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Abstract

In this article, we establish some fixed point theorems of Ćirić’s type for Akram-Zafar-
Siddiqui type contractive mappings having non-unique fixed points. Our results generalize,
extend and improve several ones in the literature.

1. Introduction

Let (X ,d) be a complete metric space and T : X → X a self-mapping of X . Suppose that F(T ) = {x ∈ X | T x = x} is the set of fixed points
of T.
The following definitions shall be required in the sequel: O(x,T ) = {x,T x,T 2x, · · · ,T nx, · · ·}=orbit of T at x.

Definition 1.1. Ćirić [1]: A metric space (X ,d) is said to be T−orbitally complete if T : X → X is a selfmapping and if any Cauchy
subsequence {T ni x} in orbit O(x,T ), with x ∈ X , converges in X .

Definition 1.2. An operator T : X → X is orbitally continuous if

lim
i→∞

d(T ni x,x∗) = 0 =⇒ lim
i→∞

d(T (T ni x),T x∗) = 0.

Definition 1.2 was originally stated in the following equivalent form in Ćirić [1]:
An operator T : X → X is said to be orbitally continuous if T ni x→ x∗ =⇒ T (T ni x)→ T x∗ as i→ ∞.
Indeed, the notions in both Definition 1.1 and Definition 1.2 were first introduced by Ćirić [1] in 1971 to obtain some fixed point theorems.
The definitions are also contained in Ćirić [2].
There are non-linear equations which may arise in applications and whose fixed points are not necessarily unique. Ćirić [3] established some
results pertaining to this notion of non-unique fixed points. The classical Banach’s fixed point theorem was established by Banach [4], using
the following contractive definition: there exists c ∈ [0,1) (fixed) such that ∀ x, y ∈ X ,

d(T x,Ty)≤ c d(x,y). (1.1)

However, it is crucial to say that the mappings satisfying the contractive condition (1.1) are necessarily continuous. In order to have a
wider class of contractive mappings than those satisfying (1.1), Kannan [5] generalized the Banach’s fixed point theorem by employing the
following contractive definition: there exists a ∈ [0, 1

2 ) such that

d(T x,Ty)≤ a[d(x,T x)+d(y,Ty)], ∀ x, y ∈ X . (1.2)

So, the mappings satisfying (1.2) need not be continuous and this is a very nice initiative by the author [5]. Several authors have generalized
and extended Banach’s fixed point theorem using similar notion as in (1.2). Interested readers may also consult Chatterjea [6], Zamfirescu
[7] and a host of others in the literature.
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However, it is noteworthy to say that several contractive conditions including Banach’s contractive condition (1.1) have always been
concerned with establishing the existence and uniqueness of the fixed point of the mapping. Therefore, in order to include mappings whose
fixed points may be not unique, Ćirić [3] introduced a new technique involving contractive conditions for such mappings, realizing the fact
that there are also nonlinear equations with more than one fixed point as aforementioned. In particular, Ćirić [3] introduced, amongst others,
the following two contractive conditions: For a mapping T : X → X , there exists λ ∈ (0,1) such that ∀ x, y ∈ X ,

min{d(T x,Ty),d(x,T x),d(y,Ty)}−min{d(x,Ty),d(y,T x)} ≤ λd(x,y), (1.3)

where T is orbitally continuous; and also there exists λ ∈ (0,1) such that ∀ x, y ∈ X ,

min{d(T x,Ty),max{d(x,T x),d(y,Ty)}}−min{d(x,Ty),d(y,T x)} ≤ λd(x,y). (1.4)

Another contractivity condition worthy of note is the following:

Definition 1.3. (Akram et al. [8]): A selfmap T : X → X of a metric space (X ,d) is said to be A-contraction if it satisfies the condition:

d(T x,Ty)≤ β (d(x,y),d(x,T x),d(y,Ty)), ∀ x, y ∈ X , (1.5)

and some β ∈ A, where A is the set of all functions β : IR3
+→ IR+ satisfying

(i) β is continuous on the set IR3
+ (with respect to the Euclidean metric on IR3);

(ii) a≤ kb for some k ∈ [0,1) whenever a≤ β (a,b,b), or a≤ β (b,a,b), or, a≤ β (b,b,a), ∀ a, b ∈ IR+.

Akram et al. [8] employed the contractive condition (1.5) to prove that if X is a complete metric space, then the mapping T has a unique
fixed point.
Olatinwo [9] generalized the results of Akram et al. [8] by employing the following more general contractive condition:

Definition 1.4. (Olatinwo [9]): A selfmap T : X → X of a metric space (X ,d) is said to be a generalized A-contraction or GA−contraction
if it satisfies the condition:

d(T x,Ty)≤ α(d(x,y),d(x,T x),d(y,Ty), [d(x,T x)]r[d(y,T x)]pd(x,Ty),d(y,T x)[d(x,T x)]m),

∀ x, y ∈ X , r, p, m ∈ IR+ and some α ∈ GA, where GA is the set of all functions α : IR5
+→ IR+ satisfying

(i) α is continuous on the set IR5
+ (with respect to the Euclidean metric on IR5);

(ii) if any of the conditions a≤ α(b,b,a,c,c), or, a≤ α(b,b,a,b,b), or, a≤ α(a,b,b,b,b) holds for some a, b, c ∈ IR+, then there exists
k ∈ [0,1) such that a≤ kb.

The contractive mappings of both Akram et al. [8] and Ćirić [3] are our motivation for the present article. Therefore, in this paper, we
prove various and more general non-unique fixed point theorems by employing on a complete metric space for selfmappings by using
Akram-Zafar-Siddiqui type contractive conditions which are hybrids of those used in [3, 8, 9]. Our results are generalizations, extensions and
improvemens of the results of Ćirić [3] and those of the author [10, 11, 12]. Many unique fixed point theorems in the literature involving
those of Akram et al. [8] are also special cases of the results of the present article. One can consult the reference section for detail on unique
fixed point theorems. For excellent study of mappings having non-unique fixed points, we refer to Achari [13, 14, 15], Ćirić [2, 3, 16],
Karapinar [17] and Pachpatte [18].
To prove our results, we shall employ the following more general contractive conditions than those stated in (1.3) and (1.4)
(a) For a mapping T : X → X , there exists a function β : IR5

+→ IR+ such that ∀ x, y ∈ X , we have

min{d(T x,Ty),d(x,T x),d(y,Ty)}−min{d(x,Ty),d(y,T x)} ≤ (1.6)

β (d(x,y),d(x,T x),d(y,Ty), [d(x,T x)]r[d(y,T x)]pd(x,Ty),d(y,T x)[d(x,T x)]m);

∀ x, y ∈ X , r, p, m ∈ IR+, where the function β satisfies:
(i) β is continuous on the set IR5

+ (with respect to the Euclidean metric on IR5);
(ii) there exists some λ ∈ [0,1), such that a≤ λb whenever a≤ β (b,b,a,c,c), ∀ a, b, c ∈ IR+.

(b) For a mapping T : X → X , there exists a function β : IR5
+→ IR+ such that ∀ x, y ∈ X , we have

min{d(T x,Ty),max{d(x,T x),d(y,Ty)}}−min{d(x,Ty),d(y,T x)} ≤ (1.7)

β (d(x,y),d(x,T x),d(y,Ty), [d(x,T x)]r[d(y,T x)]pd(x,Ty),d(y,T x)[d(x,T x)]m),

∀ x, y ∈ X , r, p, m ∈ IR+, where the function β satisfies:
(i) β is continuous on the set IR5

+ (with respect to the Euclidean metric on IR5);
(ii) there exists some λ ∈ [0,1), such that a≤ λb whenever a≤ β (b,b,a,c,c), or, a≤ β (b,b,a,b,b), ∀ a, b, c ∈ IR+.

Remark 1.5. Each of the contractive conditions (1.6) and (1.7) can be reduced to several other ones in the literature. In particular, we have
the following:
(i) It is obvious that both contractive conditions (1.3) and (1.4) are special cases of contractive conditions (1.6) and (1.7) respectively if
β (t1, t2, t3, t4, t5) = λ t1, ∀ (t1, t2, t3) ∈ IR5

+, λ ∈ (0,1).
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2. Main results

Theorem 2.1. Let (X ,d) be a complete metric space and T : X → X an orbitally continuous mapping satisfying contractive condition (1.6).
For x0 ∈ X , let {xn}∞

n=0 defined by xn = T xn−1 = T nx0, n = 0,1,2, · · · , be the Picard iteration associated with T. Then, T has a fixed point.

Proof. We have that xn = T xn−1 = T nx0, x0 ∈ X (n = 0,1,2, · · ·). If d(xq,xq+1) = 0 for some q≥ 0, then x0 is the limit point of {T nx0}
and xq is a fixed point of T. Suppose that d(xn,xn+1)> 0, n = 0,1,2, · · · . Using condition (1.6) with x = xn, y = xn+1, we have

min{d(T xn,T xn+1),d(xn,T xn),d(xn+1,T xn+1)}−min{d(xn,T xn+1),d(xn+1,T xn)}
≤ β (d(xn,xn+1),d(xn,T xn),d(xn+1,T xn+1), [d(xn,T xn)]

r[d(xn+1,T xn)]
pd(xn,T xn+1),d(xn+1,T xn)[d(xn,T xn)]

m),

from which we obtain that

min{d(xn+1,xn+2),d(xn,xn+1)} ≤ β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0). (2.1)

Since λ < 1, we choose min{d(xn+1,xn+2),d(xn,xn+1)}= d(xn+1,xn+2) and apply Property (ii) of β so that from (2.1) we get

d(xn+1,xn+2)≤ β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0)≤ λd(xn,xn+1),

which yields

d(xn+1,xn+2)≤ λd(xn,xn+1)≤ λ
2d(xn−1,xn)≤ ·· · ≤ λ

n+1d(x0,x1). (2.2)

Using (2.2) inductively in the repeated application of the triangle inequality yields, for p ∈ IN,

d(xn,xn+p)≤
λ n(1−λ p)

1−λ
d(x0,x1)→ 0 as n→ ∞. (2.3)

Hence, from (2.3) we have that {xn} is a Cauchy sequence in X . Since (X ,d) is a complete metric space, there exists u ∈ X such that
lim
n→∞

d(xn,u) = 0, that is, lim
n→∞

xn = u. Therefore, since xn = T nx0 and T is orbitally continuous, we have

0 = d( lim
n→∞

T (T nx0),Tu) = lim
n→∞

d(T (T nx0),Tu) = lim
n→∞

d(T xn,Tu) = lim
n→∞

d(xn+1,Tu) = d(u,Tu).

Thus, proving that Tu = u, that is, u ∈ X is a fixed point of T.

Theorem 2.2. Let (X ,d) be a complete metric space and T : X→ X a mapping satisfying contractive condition (1.7) For x0 ∈ X , let {xn}∞
n=0

defined by xn = T xn−1 = T nx0, n = 0,1,2, · · · , be the Picard iteration associated with T. Then, T has a fixed point.

Proof. We have that xn = T xn−1 = T nx0, x0 ∈ X (n = 0,1,2, · · ·). If d(xq,xq+1) = 0 for some q≥ 0, then x0 is the limit point of {T nx0}
and xq is a fixed point of T. Suppose that d(xn,xn+1)> 0, n = 0,1,2, · · · . Using condition (1.7) with x = xn, y = xn+1, we have

min{d(T xn,T xn+1),max{d(xn,T xn),d(xn+1,T xn+1)}}−min{d(xn,T xn+1),d(xn+1,T xn)} ≤
β (d(xn,xn+1),d(xn,T xn),d(xn+1,T xn+1), [d(xn,T xn)]

r[d(xn+1,T xn)]
pd(xn,T xn+1),d(xn+1,T xn)[d(xn,T xn)]

m),

which reduces to

min{d(xn+1,xn+2),max{d(xn,xn+1),d(xn+1,xn+2)}} ≤ (2.4)

β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0).

Since
min{d(xn+1,xn+2),max{d(xn,xn+1),d(xn+1,xn+2)}}= max{d(xn,xn+1),d(xn+1,xn+2)},

we obtain from (2.4) that

max{d(xn+1,xn+2),d(xn,xn+1)} ≤ β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0). (2.5)

Again, since λ < 1, we choose max{d(xn+1,xn+2),d(xn,xn+1)}= d(xn+1,xn+2), so that from (2.5) we obtain

d(xn+1,xn+2)≤ β (d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2),0,0)≤ λd(xn,xn+1),

which inductively leads again (as in the proof of Theorem 2.1) to

d(xn,xn+1)≤ λ
nd(x0,x1).

For p ∈ IN, we therefore, have again as in the proof of Theorem 2.1 that d(xn,xn+p)→ 0 as n→ ∞.
Hence, we have that {xn} is a Cauchy sequence in X . Since (X ,d) is complete, there exists u ∈ X such that lim

n→∞
xn = u.

Using (1.7) again with x = xn, y = u we obtain

min{d(T xn,Tu),max{d(xn,T xn),d(u,Tu)}}−min{d(xn,Tu),d(u,T xn)} ≤
β (d(xn,u),d(xn,T xn),d(u,Tu), [d(xn,T xn)]

r[d(u,T xn)]
pd(xn,Tu),d(u,T xn)[d(xn,T xn)]

m),

which reduces to
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min{d(xn+1,Tu),max{d(xn,xn+1),d(u,Tu)}}−min{d(xn,Tu),d(u,xn+1)} ≤ (2.6)

β (d(xn,u),d(xn,xn+1),d(u,Tu), [d(xn,xn+1)]
r[d(u,xn+1)]

pd(xn,Tu),d(u,xn+1)[d(xn,xn+1)]
m).

As n→ ∞, we obtain from (2.6) that

min{d(u,Tu),d(u,Tu)} ≤ β (0,0,d(u,Tu),0,0). (2.7)

Using Property(ii) of β in (2.7) yields

d(u,Tu)≤ β (0,0,d(u,Tu),0,0)≤ λ .0 = 0,

from which it follows that d(u,Tu)≤ 0.
Therefore, due to nonnegativity of the metric, we obtain d(Tu,u) = 0 ⇐⇒ Tu = u. Thus, T has a fixed point u ∈ X .

The next two results are Maia type (see [19]) which extend both Theorem 2.1 and Theorem 2.2

Theorem 2.3. Let X be a non-empty set, d and ρ two metrics on X and T : X → X a mapping. For x0 ∈ X , let {xn}∞
n=0 defined by

xn+1 = T xn, n = 0,1,2, · · · , be the Picard iteration associated with T. Suppose that
(i) there exists M > 0 such that ρ(T x,Ty)≤Md(x,y), ∀ x, y ∈ X ;
(ii) (X ,ρ) is a complete metric space;
(iii) T : (X ,ρ)→ (X ,ρ) is orbitally continuous;
(iv) T : (X ,d)→ (X ,d) is a mapping satisfying (∆).
Then, T : (X ,ρ)→ (X ,ρ) has a fixed point.

Proof. By condition (iv), we obtain as in Theorem 2.1 that, for p ∈ IN,d(xn,xn+p)→ 0 as n→ ∞. That is, {xn} is a Cauchy sequence in
(X ,d).
We now show that {xn} is a Cauchy sequence in (X ,ρ) as follows: By condition (i), we have, for p ∈ IN,

ρ(xn,xn+p) = ρ(T xn−1,T xn+p−1)≤Md(xn−1,xn+p−1)→ 0 as n→ ∞,

that is, ρ(xn,xn+p)→ 0 as n→ ∞. Thus, {xn} is a Cauchy sequence in (X ,ρ) too.
By condition (ii), (X ,ρ) is a complete metric space implies that there exists u ∈ X such that lim

n→∞
ρ(xn,u) = 0, that is, lim

n→∞
xn = u.

By condition (iii), since xn = T nx0 and T : (X ,ρ)→ (X ,ρ) is orbitally continuous, we have

0 = ρ( lim
n→∞

T (T nx0),Tu) = lim
n→∞

ρ(T (T nx0),Tu) = lim
n→∞

ρ(T xn,Tu) = lim
n→∞

ρ(xn+1,Tu) = ρ(u,Tu).

Therefore, ρ(u,Tu) = 0 ⇐⇒ Tu = u. So, T has a fixed point u.

Theorem 2.4. Let X be a non-empty set, d and ρ two metrics on X and T : X → X a mapping. For x0 ∈ X , let {xn}∞
n=0 defined by

xn+1 = T xn, n = 0,1,2, · · · , be the Picard iteration associated with T. Suppose that
(i) there exists M > 0 such that ρ(T x,Ty)≤Md(x,y), ∀ x, y ∈ X ;
(ii) (X ,ρ) is a complete metric space;
(iii) T : (X ,ρ)→ (X ,ρ) is continuous;
(iv) T : (X ,d)→ (X ,d) is a mapping satisfying (∆?).
Then, T : (X ,ρ)→ (X ,ρ) has a fixed point.

Proof. By condition (iv), we obtain as in Theorem 2.2 that {xn} is a Cauchy sequence in (X ,d).
By condition (i), we have as in Theorem 2.3 that {xn} is a Cauchy sequence in (X ,ρ) too.
By condition (ii), (X ,ρ) is a complete metric space implies that there exists u ∈ X such that lim

n→∞
ρ(xn,u) = 0, that is, lim

n→∞
xn = u.

By condition (iii), since T : (X ,ρ)→ (X ,ρ) is continuous, we have

0 = lim
n→∞

ρ(xn+1,u) = lim
n→∞

ρ(T xn,u) = ρ(T ( lim
n→∞

xn),u) = ρ(Tu,u).

Therefore, ρ(u,Tu) = 0 ⇐⇒ Tu = u. So, T has a fixed point u.

Remark 2.5. Our results generalize and extend several classical results in the literature, involving unique and nonunique fixed points. In
particular, both Theorem 2.1 and Theorem 2.2 are generalizations and extensions of the corresponding results of Ćirić [3, 2]. Both Theorem
2.3 and Theorem 2.4 extend both Theorem 2.1 and Theorem 2.2 respectively as well as the corresponding results of Ćirić [3, 2]. Both
Theorem 2.3 and Theorem 2.4 also generalize the result of Maia [19]. Indeed, the results of our present paper generalize the corresponding
results of Olatinwo [10, 11, 12], but independent of the corresponding results of the author [20]. We also observe that the unique fixed point
theorems of Akram et al. [8] are special cases of the results contained in this paper.

Remark 2.6. We also employ this medium to announce that while proving the existence of the fixed point of T, the term ”d(T lim
n→∞

(T nx0),Tu)”
that appeared was a typographical misprint in Theorem 2.1 and Theorem 2.3 of [10] as well as in Theorem 2.1 and Theorem 2.4 of [20].
Since T is orbitally continuous in those Theorems (rather than being continuous), the misprint should change to ”d( lim

n→∞
T (T nx0),Tu)”

(which is now correctly expressed in the present article). Our interested readers can also see the correct term ”d( lim
n→∞

T (T nx0),Tu)” in the

articles [11, 12] (which invariably becomes ” lim
n→∞

d(T (T nx0),Tu)” since metric is continuous).
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3. Conclusion

So far, the results obtained in the present article are the most general results in non-unique fixed point theory.
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