
[

λSτ

(
(1+µS)

β e−
1
2 βγσ 2

S −1
)]

× exp
[
−
(

βλSµSτ +λvτ
ραµv

σv +ραµv
+

αρ

σv
(vt +θτ)+

αρ̂

σv̂
(v̂t + θ̂ τ)

)]
× exp

[
−β

(
n(t,T )rt +

∫ T

t
an(u,T )du

)]
×EP

t

{
exp
[
− s1vT − s2

∫ T

t
vu du− s3v̂T − s4

∫ T

t
v̂u du

]

× exp
[
− s5rT − s6

∫ T

t
ru du

]}

where the constants s1,s2,s3,s4,s5,s6 are given by (4.4). A direct application of Lemma 4.3 furnishes an explicit formula for f1(φ), as
reported in the statement of Theorem 4.1.
Step 2. In order to compute the conditional characteristic function

f2(φ) = f2(φ , t,St ,vt , v̂t ,rt) = EPT
t
[

exp(iφxT )
]

we proceed in an analogous manner as for f1(φ). We first recall that (see (4.14))

f2(φ) = EP
t

{
exp(iφxT )exp

[
−
∫ T

t
σrn(u,T )

√
ru dW r

u −
1
2

∫ T

t
σ

2
r n2(u,T )ru du

]}
.

Therefore, using Corollary 4.9, we obtain

f2(φ) = ct EP
t

{
exp
[

iφ
(∫ T

t

√
vu dW S

u +
∫ T

t

√
v̂u dŴ S

u + JS(t,T )
)]

× exp
[

iφ
(∫ T

t
σrn(u,T )

√
ru dW T

u

)]
× exp

[
− iφ

(
1
2

∫ T

t

(
vu +σ

2
r n2(u,T )ru

)
du
)]

× exp
[
−
∫ T

t
σrn(u,T )

√
ru dW r

u −
1
2

∫ T

t
σ

2
r n2(u,T )ru du

]}
.

Consequently, using formulae (4.9), (4.15) and Lemma 4.2, we obtain the following expression for f2(φ)

f2(φ) = ct exp
[

λSτ

(
(1+µS)

β e−
1
2 βγσ 2

S −1
)
−βλSµSτ

]
×EP

t

{
exp
[

β

(
ρ

∫ T

t

√
vu dW v

u +
√

1−ρ2
∫ T

t

√
vu dWu

)]
× exp

[
β

(
ρ̂

∫ T

t

√
v̂u dŴ v

u +
√

1− ρ̂2
∫ T

t

√
v̂u dŴu

)]
× exp

[
−β

(
1
2

∫ T

t

(
v̂u + v̂u

)
du
)]

× exp
[
− γ

(∫ T

t
σrn(u,T )

√
ru dW r

u +
1
2

∫ T

t
σ

2
r n2(u,T )ru du

)]}
.

Similarly as in the case of f1(φ), we condition on the sample path of the process (v, v̂,r) and we use the postulated independence of the
processes (v, v̂,r) and W under P. By invoking also Lemma 4.2, we obtain

f2(φ) = ct exp
[

λSτ

(
(1+µS)

β e−
1
2 βγσ 2

S −1
)
−βλSµSτ

]
EP

t

{
exp
[

βρ

∫ T

t

√
vu dW v

u +
β 2(1−ρ2)−β

2

∫ T

t
vu du

]

× exp
[

βρ̂

∫ T

t

√
v̂u dŴ v

u +
β 2(1− ρ̂2)−β

2

∫ T

t
v̂u du

]

× exp
[
− γ

(∫ T

t
σrn(u,T )

√
ru dW r

u +
1
2

∫ T

t
σ

2
r n(u,T )ru du

)]}
.
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Using Lemma 4.10, we conclude that

f2(φ) = ct exp
[

λSτ

(
(1+µS)

β e−
1
2 βγσ 2

S −1
)]

× exp
[
−
(

βλSµSτ +λvτ
ρβ µv

σv +ρβ µv
+

βρ

σv
(vt +θτ)+

βρ̂

σv̂
(v̂t + θ̂ τ)

)]
× exp

[
−γ

(
n(t,T )rt +

∫ T

t
an(u,T )du

)]
×EP

t

{
exp
[
−q1vT −q2

∫ T

t
vu du−q3v̂T −q4

∫ T

t
v̂u du

]

× exp
[
−q5rT −q6

∫ T

t
ru du

]}
with the coefficients q1,q2,q3,q4,q5,q6 reported in formula (4.5). Another straightforward application of Lemma 4.3 yields the closed-form
expression (4.3) for the conditional characteristic function f2(φ).
To complete the proof of Theorem 4.1, it suffices to combine formula (4.12) with the standard inversion formula (4.1) providing integral
representations for the conditional probabilities

P1(t,St ,vt , v̂t ,rt ,K) = P̂T (xT > lnK |St ,vt , v̂t ,rt)

and

P2(t,St ,vt , v̂t , ,rt ,K) = PT (xT > lnK |St ,vt , v̂t ,rt).

This ends the derivation of the pricing formula for the call option. The price of the corresponding put option is readily available as well, due
to the put-call parity relationship (4.17).

Ct(T,K)−Pt(T,K) = St −KB(t,T ) (4.17)

where Ct(T,K) and Pt(T,K) are prices of the call and put options, respectively. 2

5. Model calibration and empirical analysis

In this section we estimate the parameters for DHJDH model considered in this paper using Dow Jones Industrial implied volatilities(IV)
quoted May 10, 2012 [26] and compare the model’s empirical performance with that of the Double Heston Model considered by Christoffersen
et.al [2] and the Heston model. In this analysis we have assumed constant interest rates. Calibration of DHJDH model parameters

Θ = {λS,µS,λV ,µV ,θ , θ̂ ,κ, κ̂,σv,σv̂,ρ, ρ̂,σS,v1,v2}

was performed using Interior Point optimisation. Further, the US treasury yield curve rates for one, three, six and twelve -months have
been used as a proxy for the initial interest rates for the different maturities. To fit the model to market implied volatilities we use the
approximation implied volatility root mean squared error(IVRMSE) loss function considered by Christoffersen et.al.[2], also Carr and Wu
[13] and Trolle and Schwartz [27].

IVRMSE≈

√√√√ 1
N ∑

t,k

(
CM

t,k−CΘ
t,k

BSVegat,k

)2

(5.1)

where CM
t,k is the market price, CΘ

t,k is the model price,and BSVega(t,k) is the Black Scholes sensitivity of the option computed using the
implied volatility from the market price of the option, CM

t,k. Interior point optimization is used to obtain the set of parameters that minimise
the objective function in equation (5.1).
Using the data from Table 1, the parameter estimates Θ for the univariate, double Heston and Double Heston Jump-Diffusion Hybrid models,
along with their estimation error are found in Table 2. If we compare the calibrated parameters for the Double Heston and DHJDH models,
we notice that κ , σ and v0 are similar, implying that the calibrated Double Heston parameters can be used as a seed for when calibrating the
DHJDH Model. One practical consequence of this is that the Double Heston parameters can be fitted fairly robustly using longer dated
options and then jump parameters can be found to generate the extra skew for short-dated options.
The panels in figure 5.1 show the implied volatility surfaces for the double Heston and DHJDH Models for all strikes and across all times to
maturities. These figures show that theoretical implied volatilities of the DHJDH model provide satisfactory approximation for the observed
implied volatilities across all maturities and across all strikes but particularly outperforms out-of-sample calls for the double Heston Model
across all expiries ranging from 37 to 226 days(short dated options). This improvement is achieved through the inclusion of jumps in the
dynamics of the stock price and the volatility processes and using only one set of model parameters.
To visualise how well the DHJDH fits the market IV, we have provided contour plots in Figure 5.2, of the Market IV and the predicted market
IV using the DHJDH model. Note that the market IV contour plot was generated using the data from Table 1 and the model contour plot
was generated using the DHJDH model, therefore the resolution of the model contour is much finer since we can compute many points of
the contour, while the resolution of the market contour is coarse since we are only able to use the provided data points. The difference in
resolution can be seen from the straight contour lines in the market IV contour plot, while the model contour lines are much smoother due to
the abundance of generated contour points from the model. Other than this, the contour plots are very similar, implying that the DHJDH
model provides a good fit to the market data.
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Figure 5.1: The implied volatility for various strike prices at four maturity times. Each plot shows the market IV, the calibrated Double Heston IV and the
calibrated DHJDH IV.
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Figure 5.2: Contour plots showing the implied volatility for the given strike prices and maturities from market data (left) and the calibrated DHJDH Model
(right).
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Strike Maturity

37 72 135 226

124 19.62 19.47 20.19 21.15
125 19.10 19.05 19.8 20.82
126 18.60 18.61 19.43 20.57
127 18.10 18.12 19.07 20.21
128 17.61 17.64 18.71 20.00
129 17.18 17.43 18.42 19.74
130 16.71 17.06 18.13 19.50
131 16.44 16.71 17.83 19.27
132 16.61 16.41 17.60 18.99
133 16.61 16.25 17.43 18.84
134 17.01 16.02 17.26 18.71
135 17.55 16.10 17.16 18.46
136 17.86 16.57 17.24 18.42

Table 1: S&P 500 index Implied Volatilities for strike prices ranging from 124 to 136 and maturities from 37 to 226 days.

Method κ θ σ v0 ρ IVMSE

Univariate 0.8998 0.1721 1.3390 0.0325 -0.3716 3.951×10−4

Double Heston 2.7994 0.0716 0.9565 0.0179 -0.8510 1.227×10−4

18.4552 0.0074 1.8167 0.0221 0.7557

DHJDH 2.2336 0.1642 0.5424 0.0092 -0.8372 1.039×10−4

18.9014 0.0179 1.8764 0.0287 0.1547
λV λS µS µV σS

0.0047 0.0617 2.0541 0.7108 2.2827

Table 2: Calibrated parameters of the Double Heston Jump-Diffusion Hybrid Model, along with the Single and Double Heston model calibrated parameters.
The last column shows the model mean square error.
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Figure 5.3: Histogram of the residuals of the Double Heston (left) and DHJDH (right) models.
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Finally, we will examine the model residuals. Figure 5.3 contains the histograms of the Double Heston residuals and the Double DHJDH
residuals. We can see from the histograms that the majority of the residuals for the Double DHJDH model are located near zero, with only a
few residuals located further than ±0.001, while the Double Heston residuals are more widely spread between -0.002 and 0.002. The smaller
residuals from the DHJDH model is a clear indication it having a smaller IVRMSE then the Double Heston model.
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