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Abstract. The notion of a modified Rota-Baxter algebra comes from the

combination of those of a Rota-Baxter algebra and a modified Yang-Baxter

equation. In this paper, we first construct free modified Rota-Baxter algebras.

We then equip a free modified Rota-Baxter algebra with a bialgebra structure

by a cocycle construction. Under the assumption that the generating algebra

is a connected bialgebra, we further equip the free modified Rota-Baxter alge-

bra with a Hopf algebra structure.
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1. Introduction

This paper studies free objects in the category of modified Rota-Baxter algebras,

a concept coming from the combination of a Rota-Baxter algebra and a modified

Yang-Baxter equation. It also equips the free objects with bialgebra and Hopf

algebra structures.

For a fixed constant λ, a Rota-Baxter operator of weight λ is a linear operator

P on an associative algebra R that satisfies the Rota-Baxter equation:

P (x)P (y) = P (P (x)y) + P (xP (y)) + λP (xy), ∀x, y ∈ R. (1)

An associative algebra R equipped with a Rota-Baxter operator is called a Rota-

Baxter algebra, a notion originated from the probability study of G. Baxter [8]

in 1960. Later it attracted the attention of well-known mathematicians such as

Atkinson, Cartier and Rota [2,10,26]. After some years of dormancy, its study

experienced a quite remarkable renascence since late 1990s, with many applications

This work was supported by the National Natural Science Foundation of China (No. 11771190),

the Fundamental Research Funds for the Central Universities (No. lzujbky-2017-162) and the

Natural Science Foundation of Gansu Province (No. 17JR5RA175).



FREE MODIFIED ROTA-BAXTER ALGEBRAS AND HOPF ALGEBRAS 13

in mathematics and physics [1,3,14,17,19,21,22,24,25]. In particular, it appeared as

one of the fundamental algebraic structures in the profound work of Connes and

Kreimer on renormalization of quantum field theory [11]. See [16] for further details

and references.

The concept of the classical Yang-Baxter equation arose from the study of in-

verse scattering theory and is also related to Schouten bracket in differential geom-

etry. Further it can be regarded as the classical limit of the quantum Yang-Baxter

equation, named after C. N. Yang and R. Baxter. In the 1980s, Semonov-Tian-

Shansky [27] found that, under suitable conditions, the operator form of the classi-

cal Yang-Baxter equation is precisely the Rota-Baxter identity (1) (of weight 0) on

a Lie algebra. As a modified form of the operator form of the classical Yang-Baxter

equation, he also introduced in that paper the modified classical Yang-Baxter equa-

tion:

[P (x), P (y)] = P [P (x), y] + P [x, P (y)]− [x, y], (2)

later found applications in the study of generalized Lax pairs and affine geometry

on Lie groups [4,9,20]. As the associative analogue of Eq. (2), the equation

P (x)P (y) = P (P (x)y) + P (xP (y))− xy. (3)

is called the modified associative Yang-Baxter equation, which has been applied to

the study of extended O-operators, associative Yang-Baxter equations, infinitesimal

bialgebras and dendriform algebras [6,7,12].

In the spirit of the aforementioned Yang-Baxter equation to Rota-Baxter oper-

ator connection, a linear operator P satisfying Eq. (3) is called a modified Rota-

Baxter operator and an associative algebra R equipped with a modified Rota-Baxter

operator is called a modified Rota-Baxter algebra.

Integrating the notions of the Rota-Baxter algebra and modified Rota-Baxter al-

gebra, the concept of a modified Rota-Baxter algebra with a weight was introduced

in [6] as a special case of extended O-operators in connection with the extended

associative Yang-Baxter equation. The latter motivated their study in the Lie al-

gebra context [5]. In [29], free commutative modified Rota-Baxter algebras were

constructed by means of a modified quasi-shuffle product and modified stuffle prod-

uct, in analogy to the case of free commutative Rota-Baxter algebras [10,17].

Considering the close relationship between the modified Rota-Baxter (associa-

tive) algebras and the modified Yang-Baxter equation for Lie algebras, it is espe-

cially interesting to consider noncommutative modified Rota-Baxter algebras. This

is the subject of study of this paper, focusing on the construction of the free objects
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and the Hopf algebra structures on the free objects. More precisely, in Section 2,

we obtain an explicit construction of the free modified Rota-Baxter algebra on an

algebra, by giving a natural basis of the algebra and the corresponding multiplica-

tion table. In Section 3, we further provide a bialgebra and then a Hopf algebra

structure on the free modified Rota-Baxter algebra.

Notations. For the rest of this paper, unless otherwise specified, algebras are

associative unitary algebras over a commutative unitary ring k.

2. Free modified Rota-Baxter algebras

In this section we construct free modified Rota-Baxter algebras. We give the

construction in Section 2.1, leading to the main Theorem 2.6 of this section. The

proof of the theorem is completed in Section 2.2.

2.1. The general construction of the free modified Rota-Baxter algebras.

We begin with the general definition of modified Rota-Baxter algebras.

Definition 2.1. Let R be a k-algebra and κ ∈ k. A linear map P : R→ R is called

a modified Rota-Baxter operator of weight κ if P satisfies the operator identity

P (u)P (v) = P (uP (v)) + P (P (u)v) + κuv, for all u, v ∈ R. (4)

Then the pair (R,P ) or simply R is called a modified Rota-Baxter algebra of weight

κ.

Together with the algebra homomorphisms between the algebras that preserves

the linear operators, the class of modified Rota-Baxter algebras of weight κ forms a

category. We refer the reader to [29] and the references therein for basic properties

of modified Rota-Baxter algebras and focus our attention to the construction of

free modified Rota-Baxter algebras. We first give the definition.

Definition 2.2. LetA be a k-algebra. A free modified Rota-Baxter algebra on A is a

modified Rota-Baxter algebra (F (A), PA) together with an algebra homomorphism

j : A −→ F (A) with the property that, for any given modified Rota-Baxter algebra

(R,P ) and algebra homomorphism f : A −→ R, there is a unique homomorphism

f̄ : F (A) −→ R of modified Rota-Baxter algebras such that f̄ j = f .

Note that taking A to be the free algebra k〈Y 〉 on a set Y , we obtain the free

modified Rota-Baxter algebra on the set Y . Let A be a k-algebra with a k-basis

X. We first display a k-basis X∞ of free modified Rota-Baxter algebras in terms

of bracketed words from the alphabet set X.
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Remark 2.3. The set X∞ is called the set of Rota-Baxter words that was applied

to construct free Rota-Baxter algebras [14]. Enumeration properties and generating

functions of Rota-Baxter words were obtained in [18] to which we refer the reader

for further details.

Let b and c be two different symbols not in X, called brackets, and let X ′ :=

X ∪ {b, c}. Denote by M(X ′) the free monoid generated by X ′.

Definition 2.4. ([13,16]) Let Y,Z be two subsets of M(X ′). Define the alternating

product of Y and Z to be

Λ(Y,Z) =
( ⊔

r≥1

(
Y bZc

)r)⊔( ⊔
r≥0

(
Y bZc

)r
Y
)⊔( ⊔

r≥1

(
bZcY

)r)⊔( ⊔
r≥0

(
bZcY

)rbZc).
Here t stands for disjoint union.

For example, y1bz1cy2, bz1cy1bz2c, y1, y2 ∈ Y , z1, z2 ∈ Z, are elements in Λ(Y, Z).

But bz1cbz2c are not in Λ(Y, Z).

We construct a sequence Xn of subsets of M(X ′) by the following recursion on

n ≥ 0. For the initial step, we define X0 := X ∪ {1}. For the inductive step, we

define

Xn+1 := Λ(X,Xn) ∪ {1} for n ≥ 1.

For example, for x1, x2, x3 ∈ X, the elements bx1cx2bx3c, x1bx2bx3cc and

bbx1cx2bbx3ccc are all in X3, the first two are in X2 and the first one is in X1.

From the definition we have X1 ⊇ X0. Assuming Xn ⊇ Xn−1, we get

Xn+1 = Λ(X,Xn) ⊇ Λ(X,Xn−1) = Xn.

Thus we can define

X∞ := lim
−→

Xn =
⋃
n≥0

Xn.

For x ∈ X∞, we define the depth dep(x) of x to be

dep(x) := min{n | x ∈ Xn}.

Further, every x ∈ X∞ \ {1} has a unique standard decomposition:

x = x1 · · · xb, (5)

where xi, 1 ≤ i ≤ b, are alternatively in X or in bX∞c. We call b to be the breadth

of x, denoted by bre(x). We define the head h(x) of x to be 0 (resp. 1) if x1 is in X

(resp. in bX∞c). Similarly define the tail t(x) of x to be 0 (resp. 1) if xb is in X

(resp. in bX∞c).
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Fix a κ ∈ k. We will equip the free k-module

Fκ(A) = kX∞ =
⊕
x∈X∞

kx (6)

with a multiplication � := �κ. This is accomplished by defining x � x′ ∈ Fκ(A)

for basis elements x, x′ ∈ X∞ and then extending bilinearly. Roughly speaking,

the product of x and x′ is defined to be the concatenation whenever t(x) 6= h(x′).

When t(x) = h(x′), the product is defined by the product in A or by the modified

Rota-Baxter identity in Eq. (4).

To be precise, we use induction on the sum n := dep(x) + dep(x′) ≥ 0 to define

x � x′. For the initial step of n = 0, x, x′ are in X and so are in A. Then we define

x � x′ := x · x′ ∈ A ⊆ Fκ(A).

Here · is the product in A.

For the inductive step, let k ≥ 0 be given and assume that x�x′ have been defined

for all x, x′ ∈ X∞ with n = dep(x) + dep(x′) ≤ k. Then consider x, x′ ∈ X∞ with

n = dep(x) + dep(x′) = k + 1. First treat the case when bre(x) = bre(x′) = 1. Then

x and x′ are in X or bX∞c. Since n = k+ 1 ≥ 1, x and x′ cannot be both in X. We

accordingly define

x � x′ :=


xx′, if x ∈ X and x′ ∈ bX∞c,
xx′, if x ∈ bX∞c and x′ ∈ X,
bbxc � x′c+ bx � bx′cc+ κx � x′, if x = bxc and x′ = bx′c ∈ bX∞c.

(7)

Here the product in the first and second case are by concatenation and in the third

case is by the induction hypothesis since for the three products on the right hand

side we have

dep(bxc) + dep(x′) = dep(bxc) + dep(bx′c)− 1 = dep(x) + dep(x′)− 1 = k,

dep(x) + dep(bx′c) = dep(bxc) + dep(bx′c)− 1 = dep(x) + dep(x′)− 1 = k,

dep(x) + dep(x′) = dep(bxc)− 1 + dep(bx′c)− 1 = dep(x) + dep(x′)− 2 = k − 1.

We next treat the case when bre(x) > 1 or bre(x′) > 1. Let x = x1 · · · xb and

x′ = x′1 · · · x′b′ be the standard decompositions from Eq. (5). We then define

x � x′ = x1 · · · xb−1(xb � x′1) x′2 · · · x′b′ (8)

where xb �x′1 is defined by Eq. (7) and the rest is given by concatenation. Extending

� bilinearly, we obtain a binary operation

� : Fκ(A)⊗ Fκ(A)→ Fκ(A).
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This completes the definition of �.

Lemma 2.5. Let x, x′ ∈ X∞.

(a) h(x) = h(x � x′) and t(x′) = t(x � x′).

(b) If t(x) 6= h(x′), then x � x′ = xx′ (concatenation).

(c) If t(x) 6= h(x′), then for any x′′ ∈ X∞,

(xx′) � x′′ = x(x′ � x′′) and x′′ � (xx′) = (x′′ � x)x′.

Proof. Items (a) and (b) follow from the definition of �. The proof of Item (c) is

the same as [16, Lemma 4.4.5]. �

We next define a linear operator

PA : Fκ(A)→ Fκ(A), x 7→ bxc.

In the rest of the paper, we will use the infix notation bxc interchangeably with

PA(x) for any x ∈ Fκ(A). Let

jX : X ↪→ X∞ ↪→ Fκ(A)

be the natural injection which extends to an algebra injection

jA : A→ Fκ(A).

Now we state our first main result, to be proved in the next subsection.

Theorem 2.6. Let A be a k-algebra with a k-basis X and κ ∈ k be given.

(a) The pair (Fκ(A), �) is an algebra.

(b) The triple (Fκ(A), �, PA) is a modified Rota-Baxter algebra of weight κ.

(c) The triple (Fκ(A), �, PA) together with the embedding jA is the free modified

Rota-Baxter algebra of weight κ on the algebra A.

2.2. The proof of Theorem 2.6.

Proof. (a) It is enough to verify the associativity for basis elements:

(x′ � x′′) � x′′′ = x′ � (x′′ � x′′′), for all x′, x′′, x′′′ ∈ X∞. (9)

We carry out the verification by induction on the sum of the depths

n := dep(x′) + dep(x′′) + dep(x′′′) ≥ 0.
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If n = 0, then

dep(x′) = dep(x′′) = dep(x′′′) = 0

and so x′, x′′, x′′′ ∈ X. In this case the product � is given by the product in A and

so is associative.

Assume that Eq. (9) holds for n ≤ k for any given k ≥ 0 and consider x′, x′′, x′′′ ∈
X∞ with

n = dep(x′) + dep(x′′) + dep(x′′′) = k + 1 ≥ 1.

If t(x′) 6= h(x′′), then by Lemma 2.5,

(x′ � x′′) � x′′′ = (x′x′′) � x′′′ = x′(x′′ � x′′′) = x′ � (x′′ � x′′′).

A similar argument holds when t(x′′) 6= h(x′′′). Thus we only need to verify the

associativity when t(x′) = h(x′′) and t(x′′) = h(x′′′). We next reduce the proof to

the breadths of the words and depart to show a lemma.

Lemma 2.7. If Eq. (9) holds for all x′, x′′ and x′′′ in X∞ of breadth one, then it

holds for all x′, x′′ and x′′′ in X∞.

Proof. We use induction on the sum of breadths m := bre(x′)+bre(x′′)+bre(x′′′) ≥
3. The case when m = 3 is the assumption of the lemma. Assume the associativity

holds for m ≤ j for some j ≥ 3 and take x′, x′′, x′′′ ∈ X∞ with m = j + 1 ≥ 4. So at

least one of x′, x′′, x′′′ has breadth greater than or equal to 2.

First assume that bre(x′) ≥ 2. Then we may write

x′ = x′1x
′
2, where x′1, x

′
2 ∈ X∞ and t(x′1) 6= h(x′2).

By Lemma 2.5, we obtain

(x′ � x′′) � x′′′ = ((x′1x
′
2) � x′′) � x′′′ = (x′1(x′2 � x′′)) � x′′′ = x′1((x′2 � x′′) � x′′′).

Similarly,

x′ � (x′′ � x′′′) = (x′1x
′
2) � (x′′ � x′′′) = x′1(x′2 � (x′′ � x′′′)).

Thus

(x′ � x′′) � x′′′ = x′ � (x′′ � x′′′)

whenever

(x′2 � x′′) � x′′′ = x′2 � (x′′ � x′′′),

which follows from the induction hypothesis. A similar proof works if bre(x′′′) ≥ 2.

Finally if bre(x′′) ≥ 2, we may write

x′′ = x′′1x
′′
2 where x′′1 , x

′′
2 ∈ X∞ and t(x′′1) 6= h(x′′2).
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By Lemma 2.5 again, we get

(x′ � x′′) � x′′′ = (x′ � (x′′1x
′′
2)) � x′′′ = ((x′ � x′′1)x′′2) � x′′′ = (x′ � x′′1)(x′′2 � x′′′).

In the same way, we have

(x′ � x′′1)(x′′2 � x′′′) = x′ � (x′′ � x′′′).

This proves the associativity. �

In summary, the proof of the associativity has been reduced to the special case

when x′, x′′, x′′′ ∈ X∞ are chosen so that

(a) n = dep(x′) + dep(x′′) + dep(x′′′) = k + 1 ≥ 1 with the assumption that the

associativity holds when n ≤ k.

(b) the elements have breadth one and

(c) t(x′) = h(x′′) and t(x′′) = h(x′′′).

By Item (b), the head and tail of each of the elements are the same. Therefore

by Item (c), either all the three elements are in X or they are all in bX∞c. If

all of x′, x′′, x′′′ are in X, then as already shown, the associativity follows from the

associativity in A. So it remains to consider the case when x′, x′′, x′′′ are all in bX∞c.
Then we may write

x′ = bx′c, x′′ = bx′′c, x′′′ = bx′′′c with x′, x′′, x′′′ ∈ X∞.

Applying Eq. (7) and bilinearity of the product �, we get

(x′ � x′′) � x′′′ =
(
bbx′c � x′′c+ bx′ � bx′′cc+ κx′ � x′′

)
� bx′′′c

= bbx′c � x′′c � bx′′′c+ bx′ � bx′′cc � bx′′′c+ κ(x′ � x′′) � bx′′′c

= bbx′c � x′′c � x′′′c+ b
(
bx′c � x′′

)
� bx′′′cc+ κ

(
bx′c � x′′

)
� x′′′

+bbx′ � bx′′cc � x′′′c+ b
(
x′ � bx′′c

)
� bx′′′cc+ κ

(
x′ � bx′′c

)
� x′′′

+κ(x′ � x′′) � bx′′′c

= bbx′c � x′′c � x′′′c+ b
(
bx′c � x′′

)
� bx′′′cc+ κ

(
bx′c � x′′

)
� x′′′

+bbx′ � bx′′cc � x′′′cc+ bx′ � bbx′′c � x′′′cc+ bx′ � bx′′ � bx′′′cc

+κbx′ � x′′ � x′′′c+ κ
(
x′ � bx′′c

)
� x′′′ + κ(x′ � x′′) � bx′′′c.

Similarly we obtain

x′ �
(
x′′ � x′′′

)
= bx′c �

(
bbx′′c � x′′′c+ bx′′ � bx′′′cc+ κx′′ � x′′′

)
= bx′c � bbx′′c � x′′′c+ bx′c � bx′′ � bx′′′cc+ κbx′c �

(
x′′ � x′′′

)
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= bbx′c �
(
bx′′c � x′′′

)
c+ bx′ � bbx′′c � x′′′cc+ κx′ �

(
bx′′c � x′′′

)
+bbx′c �

(
x′′ � bx′′′c

)
c+ bx′ � bx′′ � bx′′′ccc+ κx′ �

(
x′′ � bx′′′c

)
+κbx′c �

(
x′′ � x′′′

)
= bbbx′c � x′′c � x′′′c+ bbx′ � bx′′cc � x′′′c

+κbx′ � x′′ � x′′′c+ bx′ � bbx′′c � x′′′cc+ κx′ �
(
bx′′c � x′′′

)
+bbx′c �

(
x′′ � bx′′′c

)
c+ bx′ � bx′′ � bx′′′ccc+ κx′ �

(
x′′ � bx′′′c

)
+κbx′c �

(
x′′ � x′′′

)
.

Now by the induction hypothesis, the i-th term in the expansion of (x′ � x′′) � x′′′

coincides with the σ(i)-th term in the expansion of x′ � (x′′ � x′′′). Here σ ∈ Σ9 is

the permutation given by

σ =

(
1 2 3 4 5 6 7 8 9

1 6 9 2 4 7 3 5 8

)
.

This completes the proof of Theorem 2.6 (a).

(b). The proof follows from the definition PA(x) = bxc and Eq. (7).

(c). Let (M, ∗, P ) be a modified Rota-Baxter algebra with multiplication ∗ and

let f : A → M be a k-algebra homomorphism. We will construct a k-linear map

f̄ : Fκ(A) → M by defining f̄(x) for x ∈ X∞. We achieve this by defining f̄(x) for

x ∈ Xn, n ≥ 0, inductively on n. For x ∈ X0 := X, define f̄(x) = f(x). Then jf̄ = f

is satisfied. Suppose f̄(x) has been defined for x ∈ Xn and consider x in Xn+1 which

is, by definition,

Λ(X,Xn) =
( ⊔
r≥1

(XbXnc)r
)⊔( ⊔

r≥0

(XbXnc)rX
)

⊔( ⊔
r≥0

bXnc(XbXnc)r
)⊔( ⊔

r≥0

bXnc(XbXnc)rX
)
.

Let x be in the first union component
⊔
r≥1(XbXnc)r above. Then

x =

r∏
i=1

(x2i−1bx2ic)

for x2i−1 ∈ X and x2i ∈ Xn, 1 ≤ i ≤ r. By the construction of the multiplication �
and the modified Rota-Baxter operator PA, we have

x = �ri=1(x2i−1 � bx2ic) = �ri=1(x2i−1 � PA(x2i)).

Define

f̄(x) = ∗ri=1

(
f̄(x2i−1) ∗ PA

(
f̄(x2i))

)
. (10)
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where the right hand side is well-defined by the induction hypothesis. Similarly

define f̄(x) if x is in the other union components. For any x ∈ X∞, we have PA(x) =

bxc ∈ X∞, and by the definition of f̄ in (Eq. (10)), we have

f̄(bxc) = P (f̄(x)). (11)

So f̄ commutes with the modified Rota-Baxter operators. Combining this equation

with Eq. (10) we see that if x = x1 · · · xb is the standard decomposition of x, then

f̄(x) = f̄(x1) ∗ · · · ∗ f̄(xb).

Note that this is the only possible way to define f̄(x) in order for f̄ to be a

modified Rota-Baxter algebra homomorphism extending f . It remains to prove

that the map f̄ defined in Eq. (10) is indeed an algebra homomorphism. For this

we only need to check the multiplicity

f̄(x � x′) = f̄(x) ∗ f̄(x′) (12)

for all x, x′ ∈ X∞. For this we use induction on the sum of depths n := bre(x) +

bre(x′). Then n ≥ 0. When n = 0, we have x, x′ ∈ X. Then Eq. (12) follows from

the multiplicity of f . Assume the multiplicity holds for x, x′ ∈ X∞ with n ≥ k and

take x, x′ ∈ X∞ with n = k + 1. Let x = x1 · · · xb and x′ = x′1 · · · x′b′ be the standard

decompositions. Since n = k + 1 ≥ 1, at least one of xb and x′b′ is in bX∞c. Then

by Eq. (7) we have

f̄(xb � x′1) =


f̄(xbx

′
1), if xb ∈ X, x′1 ∈ bX∞c,

f̄(xbx
′
1), if xb ∈ bX∞c, x′1 ∈ X,

f̄
(
bbxbc � x′1c+ bxb � bx′1cc+ κxb � x′1

)
, if xb = bxbc, x′1 = bx′1c ∈ bX∞c.

In the first two cases, the right hand side is f̄(xb) ∗ f̄(x′1) by the definition of f̄ .

In the third case, applying Eq. (11), the induction hypothesis and the modified

Rota-Baxter relation of the operator P on M , we have

f̄
(
bbxbc � x′1c+ bxb � bx′1cc+ κxb � x′1

)
= f̄(bbxbc � x′1c) + f̄(bxb � bx′1cc) + κf̄(xb � x′1)

= P (f̄(bxbc � x′1)) + P (f̄(xb � bx′1c)) + κf̄(xb � x′1)

= P (f̄(bxbc) ∗ f̄(x′1)) + P (f̄(xb) ∗ f̄(bx′1c)) + κf̄(xb) ∗ f̄(x′1)

= P (P (f̄(xb)) ∗ f̄(x′1)) + P (f̄(xb) ∗ P (f̄(x′1))) + κ(f̄(xb) ∗ f̄(x′1))

= P (f̄(xb)) ∗ P (f̄(x′1))
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= f̄(bxbc) ∗ f̄(bx′1c)

= f̄(xb) ∗ f̄(x′1).

Therefore f̄(xb � x′1) = f̄(xb) ∗ f̄(x′1). Then

f̄(x � x′) = f̄
(
x1 · · · xb−1(xb � x′1)x′2 · · · x′b′

)
= f̄(x1) ∗ · · · ∗ f̄(xb−1) ∗ f̄(xb � x′1) ∗ f̄(x′2) · · · f̄(x′b′)

= f̄(x1) ∗ · · · ∗ f̄(xb−1) ∗ f̄(xb) ∗ f̄(x′1) ∗ f̄(x′2) · · · f̄(x′b′)

= f̄(x) ∗ f̄(x′),

as required.

This completes the proof of Theorem 2.6 �

3. The Hopf algebra structure on free modified Rota-Baxter algebras

In this section, starting with the assumption that A is a bialgebra with its

coproduct ∆A and its counit εA, we provide a bialgebraic and then a Hopf algebraic

structure on the free modified Rota-Baxter algebras Fκ(A) obtained in Section 2,

when κ = −λ2. It would be interesting to see how to extend this construction

to other weights κ. For Hopf algebra structures on free Rota-Baxter algebras,

see [15,28] for Hopf algebra structures on free Rota-Baxter algebras.

3.1. The bialgebraic structure. We now build on results from previous subsec-

tions to obtain a bialgebra structure on F−λ2(A). We first record some lemmas for

a preparation.

Lemma 3.1. Let λ be a given element of k.

(a) The linear map −λid : k→ k is a modified Rota-Baxter operator of weight

−λ2 on k.

(b) There exists a unique modified Rota-Baxter algebra morphism εM : F−λ2(A)→
k such that

εM ◦ jA = εA and εM ◦ PA = −λid ◦ εM. (13)

Proof. (a) It follows from

(−λid)(a)(−λid)(b) = λ2ab = λ2ab+ λ2ab− λ2ab

= (−λid)(a(−λid)(b)) + (−λid)((−λid)(a)b)− λ2ab.
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(b) By Item (a), (k,−λid) is a modified Rota-Baxter algebra of weight −λ2.

Then the remainder follows from Theorem 2.6 (c). �

Note that PA is a modified Rota-Baxter operator on F−λ2(A); however PA⊗PA
is not a modified Rota-Baxter operator on F−λ2(A)⊗F−λ2(A). The following result

constructs a modified Rota-Baxter operator on F−λ2(A)⊗ F−λ2(A).

Lemma 3.2. Let λ be a given element of k. Define the linear map

Q : F−λ2(A)⊗ F−λ2(A)→ F−λ2(A)⊗ F−λ2(A)

by taking

Q(x⊗ x′) := (PA(x) + λx)⊗ εM(x′)1 + x⊗ PA(x′) for x, x′ ∈ F−λ2(A). (14)

Then Q is a modified Rota-Baxter operator of weight −λ2 on F−λ2(A)⊗ F−λ2(A).

Proof. Let x1, x2, x
′
1, x
′
2 ∈ F−λ2(A). On the one hand,

Q(x1 ⊗ x′1) �′ Q(x2 ⊗ x′2)

=
(

(PA(x1) + λx1)⊗ εM(x′1)1 + x1 ⊗ PA(x′1)
)
�′
(

(PA(x2) + λx2)⊗ εM(x′2)1 + x2 ⊗ PA(x′2)
)

=
((
PA(x1) + λx1

)
�
(
PA(x2) + λx2

))
⊗ εM(x′1)εM(x′2)1 +

((
PA(x1) + λx1

)
� x2
)
⊗ εM(x′1)PA(x′2)

+
(
x1 �

(
PA(x2) + λx2

))
⊗ PA(x′1)εM(x′2) + (x1 � x2)⊗

(
PA(x′1) � PA(x′2)

)
=
(
PA(x1) � PA(x2) + λPA(x1) � x2 + λx1 � PA(x2) + λ2x1 � x2

)
⊗ εM(x′1)εM(x′2)1

+
(
PA(x1) � x2

)
⊗ εM(x′1)PA(x′2) + λ(x1 � x2)⊗ εM(x′1)PA(x′2) +

(
x1 � PA(x2)

)
⊗ PA(x′1)εM(x′2)

+ λ
(
x1 � x2

)
⊗ PA(x′1)εM(x′2) + (x1 � x2)⊗

(
PA(x′1) � PA(x′2)

)
=

(
PA(x1 � PA(x2)) + PA(PA(x1) � x2) + λPA(x1) � x2 + λx1 � PA(x2)

)
⊗ εM(x′1)εM(x′2)1

+
(
PA(x1) � x2

)
⊗ εM(x′1)PA(x′2) + λ(x1 � x2)⊗ εM(x′1)PA(x′2) +

(
x1 � PA(x2)

)
⊗ PA(x′1)εM(x′2)

+ λ
(
x1 � x2

)
⊗ PA(x′1)εM(x′2) + (x1 � x2)⊗

(
PA(x1 � PA(x2)) + PA(PA(x1) � x2)− λ2x′1 � x′2

)
.

(by Theorem (2.6) (b))

On the other hand,

Q
(

(x1 ⊗ x′1) �′ Q(x2 ⊗ x′2)
)

+Q
(
Q(x1 ⊗ x′1) �′ (x2 ⊗ x′2)

)
− λ2

(
(x1 ⊗ x′1) �′ (x2 ⊗ x′2)

)
= Q

(
(x1 ⊗ x′1) �′

(
(PA(x2) + λx2)⊗ εM(x′2)1 + x2 ⊗ PA(x′2)

))
+Q

((
(PA(x1) + λx1)⊗ εM(x′1)1 + x1 ⊗ PA(x′1)

)
�′ (x2 ⊗ x′2)

)
− λ2(x1 � x2)⊗ (x′1 � x′2)

= Q

((
x1 � PA(x2)

)
⊗ x′1εM(x′2) + λ(x1 � x2)⊗ x′1εM(x′2) + (x1 � x2)⊗

(
x′1 � PA(x′2)

))
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+Q

((
PA(x1) � x2

)
⊗ εM(x′1)x′2 + λ(x1 � x2)⊗ εM(x′1)x′2 + (x1 � x2)⊗

(
PA(x′1) � x′2

))
− λ2(x1 � x2)⊗ (x′1 � x′2)

=

(
PA

(
x1 � PA(x2)

)
+ λx1 � PA(x2)

)
⊗ εM

(
x′1εM(x′2)

)
1 +

(
x1 � PA(x2)

)
⊗ PA

(
x′1εM(x′2)

)
+ λ

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM

(
x′1εM(x′2)

)
1 + λ(x1 � x2)⊗ PA

(
x′1εM(x′2)

)
+

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM

(
x′1PA(x′2)

)
1 + (x1 � x2)⊗ PA

(
x′1PA(x′2)

)
+

(
PA

(
PA(x1) � x2

)
+ λPA(x1) � x2

)
⊗ εM

(
εM(x′1)x′2

)
1 +

(
PA(x1) � x2

)
⊗ PA

(
εM(x′1)x′2

)
+ λ

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM

(
εM(x′1)x′2

)
1 + λ(x1 � x2)⊗ PA

(
εM(x′1)x′2

)
+

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM

(
PA(x′1)x′2

)
+ (x1 � x2)⊗ PA

(
PA(x′1)x′2

)
− λ2(x1 � x2)⊗ (x′1 � x′2)

=

(
PA

(
x1 � PA(x2)

)
+ λx1 � PA(x2)

)
⊗ εM(x′1)εM(x′2)1 +

(
x1 � PA(x2)

)
⊗ PA(x′1)εM(x′2)

+ λ

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM(x′1)εM(x′2)1 + λ(x1 � x2)⊗ PA(x′1)εM(x′2)

+

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM(x′1)εM(PA(x′2))1 + (x1 � x2)⊗ PA

(
x′1PA(x′2)

)
+

(
PA

(
PA(x1) � x2

)
+ λPA(x1) � x2

)
⊗ εM(x′1)εM(x′2)1 +

(
PA(x1) � x2

)
⊗ εM(x′1)PA

(
x′2
)

+ λ

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM(x′1)εM(x′2)1 + λ(x1 � x2)⊗ εM(x′1)PA

(
x′2
)

+

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM(PA(x′1))εM(x′2)1 + (x1 � x2)⊗ PA

(
PA(x′1)x′2

)
− λ2(x1 � x2)⊗ (x′1 � x′2) (by εM is k-linear and εM is a homomorphism)

=

(
PA

(
x1 � PA(x2)

)
+ λx1 � PA(x2)

)
⊗ εM(x′1)εM(x′2)1 +

(
x1 � PA(x2)

)
⊗ PA(x′1)εM(x′2)

+ λ

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM(x′1)εM(x′2)1 + λ(x1 � x2)⊗ PA(x′1)εM(x′2)

− λ
(
PA(x1 � x2) + λx1 � x2

)
⊗ εM(x′1)εM(x′2)1 + (x1 � x2)⊗ PA

(
x′1PA(x′2)

)
+

(
PA

(
PA(x1) � x2

)
+ λPA(x1) � x2

)
⊗ εM(x′1)εM(x′2)1 +

(
PA(x1) � x2

)
⊗ εM(x′1)PA

(
x′2
)

+ λ

(
PA(x1 � x2) + λx1 � x2

)
⊗ εM(x′1)εM(x′2)1 + λ(x1 � x2)⊗ εM(x′1)PA

(
x′2
)

− λ
(
PA(x1 � x2) + λx1 � x2

)
⊗ εM(x′1)εM(x′2)1 + (x1 � x2)⊗ PA

(
PA(x′1)x′2

)
− λ2(x1 � x2)⊗ (x′1 � x′2) (Using Eq. (13) in the fifth and eleventh terms)
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=

(
PA

(
x1 � PA(x2)

)
+ λx1 � PA(x2) + PA

(
PA(x1) � x2

)
+ λPA(x1) � x2

)
⊗ εM(x′1)εM(x′2)1

+
(
x1 � PA(x2)

)
⊗ PA(x′1)εM(x′2) + λ(x1 � x2)⊗ PA(x′1)εM(x′2) + (x1 � x2)⊗ PA

(
x′1PA(x′2)

)
+
(
PA(x1) � x2

)
⊗ εM(x′1)PA

(
x′2
)

+ λ(x1 � x2)⊗ εM(x′1)PA

(
x′2
)

+ (x1 � x2)⊗ PA

(
PA(x′1)x′2

)
− λ2(x1 � x2)⊗ (x′1 � x′2).

This completes the proof. �

With a similar argument, we can obtain

Lemma 3.3. Let λ be a given element of k. Define the linear map

Q̃ : F−λ2(A)⊗ F−λ2(A)⊗ F−λ2(A)→ F−λ2(A)⊗ F−λ2(A)⊗ F−λ2(A)

by taking

Q̃(x⊗ x′ ⊗ x′′) :=(PA(x) + λx)⊗ εM(x′)1⊗ εM(x′′)1 + x⊗ (PA(x′) + λx′)⊗ εM(x′′)1

+ x⊗ x′ ⊗ PA(x′′) for x, x′ ∈ F−λ2(A).

(15)

Then Q̃ is a modified Rota-Baxter operator of weight −λ2 on F−λ2(A)⊗F−λ2(A)⊗
F−λ2(A).

Now we are ready for our main result of this subsection. Recall εM : F−λ2(A)→
k is an algebra homomorphism given in Lemma 3.1. Let jA : A → Fκ(A) be

the natural embedding. By Theorem 2.6 (c) and Lemma 3.2, there is a (unique)

modified Rota-Baxter algebra morphism

∆M : F−λ2(A)→ F−λ2(A)⊗ F−λ2(A)

such that ∆M ◦ jA = ∆A.

Theorem 3.4. Let A be a bialgebra and λ ∈ k. Then the quintuple (F−λ2(A), �, 1,∆M, εM)

is a bialgebra.

Proof. It suffices to prove the counity of εM and coassociativity of ∆M. For the

former, denote by

φ := (εM ⊗ id)∆M : F−λ2(A)→ F−λ2(A)

Then φ is an algebra homomorphism, since εM and ∆M are algebra homomor-

phisms. Further it is a modified Rota-Baxter algebra morphism. Indeed, for any

x ∈ F−λ2(A),

φ ◦ PA(x) =
(
(εM ⊗ id)∆M

)
PA(x) = (εM ⊗ id)(∆MPA)(x)
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=(εM ⊗ id)(Q∆M )(x) (by ∆M being an modified Rota-Baxter algebra morphism)

=(εM ⊗ id)Q
(∑

(x)

x(1) ⊗ x(2)

)
(by Sweedler’s notation)

=
∑
(x)

(εM ⊗ id)
(

(PA(x(1)) + λx(1))⊗ εM(x(2))1 + x(1) ⊗ PA(x(2))
)

(by Eq. (14))

=
∑
(x)

(
εM(PA(x(1)))⊗ εM(x(2))1 + λεM(x(1))⊗ εM(x(2))1 + εM(x(1))⊗ PA(x(2))

)

=
∑
(x)

(
− λεM(x(1))⊗ εM(x(2))1 + λεM(x(1))⊗ εM(x(2))1 + εM(x(1))⊗ PA(x(2))

)
(by Eq. (13))

=
∑
(x)

εM(x(1))⊗ PA(x(2)) =
∑
(x)

PA(εM(x(1))x(2)) = PA((εM ⊗ id)∆M (x))

=PA ◦ φ(x).

By unicity in the universal property of F−λ2(A), we have

(εM ⊗ id)∆M = φ = idF−λ2 (A)

and so εM is a left counit. By symmetry, we can prove εM is also a right counit.

Moreover, both (∆M⊗ id)∆M and (id⊗∆M )∆M are modified Rota-Baxter alge-

bra morphisms from F−λ2(A) to F−λ2(A)⊗F−λ2(A)⊗F−λ2(A), which is equipped

with the modified Rota-Baxter operator Q̃ of weight −λ2 given in Lemma 3.3. As

they coincide on A

(∆M ⊗ id)∆M |A = (∆A ⊗ id)∆A = (id⊗∆A)∆A = (id⊗∆M )∆M |A,

they are equal and so ∆M is coassociative. Here ∆A is the coproduct on A. Thus

the quintuple (F−λ2(A), �, 1,∆M, εM) is a bialgebra. �

Remark 3.5. For any x ∈ F−λ2(A), we have

∆M ◦ PA(x) =Q ◦∆M (x) (by ∆M being a modified Rota-Baxter algebra morphism)

=Q
(∑

(x)

x(1) ⊗ x(2)

)
(by Sweedler’s notation)

=
∑
(x)

(
(PA(x(1)) + λx(1))⊗ εM(x(2))1 + x(1) ⊗ PA(x(2))

)
(by Eq. (14))

=
∑
(x)

(
PA(x(1))⊗ εM(x(2))1 + λx(1) ⊗ εM(x(2))1 + x(1) ⊗ PA(x(2))

)
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=
∑
(x)

(
PA(x(1)εM(x(2)))⊗ 1 + λx(1)εM(x(2))⊗ 1 + (id⊗ PA)(x(1) ⊗ x(2))

)
=PA(x)⊗ 1 + λx⊗ 1 + (id⊗ PA)∆M (x) (by εM being the counit).

In other words,

∆MPA = PA ⊗ 1 + (id⊗ PA)∆M + λid⊗ 1, (16)

which is analogue to the 1-cocycle condition in the well-known Connes-Kreimer

Hopf algebra on rooted trees [11].

3.2. The Hopf algebraic structure. In this last part of the paper we show that

if we start with A being a connected filtered bialgebra and λ ∈ k, then the bialgebra

F−λ2(A) also has a connected filtration and hence is a Hopf algebra.

Definition 3.6. A bialgebra (A,m, µ,∆, ε) is called filtered if it has an increasing

filtration An, n ≥ 0, such that

A = ∪n≥0An, ApAq ⊆ Ap+q and ∆(An) ⊆
∑

p+q=n

Ap ⊗Aq for p, q, n ≥ 0.

A filtered bialgebra A is called connected if A0 = imµ and A = A0 ⊕ ker ε.

The following result is well-known.

Lemma 3.7. [23] A connected filtered bialgebra is a Hopf algebra.

Our discussion in this section will be based on the following condition.

Definition 3.8. A k-basis X of a connected filtered bialgebra A = ∪n≥0An is

called a filtered basis of A if there is an increasing filtration X = ∪n≥0Xn such that

An = kXn, X\{1} ⊆ ker ε,X0 = {1}.

Here 1 is the identity of A. Elements x ∈ Xn \ Xn−1 are said to have degree n,

denoted by degA(x) = n.

Let A be a connected filtered bialgebra with a filtered basis X. Recall that X∞

constructed in Subsection 2.1 is a k-basis of the free modified Rota-Baxter algebra

F−λ2(A). We now define the degree deg(x) for x ∈ X∞ by induction on dep(x). For

the initial step of dep(x) = 0, we get x ∈ X ⊆ A and define

deg(x) := degA(x). (17)

For the inductive step of dep(x) ≥ 1, if bre(x) = 1, then x = bxc and we define

deg(x) := deg(x) + 1; (18)
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if bre(x) ≥ 2, then write x = x1 · · · xb in the standard decomposition and define

deg(x) :=

b∑
i=1

deg(xi), (19)

where each deg(xi) is defined either in Eq. (17) or in Eq. (18) by the induction

hypothesis.

Remark 3.9. For later applications, we also use the notion deg(cx) = deg(x) for

c ∈ k\{0}.

Denote

H := F−λ2(A) and Hn := k{x ∈ X∞ | deg(x) ≤ n} for n ≥ 0. (20)

Then

H =
⋃
n≥0

Hn , H0 = k, H = k 1⊕ ker εM and PA(Hn) ⊆ Hn+1. (21)

Now we are going to prove that H is a filtered bialgebra, beginning with the

compatibility of the multiplication with the filtration.

Lemma 3.10. For p, q ≥ 0, we have

Hp �Hq ⊆ Hp+q. (22)

Proof. Let x ∈ Hp and x′ ∈ Hq be two basis elements in X∞. Then

deg(x) ≤ p and deg(x′) ≤ q.

We now verify Eq. (22) by induction on the sum s := p+ q ≥ 0. When s = 0, then

p = q = 0. By Eq. (21), we obtain that x = x′ = 1 and so x � x′ = 1 ∈ H0. This

finishes the initial step.

Given an s ≥ 0, assume that Eq. (22) holds for x, x′ with p+ q = s and consider

case p+ q = s+ 1. If x = 1 or x′ = 1, without loss of generality, letting x = 1, then

p = 0 and

x � x′ = x′ ∈ Hq = Hp+q.

So we may suppose x, x′ 6= 1. Write

x = x1 · · · xb and x′ := x′1 · · · x′b′ with b, b′ ≥ 1
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in their standard decompositions. Under this condition, we proceed to prove

Eq. (22) by induction on the sum t := b+ b′ ≥ 2. When t = 2, then b = b′ = 1. If

x ∈ X ⊆ A or x′ ∈ X ⊆ A, then by Eq. (19),

x � x′ = xx′ ∈ Hdeg(x)+deg(x′) ⊆ Hp+q.

It remains to check the outstanding case of

x := x1 = PA(x1) and x′ := x′1 = PA(x′1),

where

x1, x
′
1 ∈ X∞ and deg(x1) + deg(x′1) ≤ s+ 1.

Then

deg(x1) + deg(x′1) = deg(x1) + deg(x′1)− 1 ≤ s,

deg(x1) + deg(x′1) = deg(x1)− 1 + deg(x′1) ≤ s,

deg(x1) + deg(x′1) = deg(x1)− 1 + deg(x′1)− 1 ≤ s− 1.

By the induction hypothesis on s, we have

x1 � x′1, x1 � x′1 ∈ Hs and x1 � x′1 ∈ Hs−1,

which implies from Eq. (21) that

PA(x1 � x′1), PA(x1 � x′1) ∈ Hs+1.

Hence by Eq. (7),

x1 � x′1 = PA(x1 � x′1) + PA(x1 � x′1)− λ2x1 � x′1 ∈ Hs+1.

Assume that Eq. (22) holds for b+ b′ = t ≥ 2 and p+ q = s+ 1 and consider the

case when b+ b′ = t+ 1 ≥ 3 and p+ q = s+ 1. So either x or x′ has breadth greater

than or equal to 2, giving us three cases to consider:

Case 1. bre(x) ≥ 2. Let x := x1, 1x1, 2, where x1, 1, x1, 2 ∈ X∞ with breadths

bre(x1, 1),bre(x1, 2) ≥ 1 respectively. By Eq. (19), we obtain deg(x) = deg(x1, 1) +

deg(x1, 2). From Eq. (8),

x � x′ = (x1, 1x1, 2) � x′ = x1, 1(x1, 2 � x′).

By the induction on t, we have

x1, 2 � x′ ∈ Hdeg(x1, 2)+deg(x′),

whence by Eq. (19),

x � x′ = x1, 1(x1, 2 � x′) ∈ Hdeg(x1, 1)+deg(x1, 2)+deg(x′) = Hdeg(x)+deg(x′).
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Case 2. bre(x′) ≥ 2. The proof of this case is similar to Case 1.

Case 3. bre(x) ≥ 2 and bre(x′) ≥ 2. Let x := x1, 1x1, 2 and x′ := x′1, 1x
′
1, 2, where

x1, 1, x1, 2, x
′
1, 1, x

′
1, 2 ∈ X∞ with breadths bre(x1, 1),bre(x1, 2),bre(x′1, 1),bre(x′1, 2) ≥ 1

respectively. By Eq. (19), we obtain

deg(x) = deg(x1, 1) + deg(x1, 2) and deg(x′) = deg(x′1, 1) + deg(x′1, 2).

Thus by Eq. (8),

x � x′ = (x1, 1x1, 2) � (x′1, 1x
′
1, 2) = x1, 1(x1, 2 � x′1, 1)x′1, 2.

By the induction on t, we have

x1, 2 � x′1, 1 ∈ Hdeg(x1, 2)+deg(x′1, 1)
.

With a similar argument to Case 1. we get

x � x′ = x1, 1(x1, 2 � x′1, 1)x′1, 2 ∈ Hdeg(x)+deg(x′).

This finishes the proof. �

For the compatibility of the coproduct with the filtration, we have

Lemma 3.11. For n ≥ 0, we have

∆M(Hn) ⊆
∑

p+q=n

Hp ⊗Hq. (23)

Proof. We verify Eq. (23) by showing

Claim 3.12. For any x ∈ X∞, we have

∆M(x) =
∑
(x)

x(1) ⊗ x(2), (24)

where x(1) and x(2) are non-zero linear multiples of elements of X∞ with deg(x(1))+

deg(x(2)) ≤ deg(x). Here we have adapted the notation in Remark 3.9.

To prove this claim we proceed by induction on deg(x) ≥ 0. For the initial step

of deg(x) = 0, we get x = 1 and the result holds. Assume that Claim (3.12) holds

for x ∈ Hk and consider x ∈ Hk+1 for some k ≥ 0.

In this case, we prove Claim (3.12) by induction on the breadth b := bre(x) ≥ 1.

If b = 1, we have x ∈ X ⊆ A or x = PA(x) for some x ∈ X∞. For the former,

Claim (3.12) holds since ∆M is given by ∆A and A is a connected filtered bialgebra
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by our hypothesis. For the latter, applying the induction hypothesis on n, we can

write

∆M(x) =
∑
(x)

x(1) ⊗ x(2),

where deg(x(1)) + deg(x(2)) ≤ deg(x) = k, with the notion in Remark 3.9. By

Eq. (16), we have

∆M(x) = ∆M(PA(x)) = x⊗ 1 + (id⊗ PA)∆M(x) + λx⊗ 1

= x⊗ 1 +
∑
(x)

(x(1) ⊗ PA(x(2)) + λx⊗ 1.

By Eq. (20), it is sufficient to show that the sum of degrees of tensor factors in each

summand is less than or equal to k + 1, which follows from

deg(x) + deg(1) = deg(x) ≤ k + 1, deg(x) + deg(1) = deg(x) ≤ k,

deg(x(1)) + deg(PA(x(2))) = deg(x(1)) + deg(x(2)) + 1 ≤ k + 1.

Assume that Claim (3.12) holds for x ∈ Hk+1 with bre(x) = b and consider the

case x ∈ Hk+1 with bre(x) = b + 1 ≥ 2. Let x = x1x2, where x1, x2 ∈ X∞ with

bre(x1),bre(x2) ≥ 1. From Eq. (19), we have

deg(x1) + deg(x2) = deg(x) ≤ k + 1. (25)

Write
∆M(x1) =

∑
(x1)

x1(1) ⊗ x1(2) and ∆M(x2) =
∑
(x2)

x2(1) ⊗ x2(2).

By the induction hypothesis on b, we have

deg(x1(1)) + deg(x1(2)) ≤ deg(x1) and deg(x2(1)) + deg(x2(2)) ≤ deg(x2). (26)

So we have

∆M(x) = ∆M(x1x2) = ∆M(x1 � x2) = ∆M(x1) � ∆M(x2)

=

∑
(x1)

x1(1) ⊗ x1(2)

 �
∑

(x2)

x2(1) ⊗ x2(2)


=
∑
(x1)

∑
(x2)

(x1(1) � x2(1))⊗ (x1(2) � x2(2)).

By Eq. (22),

x1(1) � x2(1) ∈ Hdeg(x1(1))+deg(x2(1)) and x1(2) � x2(2) ∈ Hdeg(x1(2))+deg(x2(2)),

which implies from Eqs. (20), (25) and (26) that Claim 3.12 holds. �

We now arrive at our last main result.
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Theorem 3.13. Let A = ∪n≥0An be a connected filtered bialgebra with a filtered

basis. Then H = F−λ2(A) is also a connected filtered bialgebra, and hence a Hopf

algebra.

Proof. By Lemma 3.7, we just need to prove that F−λ2(A) is a connected filtered

bialgebra. This follows from Lemmas 3.10, 3.11 and Eq. (21). �
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