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Abstract

The intention of this article is to study on timelike uniform B-spline curves in Minkowski-3
space. In our paper, we take the control points of uniform B-spline curves as a timelike
point in Minkowski-3 space. Then we calculate some geometric elements for this new curve
in Minkowski-3 space.

1. Introduction

B-spline curves were described by Schoenberg who was worked on B-spline curves for statistical data collection in [1]. The B-spline
curves was constructed for computing a convolution of some probability distributions. Moreover, de Boor and Hollig considered a different
approach to B-spline curves in [2]. Recently, in Computer Aided Geometric Design (CAGD), B-spline curves have been commonly used for
designing an automobile, a boat, an aircraft, [3] and [4]. There are many studies on the B-spline curves, see some of them in [2], [5], [6].
Although degree d of a Bezier curve has d+1 control points, degree d of a B-spline curves can have any number of control points supplied a
sufficient number of knots are defined in [7] and [8]. In addition, the control points of the Bezier curves provide a global change on the curve,
while the control points of the B-spline curves provide a local change on the curve. For this reason, B-spline curves can be given additional
freedom by increasing the number of control points in order to define complex curve shapes without increasing the degree of the curve, [9].
Minkowski space was introduced by H. Minkowski. In our paper, we try to investigate some geometric properties of the B-spline curves in
Minkowski 3-space. We present the curvature and torsion of the B-spline curves in Minkowski 3-space.

2. Preliminaries

In this section the B-spline curves are defined and some preliminaries are given. Then some basics of Minkowski space is given.

Definition 2.1. Let t0, t1, ..., tm be knot vectors of the B-spline basis function of degree d. The B-spline basis function denoted Ni,d(t) is
defined by

Ni,0(t) =


1, i f t ∈ [ti, ti+1)
0, otherwise (2.1)

Ni,d(t) =
t− ti

ti+d − ti
Ni,d−1(t)+

ti+d+1− t
ti+d+1− ti+1

Ni+1,d−1(t) (2.2)

for i = 0, ...,n and d ≥ 1.

Email address and ORCID number: hkusak@beu.edu.tr, 0000-0001-6685-236X (H. Kuşak Samancı)
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Definition 2.2. If the B-spline curve of degree d with control points b0, ...,bn and knots t0, t1, ..., tm is defined on the interval [a,b] = [td , tm−d ],
then the curve can be written in the form

B(t) =
n

∑
i=0

biNi,d(t).

When the B-spline curves are in the rational form, they are often called integral B-spline curves. Moreover, if the knots are equally spaced,
then a B-spline curve is called uniform.

On the other hand, Minkowski 3-space R3
1 is a vector space R3 provide with the Lorentzian inner product g given by

g(ν ,λ ) = ν1λ1 +ν2λ2−ν3λ3,

where ν = (ν1,ν2,ν3) and λ = (λ1,λ2,λ3) ∈R3
1. A vector in Minkowski 3-space λ = (λ1,λ2,λ3) ∈R3

1 is called spacelike if g(λ ,λ )> 0 or
λ = 0; timelike if g(λ ,λ )< 0; lightlike if g(λ ,λ ) = 0 and λ 6= 0. The vectors ν and λ are ortogonal if and only if g(ν ,λ ) = 0. The norm
of a vector ν on Minkowski space R3

1 is defined by ‖ν‖L =
√
|g(ν ,ν)|. If the vector is timelike, then the form will be ‖ν‖L =

√
−g(ν ,ν).

Let (c) be curve in R3
1. We say that (c) is timelike curve (resp. spacelike, lightlike) at t if the tangent vector (c)′ (t) is a timelike (resp.

spacelike, lightlike) vector. The vector fields of the moving Serret-Frenet from along the curve (c) are denoted by {T,N,B} where T, N
and B are called with the tangent, the principal normal and the binormal vector of the curve (c), respectively. If the curve (c) is time-like
curve, then T is timelike vector, N and B are spacelike vectors which satisfy T∧LN = −B, N∧LB = T, B∧LT = −N. The derivative of
Serret-Frenet frame equations for a timelike curve is

T′ = κN
N′ = κT+ τB
B′ =−τN.

3. Main result

Definition 3.1. Let X = {b0,b1, ...,bn} be a timelike points set in R3
1. The

TCH {X}=

{
λ0b0 + ...+λnbn|

n

∑
i=0

λi = 1,λi ≥ 0

}
set formed by these X points are called timelike convex hull of a timelike uniform B-spline curve.

Definition 3.2. If the control points b0, ...,bn ∈ TCH{X} are timelike and the knots t0, t1, ..., tm on the interval [a,b] = [td , tm−d ] are equally
spaced, then the timelike uniform B-spline curve of degree d in Minkowski 3-space is defined by

B(t) =
n

∑
i=0

biNi,d(t),

where Ni,d(t) are the basis functions.

Example: Lets consider the timelike uniform B-spline curve B(t) of degree d = 2 defined on the knots t0 = 0, t1 = 1, t2 = 2, t3 = 3, t4 =
4, t5 = 5, t6 = 6, t7 = 7 and with control points b0(2,3),b1(−1,7),b2(2,5),b3(4,5),b4(1,3). The basis graphic and the curve shape are in
the following figures.

,

Figure 3.1: a) Basis function graphic b) A timelike uniform B-spline curve

Theorem 3.3. Let B(t) be a timelike uniform B-spline curve of degree d with the knot vector t0, ..., tm in Minkowski 3-space. If t ∈
[tr, tr+1) (d ≤ r ≤ m− d− 1) then B(t) =

r
∑

i=r−d
biNi,d(t). Therefore to compute B(t) its sufficient to compute Nr−d,d(t), ...,Nr,d(t). This

shows us that the B-spline curve is achieved by the local control. If t ∈ [tr, tr+1) (d ≤ r ≤ m− d− 1) then B(t) ∈ TCH{br−d , ...,br}.
This means that B-spline curve has an convex hull. If pi is the multiplicity of the breakpoint t = ui then B(t) is Cd−pi (or greater) at
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t = ui and C∞ elsewhere. Thus, it is seen that the B-spline curve is satisfied the continuity property. Let T be an affine transformation. If

T (
n
∑

i=0
biNi,d(t)) =

n
∑

i=0
T (bi)Ni,d(t), the B-spline curve is invariant under affine transformations.

Theorem 3.4. Let B(t) be a timelike uniform B-spline curve of degree d with the knot vector t0, ..., tm in Minkowski 3-space. The second and
third derivative of the control points bi are calculated by

b(2)i = (d−1).mi.∆b(1)i

b(3)i = (d−1)(d−2).pi.(ni.∆b(1)i+1−mi∆b(1)i )

where mi,ni, pi are some constants of ti.

Proof. Using the Eq.(2.1) and Eq.(2.2) the control points can be written as

b(2)i = (d−1)
b(1)i+1−b(1)i

ti+d+1− ti+2

= (d−1).mi.∆b(1)i ,

b(3)i =
(d−2)

ti+d+1− ti+3

(
b(2)i+1−b(2)i

)
=

(d−2)
ti+d+1− ti+3

(
(d−1).ni.(b

(2)
i+2−b(1)i+1)− (d−1).mi.(b

(1)
i+1−b(1)i )

)
=

(d−1)(d−2)
ti+d+1− ti+3

(
.ni.(b

(2)
i+2−b(1)i+1)−mi.(b

(1)
i+1−b(1)i )

)
= (d−1)(d−2).pi.(ni.∆b(1)i+1−mi∆b(1)i )

where mi =
1

ti+d+1−ti+2
, ni =

1
ti+d+2−ti+3

and pi =
1

ti+d+1−ti+3
.

Theorem 3.5. Let B(t) be a timelike uniform B-spline curve of degree d with the knot vector t0, ..., tm in Minkowski 3-space. The derivatives
of B-spline curve is computed by

B(1)(t) =
n−1

∑
i=0

bi
(1)N(1)

i,d−1(t)

B(2)(t) = (d−1)
n−2

∑
i=0

mi.∆b(1)i .N(2)
i,d−2

B(3)(t) = (d−1)(d−2)
n−3

∑
i=0

pi.
(

ni.∆b(1)i+1−mi∆b(1)i

)
.N(3)

i,d−3.

Proof. Substituting the above results in Eq.(2.2), the proof is obvious.

Theorem 3.6. Let B(t) be an arbitrary timelike uniform B-spline curve and {T,N,B}|t=0 be the Serret-Frenet frame of B(t), where T is
timelike, N and B are spacelike. Then the following conditions are satisfied

g(T ,T ) =−1,g(N,N) = 1,g(B,B) = 1

g(T ,N) = 0,g(T ,B) = 0,g(N,B) = 0.

The Serret-Frenet frame of the timelike uniform B-spline curve B(t) is obtained by

T =

n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)
∥∥∥∥

B =

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥

N = −

−g
(

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t),

n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)
)(

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

)
+g
(

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2,
n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)
)(

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)
)

∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)
∥∥∥∥
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Proof. Let consider the B-spline curve B(t) is non unit speed curve in Minkowski 3-space. Using the scalar and vector product in Minkowski
3-space, the tangent vector of the timelike uniform B-spline curve B(t) is calculated as

T =
B(1)(t)∥∥B(1)(t)

∥∥
=

n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)
∥∥∥∥ ,

and the binormal vector of the timelike B-spline curve is

B =
B(1)(t)∧B(2)(t)∥∥B(1)(t)∧B(2)(t)

∥∥
=

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∧ (d−1)

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)∧ (d−1)

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥
=

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥ .
The principal normal can be obtained as

N = −B∧T

= −

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥ ∧
n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)
∥∥∥∥

= −

(
n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

)
∧

n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)
∥∥∥∥

= −

−g
(

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t),

n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)
)(

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

)
+g
(

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2,
n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)
)

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∥∥∥∥n−1

∑
i=0

bi
(1)N(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1(t)
∥∥∥∥ .

Theorem 3.7. If the B-spline curve of degree d with control points b0, ...,bn and knots t0, t1, ..., tm is defined on the interval [a,b] = [td , tm−d ],
the curvature of timelike uniform B-spline curve B(t) is found as

κ = |d−1|

∥∥∥∥n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)
∥∥∥∥3

Proof. From the definition of curvature of the non-unit speed curve, we have

κ =

∥∥∥B(1)(t)∧B(2)(t)
∥∥∥∥∥B(1)(t)

∥∥3

=

∥∥∥∥n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∧ (d−1)

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)
∥∥∥∥3

= |d−1|

∥∥∥∥n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥∥∥∥∥n−1
∑

i=0
bi
(1)N(1)

i,d−1
(t)
∥∥∥∥3 .



210 Journal of Mathematical Sciences and Modelling

Theorem 3.8. If B(t) is a timelike uniform B-spline curve of degree d with the knot vector t0, ..., tm in Minkowski 3-space, the torsion of a
timelike uniform B-spline curve B(t) is computed by

τ =−(d−2)
det
(

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t) ,

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2,
n−3
∑

i=0
pi.
(

ni.∆b(1)i+1−mi∆b(1)i

)
.N(3)

i,d−3

)
∥∥∥∥n−1

∑
i=0

bi
(1)N(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥2

Proof. Using the definition of torsion, we have the following equations:

τ =

(
B(1)(t) B(2)(t) B(3)(t)

)
∥∥B(1)(t)∧B(2)(t)

∥∥2

=

(
n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t) (d−1)

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2 (d−1)(d−2)
n−3
∑

i=0
pi.
(

ni.∆b(1)i+1−mi∆b(1)i

)
.N(3)

i,d−3

)
∥∥∥∥n−1

∑
i=0

bi
(1)N(1)

i,d−1
(t)∧ (d−1)

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥2

= −(d−2)
det
(

n−1
∑

i=0
bi
(1)N

(1)

i,d−1
(t) ,

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2,
n−3
∑

i=0
pi.
(

ni.∆b(1)i+1−mi∆b(1)i

)
.N(3)

i,d−3

)
∥∥∥∥n−1

∑
i=0

bi
(1)N(1)

i,d−1
(t)∧

n−2
∑

i=0
mi.∆b(1)i .N(2)

i,d−2

∥∥∥∥2

4. Conclusion

In this paper, we present a theoretical work about the timelike uniform B-spline curves in Minkowski-3 space. The timelike B-spline curve in
Minkowski 3-space at first time is introduced. The derivatives of control points are calculated. Later Serret-Frenet frame of the timelike
uniform B-spline curve is given. Moreover, the curvature and torsion of the B-spline curve are computed.
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