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Abstract. An exchange ideal I of a ring R is locally comparable if for every

regular x ∈ I there exists a right or left invertible u ∈ 1+I such that x = xux.

We prove that every matrix extension of an exchange locally comparable ideal

is locally comparable. We thereby prove that every square regular matrix over

such ideal admits a diagonal reduction.
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1. Introduction

An element x of a ring R is regular if there exists y ∈ R such that x = xyx.

If, in addition, y is right or left invertible, x ∈ R is one-sided unit-regular. A

ring R is one-sided unit-regular provided that every element in R is one-sided unit-

regular. As is well known, a ring R is one-sided unit-regular if and only if for

all finitely generated projective right R-modules A,B and C, A ⊕ B ∼= A ⊕ C

implies that B .⊕ C or C .⊕ B (see [2] and [5]). In [2], Chen proved that

comparability of modules over one-sided unit-regular rings is Morita invariant, in

terms of comparability. In [3], the author considered a class of ideals in a regular

ring. In [4], the author introduced and investigated a kind of quasi-stable exchange

ideals. These inspires us to explore local comparability depending only on the ring

structure of an ideal and then investigate certain matrix reduction over rings which

might have no any comparability.

Following Ara, an ideal I of a ring R is an exchange ideal provided that for

every x ∈ I there exist an idempotent e ∈ I and elements r, s ∈ I such that

e = xr = x+ s− xs (cf. [1]). Many classes of ideals of interest belong to such one,

e.g., regular ideals, π-regular ideals ([5] and [9]).
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Let I be an ideal of a ring R, let U−(R) be the set of all right or left invertible

elements in R, and let U−(I) = U−(R) ∩ (1 + I). We call an ideal I of a ring

R is locally comparable if for each regular element x ∈ I there exists u ∈ U−(I)

such that x = xux. For instance, every ideal of a commutative ring and every

ideal of a unit-regular ring. Following Khurana, Lam and Nielsen in [7], a ring R

is IC provided that every regular element in R is unit-regular. Thus, every ideal

of an IC ring is locally comparable. We prove that every matrix extension of an

exchange locally comparable ideal is locally comparable. From this, we show that

every square regular matrix over such ideal admits a diagonal reduction.

Throughout, all rings are associative with identity and all modules are right

modules. We use Mn(I) to denote the set of n × n matrices over an ideal I and

GLn(R) to denote the n dimensional general linear group of R. M .⊕ N means

that M is isomorphic to a direct summand of N .

2. Locally comparable ideals

For further use, we now investigate when an exchange ideal of a ring is locally

comparable which will be frequently used. We begin with

Lemma 2.1. Let I be an ideal of a ring R. Then the following are equivalent:

(1) I is an exchange ideal.

(2) For any x ∈ I, there exists an idempotent e ∈ xR such that 1−e ∈ (1−x)R.

(3) For any x ∈ 1 + I, there exists an idempotent e ∈ xR such that 1 − e ∈
(1− x)R.

Proof. Straightforward. �

Theorem 2.2. Let I be an exchange ideal of a ring R. Then the following are

equivalent:

(1) I is locally comparable.

(2) Whenever aR + bR = R with a ∈ I, b ∈ R, there exists y ∈ R such that

a+ by ∈ U−(I).

Proof. (1) ⇒ (2) Suppose that aR + bR = R with a ∈ I, b ∈ R. Then we have

x, y ∈ R such that ax+by = 1. Since I is an exchange ideal and by = 1−ax ∈ 1+I,

we have an idempotent e ∈ byR such that 1 − e ∈ (1 − by)R by Lemma 2.1. So

e = bys and 1−e = axt for some s, t ∈ R. Hence (1−e)axt(1−e)+e = 1, and then

(1 − e)a ∈ I is regular. As I is locally comparable, we have u ∈ U−(I) such that
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(1−e)a = (1−e)au(1−e)a. Set f = u(1−e)a. Then f
(
xt(1−e)+ue)+(1−f)ue = u.

If vu = 1 for some v ∈ R,

(1− f)uev(1− f)ue = (1− f)ue
(
e− (1− e)aue

)
= (1− f)ue.

If uv = 1 for some v ∈ R,

(1− f)uev(1− f)ue = (1− f)
(
1− fxt(1− e)

)
(1− f)ue = (1− f)ue.

Let g = (1 − f)uev(1 − f). Then f
(
xt(1 − e) + ue) + gue = u. Clearly, f

(
xt(1 −

e) + ue) = fu and gue = gu. Thus

[u
(
a+ bys(v(1− f)(1 + fuev(1− f))− a)

)
]
(
1− fuev(1− f)

)
u

=
[
f + uev(1− f)(1 + fuev(1− f))

](
1− fuev(1− f)

)
u

= u.

As u ∈ U−(I) and 1 − fuev(1 − f) ∈ 1 + I, we get a + bz ∈ U−(I), where

z = ys
(
v(1− f)(1 + fuev(1− f))− a

)
.

(2) ⇒ (1) Given any regular x ∈ I, we have y ∈ R such that x = xyx. Hence

x = xzx and z = yxy ∈ I. From zR+ (1− zx)R = R with z ∈ I, we can find s ∈ R
such that z+(1−zx)s = u ∈ U−(I). Therefore x = xzx = x

(
z+(1−zx)

)
x = xux,

as required. �

Corollary 2.3. Let I be an exchange ideal of R. Then the following are equivalent:

(1) I is locally comparable.

(2) For any regular a, b ∈ I, aR = bR implies that there exists u ∈ U−(I) such

that a = bu.

(3) For any regular a, b ∈ I, Ra = Rb implies that there exists u ∈ U−(I) such

that a = ub.

Proof. (1) ⇒ (2) Given aR = bR with regular a, b ∈ I, then a = bx, b = ay for

x, y ∈ R. Since b is regular, there exists c ∈ R such that b = bcb. Thus a = b(cbx)

and b = ay; hence, b = b(cbx)y. As (cbx)y + (1 − cbxy) = 1 with cbx ∈ I, by

Theorem 2.2, we can find z ∈ R such that cbx + (1 − cbxy)z = u ∈ U−(I). This

infers that a = bx = b(cbx) = b
(
cbx+ (1− cbxy)z

)
= bu.

(2) ⇒ (1) Given any regular x ∈ I, we have y ∈ I such that x = xyx. Set

e = yx. Then e = e2 ∈ I. As yR = eR, we have y = ev for a v ∈ U−(I). From

yx+ (1− yx) = 1, we see that eux+ (1− yx) = 1; hence,

y + (1− yx)(1− e)v =
(
1 + evx(1− e)

)−1
u.

Set u =
(
1 + eux(1− e)

)−1
v. Clearly,

(
1 + eux(1− e)

)−1 ∈ 1 + I. Thus, x = xyx =

xux and u ∈ U−(I), as required.
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(1)⇔ (3) Since I is locally comparable inR if and only if Iop is locally comparable

of the opposite ring Rop, we complete the proof by applying (1)⇔ (2) to the ideal

Iop of Rop. �

Corollary 2.4. Let I be an exchange locally comparable ideal of a ring R. Then

for any regular a, b ∈ I, aR ∼= bR implies that b = uav for some u, v ∈ U−(I).

Proof. It is clear from Corollary 2.3. �

The following result shows that the local comparability only depends on the ring

structure of an ideal.

Corollary 2.5. Let I be an ideal of a ring R. Then the following are equivalent:

(1) I is locally comparable.

(2) Whenever ax + b = 1 with a, x ∈ I, b ∈ I, there exists y ∈ 1 + I such that

a+ by ∈ U−(I).

Proof. (1)⇒ (2) is clear by Theorem 2.2.

(2) ⇒ (1) Given any regular x ∈ I, there exists y ∈ I such that x = xyx and

y = yxy. From yx+ (1− yx) = 1, we have z ∈ 1 + I such that y+ (1− yx)z = u ∈
U−(I). Therefore x = xyx = x

(
y + (1− yx)z

)
x = xux, as required. �

Example 2.6. Let V be an infinite dimensional vector space over a division ring

D. Let R = Z⊕EndD(V ). Then I = 0⊕EndD(V ) is a locally comparable ideal of

R.

Example 2.7. Let R =

{(
a b

0 a

)
| a, b ∈ Z

}
. Then I =

{(
a b

0 a

)
| a, b ∈

Z, 2|a

}
is a locally comparable ideal of R.

3. Matrix extensions

The pair (a, b) is called an I-unimodular row in case ax + by = 1 for some

x ∈ I, y ∈ R. The I-unimodular row (a, b) is called weakly I-reducible if there

exists z ∈ R such that a + bz ∈ U−(I). In [5], Chen proved that if R is one-sided

unit-regular then so is Mn(R) by virtue of comparability of R-modules. The goal

of this section is to prove that local comparability is inhered by matrix extensions.

Lemma 3.1. Let (a, b) be an I-unimodular row in a ring R. Let u, v ∈ U(R)∩(1+I)

and c ∈ R. Then (vau + vbc, vb) is also an I-unimodular row, and that (a, b) is

weakly I-reducible if and only if so is (vau+ vbc, vb).
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Proof. Straightforward. �

Following the similar route, we shall modify the proofs of [3, Theorem 3.2] and

[4, Theorem 3.2] to our case. We are ready to prove:

Theorem 3.2. Let I be an exchange locally comparable ideal of a ring R. Then

Mn(I) is an exchange locally comparable ideal of Mn(R).

Proof. The result holds for n = 1. We now induct on n. Assume that the result

holds for n. It will suffice to show that the result holds for n + 1. Suppose that

(aij)(bij) + (cij) = In+1 (∗) in Mn+1(R), where (aij), (bij) ∈Mn+1(I). Then

a11b11 + a12b21 + · · ·+ a1(n+1)b(n+1)1 + c11 = 1

with a11 ∈ I. Since I is an exchange locally comparable ideal of R, by Theorem

2.2, there exists z1 ∈ R such that

a11 + (a12b21 + · · ·+ a1nbn1 + c11)z1 ∈ U−(I).

It is easy to verify that



1 0 0 · · · 0

b21z1 1 0 · · · 0

b31z1 0 1 · · · 0
...

...
...

. . .
...

b(n+1)1z1 0 0 · · · 1


∈ U

(
Mn+1(I)

)
. According

to Lemma 3.1, (∗) is weakly Mn+1(I)-reducible if and only if this is so for the

Mn+1(I)-unimodular row with elements

(aij)n+1



1 0 0 · · · 0

b21z1 1 0 · · · 0

b31z1 0 1 · · · 0
...

...
...

. . .
...

b(n+1)1z1 0 0 · · · 1


+ (cij)n+1



z1 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


and (cij). Thus we may assume that the element a11 ∈ U−(I). Obviously,

c21, · · · , c(n+1)1 ∈ I. Hence aij ∈ I(either i 6= 1 or j 6= 1) in (∗), and then we

have s, t ∈ R such that sa11t = 1, where s = 1 or t = 1. Clearly, s, t ∈ 1 + I, and
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that

s 0 0 · · · 0

1− a11ts a11t 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


(aij)n+1



t 1− tsa11 0 · · · 0

0 sa11 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



=



1 d12 d13 · · · d1(n+1)

d21 d22 d23 · · · d2(n+1)

d31 d32 d33 · · · d3(n+1)

...
...

...
. . .

...

d(n+1)1 d(n+1)2 d(n+1)3 · · · d(n+1)(n+1)


.

Similarly to [3, Theorem 3.2], we claim that (∗) is weakly Mn+1(I)-reducible if and

only if this is so for the Mn+1(I)-unimodular row with elements

1 d12 d13 · · · d1(n+1)

d21 d22 d23 · · · d2(n+1)

d31 d32 ∗ · · · ∗
...

...
...

. . .
...

d(n+1)1 d3(n+1) ∗ · · · d(n+1)(n+1)


,



s 0 0 · · · 0

1− a11ts a11t 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


(cij).

We easily see that bij ∈ I (either 3 ≤ i ≤ n + 1 or 3 ≤ j ≤ n + 1) and b12 =

sa11(1− tsa11) + sa12sa11, b21 = (1− a11ts)a11t+ a11ta21t, b22 =
(
(1− a11ts)a11 +

a11ta21
)
(1− tsa11) +

(
(1− a11ts)a12 + a11ta22

)
sa11 ∈ I. By Lemma 3.1 again, we

may assume that a11 = 1, a1i = 0 = ai1(2 ≤ i ≤ n + 1) in (∗). Furthermore, we

may assume that (∗) is in the following form:(
1 01×n

0n×1 D

)(
e11 E12

E21 E22

)
+

(
c11 C12

C21 C22

)

=

(
1 0

0 diag(1, · · · , 1)n

)
,
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D ∈Mn(I) and

(
e11 E12

E21 E22

)
∈Mn+1(I). Hence DE22 + C22 = diag(1, · · · , 1)n.

By hypothesis, Mn(I) is an exchange locally comparable, so we have Z2 ∈ Mn(R)

such that D + C22Z2 ∈ U−(Mn(I)
)
. As in [3, Theorem 3.2], we may pass to the

Mn+1(I)-unimodular row with elements(
1 01×n

0n×1 D

)
+

(
c11 C12

C21 C22

)(
0 01×n

0n×1 Z2

)
,

(
c11 C12

C21 C22

)
.

In addition, we have C12 ∈M1×n(I). It suffices to prove that Mn+1(I)-unimodular

row with elements(
1 C12Z2

0n×1 D + C22Z2

)
and

(
c11 C12

C21 C22

)
is weakly Mn+1(I)-reducible. As D+C22Z2 ∈ U−(Mn(I)

)
and C12 ∈M1×n(I), we

conclude that

(
1 C12Z2

0 D + C22Z2

)
∈ U−(Mn+1(I)

)
. By induction, we complete

the proof. �

Lemma 3.3. (see [5, Lemma 13.1.4]) Let I be an exchange ideal of a ring R. Then

eRe is an exchange ring for all idempotents e ∈ I.

Lemma 3.4. (see [5, Lemma 13.1.8]) Let I be an exchange ideal of a ring R. If

P is a finitely generated projective right R-module such that P = PI. Then there

exist idempotents e1, . . . , en ∈ I such that P ∼= e1R⊕ · · · ⊕ enR.

Theorem 3.5. Let I be an exchange locally comparable ideal of a ring R. Then

every square regular matrix over I admits a diagonal reduction by right or left

invertible matrices.

Proof. Given any regular A ∈ Mn(I), then we have an idempotent matrix E ∈
Mn(I) such that AMn(R) = EMn(R). Clearly, ERn is a finitely generated pro-

jective right R-module such that ERn = ERnI. Using Lemma 3.4, we have idem-

potents e1, · · · , en ∈ I such that ERn ∼= e1R ⊕ · · · ⊕ enR ∼= diag(e1, · · · , en)Rn

as right R-modules, so AMn(R) = EMn(R) ∼= diag(e1, · · · , en)Mn(R). Using The-

orem 3.2 and [1, Theorem 1.4], Mn(I) is an exchange locally comparable ideal

of Mn(R). In view of Corollary 2.4, there are U, V ∈ U−(Mn(I)
)

such that

UAV = diag(e1, · · · , en), as asserted. �

Corollary 3.6. Let R be an exchange ring in which every regular element is one-

sided unit-regular. Then every square regular matrix over R admits a diagonal

reduction with idempotent entries by right or left invertible matrices.
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Proof. It is clear by Theorem 3.5. �

Corollary 3.7. Let R be one-sided unit-regular. Then every square matrix over R

admits a diagonal reduction with idempotent entries.

Proof. This is obvious from Corollary 3.6. �

Let V be an infinite dimensional vector space over a division ring D. Set R =

EndD(V ). Then R is one-sided unit-regular. As a consequence of Corollary 3.7, we

deduce that every row-column-finite matrices over a division ring admits a diagonal

reduction with idempotent entries.

4. The comparability axiom

Let I be an ideal of a ring R. We say that I satisfies the comparability axiom

provided that for any idempotents e, f ∈ I, either eR .⊕ fR or fR .⊕ eR. We

prove, in this section, that every exchange ideal satisfying the comparability axiom

is a locally comparable ideal.

Lemma 4.1. Let I be an ideal of a ring R. Suppose that ax + b = 1 with a, x ∈
1 + I, b ∈ R. Then the following are equivalent:

(1) There exists y ∈ R such that a+ by ∈ U−(I).

(2) There exists z ∈ R such that x+ zb ∈ U−(I).

Proof. As in the proof of [5, Lemma 4.1.2], we easily obtain this result. �

Lemma 4.2. Let I be an ideal of a ring R. Suppose that ax + b = 1 with a ∈
1 + I, x ∈ I, b ∈ 1 + I. Then the following statements are equivalent:

(1) There exists y ∈ I such that a+ by ∈ U−(I).

(2) There exists z ∈ I such that x+ zb ∈ U−(I).

Proof. (1)⇒ (2) Suppose that a+ by ∈ U−(I) for a y ∈ R. Then y ∈ I. Assume

that u(a+ by) = 1. We have u ∈ 1 + I. Similar to [6, Lemma 1], we get(
x+ (1− xy)ub

)(
a+ y(1− xa)

)
= 1

and x+ (1− xy)ub ∈ 1 + I. Assume that (a+ by)u = 1, Then u ∈ 1 + I; hence, it

follows from
(
a+ y(1− xa)

)(
x+ (1− xy)ub

)
= 1 that x+ (1− xy)ub ∈ U−(I), as

required.

(2) ⇒ (1) Suppose that there exists z ∈ R such that x + zb ∈ U−(I). Then

z ∈ 1 + I. Assume that v(x + zb) = 1. We have v ∈ 1 + I. Similar to [6,

Lemma 1],
(
a + bv(1 − za)

)(
x + (1 − xa)z

)
= 1. Since a + bv(1 − za) ∈ 1 + I,
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a + bv(1 − za) ∈ U−(I). Assume that (x + zb)v = 1. Then v ∈ 1 + I. From(
x + (1 − xa)z

)(
a + bv(1 − za)

)
= 1, we deduce that a + bv(1 − za) ∈ U−(I), as

asserted. �

Lemma 4.3. Let I be an exchange ideal of a ring R. Suppose that for any regular

x ∈ 1 + I there exists u ∈ U−(I) such that x = xux. Then ax + b = 1 with

a ∈ 1 + I, x ∈ I, b ∈ 1 + I implies that a+ by ∈ U−(I) for any y ∈ I.

Proof. Suppose that ax+ b = 1 with a ∈ 1 + I, x ∈ I, b ∈ 1 + I. Then a(x+ b) +

(1 − a)b = 1 with a, x + b ∈ 1 + I. As (1 − a)b = 1 − a(x + b) ∈ I and I is an

exchange ideal of R, we have an idempotent e ∈ R such that e ∈ (1 − a)bR and

1− e ∈
(
1− (1− a)b

)
R. So e = (1− a)bs and 1− e = a(x+ b)t for some s, t ∈ R.

Hence (1 − e)a(x + b)t(1 − e) + e = 1, and then (1 − e)a ∈ 1 + I is regular. This

infers that (1− e)a = (1− e)au(1− e)a for a u ∈ U−(R). Clearly, u ∈ U−(I). Let

f = u(1 − e)a. Then f
(
(x + b)t(1 − e) + ue) + (1 − f)ue = u. If vu = 1 for some

v ∈ R, then

(1− f)uev(1− f)ue = (1− f)ue
(
e− (1− e)aue

)
= (1− f)ue.

If uv = 1 for some v ∈ R, then

(1− f)uev(1− f)ue = (1− f)
(
1− f(x+ b)t(1− e)v

)
(1− f)ue = (1− f)ue.

Let g = (1− f)uev(1− f). Similar to Theorem 2.2, we have a+ (1− a)bz ∈ U−(I),

where z = ys
(
v(1− f)(1 + fuev(1− f))− a

)
. By Lemma 4.1, we have z ∈ R such

that x +
(
1 + z(1 − a)

)
b = x + b + z(1 − a)b ∈ U−(I). Applying Lemma 4.2 to

ax + b = 1, we get some w ∈ R such that a + bw ∈ U−(I). We easily check that

w ∈ I, as asserted. �

Theorem 4.4. Let I be an exchange ideal of a ring R. If for any regular x ∈ 1 + I

there exists u ∈ U−(I) such that x = xux, then I is locally comparable.

Proof. Suppose that ax+ b = 1 with a, x ∈ I, b ∈ R. Then (a+ b)x+ b(1− x) =

1, a+ b ∈ 1 + I, x ∈ I and b(1− x) ∈ 1 + I. In view of Lemma 4.3, we have y ∈ R
such that a+ b

(
1 + (1− x)y

)
= a+ b+ b(1− x)y ∈ U−(I). Clearly, u ∈ 1 + I, and

so u ∈ U(I). Therefore I is a locally comparable ideal by Corollary 2.5. �

Recall that an ideal I of a ring R is a B-ideal, provided that aR+ bR = R with

a ∈ 1 + I and b ∈ R implies that there exists y ∈ R such that a+ by ∈ U(R), where

U(R) is the group of units in R (cf. [5]). As an immediate consequence, we derive

Corollary 4.5. Every exchange B-ideal is locally comparable.
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Theorem 4.6. Every exchange ideal satisfying the comparability axiom is locally

comparable.

Proof. Given any regular x ∈ 1 + I, there exists y ∈ 1 + I such that x = xyx. So

1−yx, 1−xy ∈ I. Hence either (1−xy)R .⊕ (1−yx)R or (1−yx)R .⊕ (1−xy)R.

If (1− xy)R .⊕ (1− yx)R, we have an injection ψ : (1− xy)R→ (1− yx)R. From

R = yxR ⊕ (1 − yx)R = xyR ⊕ (1 − xy)R and φ : xyR = xR ∼= yxR, we have

u ∈ EndR(R) so that u restricts to φ and u restricts to ψ. Then x = xux with left

invertible u ∈ R. If (1− yx)R .⊕ (1− xy)R, analogously, we derive that x = xux

for a right invertible u ∈ R. Consequently, x = xux for a u ∈ U−(R). Therefore

we complete the proof by Theorem 4.4. �

Corollary 4.7. Let I be an exchange ideal satisfying the comparability axiom. Then

every square regular matrix over I admits a diagonal reduction.

Proof. It follows by Theorem 4.6 and Theorem 3.5. �
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