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Abstract. In this paper we are mainly concerned with DW rings, i.e., rings

in which every ideal is a w-ideal. We give some new classes of DW rings and we

show how the concept of DW domains is used to characterize Prüfer domains

and Dedekind domains. Namely, we prove that a ring is a Prüfer domain

(resp., Dedekind domain) if and only if it a coherent (resp., Noetherian) DW

domain with finite weak global dimension.
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1. Introduction

Let R be a domain with quotient field K, and let F(R) denote the set of nonzero

fractional ideals of R. A map ? : F(R)→ F(R), I 7→ I?, is said to be a star operation

on R if the following conditions hold for every nonzero a ∈ K and I, J ∈ F(R): (1)

(aI)? = aI? and R? = R; (2) I ⊆ J implies I? ⊆ J?; and (3) I ⊆ I? and (I?)? = I?.

It is common to denote the trivial star operation (I 7→ I) by “d”. For any fractional

ideal I of R, I is called a fractional ?-ideal if I? = I and I is called a ?-ideal of R

if I is an ideal of R and I? = I.

For I ∈ F(R), set I−1 = {x ∈ K | xI ⊆ R}. An ideal J of R is called a GV -ideal

if J is a finitely generated nonzero fractional ideal of R and J−1 = R. The set

of all GV -ideals of R is denoted by GV (R). The w-operation on R is defined by

Iw = {x ∈ K | there exists J ∈ GV (R) such that xJ ⊆ I}. One can see that the

notion of a w-ideal coincides with the notion of a semi-divisorial ideal introduced

by Glaz and Vasconcelos in 1977 [4] which may have some far reaching effects on

the theory of star operations. As a star operation, the w-operation was briefly

but effectively touched on by Hedstrom and Houston in 1980 under the name of

F∞-operation [5]. Later, this star operation was intensely studied by Wang and

McCasland in a more general setting. In particular, Wang and McCasland showed

that the w-envelope notion is a very useful tool in studying strong Mori domains

[21,22].
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For a domain R and a nonzero fractional ideal I of R, the v- and t-closures of I

are defined, respectively, by Iv := (I−1)−1 and It := ∪Jv, where J ranges over the

set of nonzero finitely generated subideals of I. The t- and v-operations are also

examples of star operations. It is well-known that for a domain R, d ≤ w ≤ t ≤ v in

the sense that for each nonzero fractional ideal I of R, I = Id ⊆ Iw ⊆ It ⊆ Iv, and

the inclusions may be strict [15]. In [6], Heinzer has initiated the study of domains

in which each ideal is divisorial (i.e. each ideal is a v-ideal, or d = v) and called

them divisorial domains. Inspired by this work, Houston and Zafrullah studied the

so-called TV domains, i.e. domains in which each t-ideal is a v-ideal (or, t = v, see

[8]). Mimouni has studied the TW domains, i.e., domains in which each w-ideal is

a t-ideal, or w = t (see [15]) and DW domains, or domains in which each ideal is a

w-ideal, i.e. the d = w (see [16]).

In [25], the authors extend the notion of the w-operation to commutative rings

with zero-divisors. Let R be a commutative ring (not necessary a domain) and J

an ideal of R. Following [25], J is called a GV -ideal if J is finitely generated and

the natural homomorphism ϕ : R → J∗ = HomR(J,R) is an isomorphism. Let M

be an R-module, and define

torGV (M) = {x ∈M | Jx = 0 for someJ ∈ GV (R)}

where GV (R) is the set of GV -ideals of R. It is clear that torGV (M) is a submodule

of M . Now, M is said to be GV -torsion (resp., GV -torsion-free) if torGV (M) = M

(resp., torGV (M) = 0). A GV -torsion-free module M is called a w-module if

Ext1R(R/J,M) = 0 for any J ∈ GV (R). Projective modules and reflexive modules

are w-modules. In [27], it was shown that flat modules are w-modules.

A commutative ring is called a DW ring if every ideal of R is a w-ideal. Over a

domain this last definition coincides with the definition of DW domain in [16].

In Section 2, we give some new classes of DW rings. Section 3 gives new char-

acterizations of Krull domains, Dedekind domains and PvMDs.

Throughout, all rings considered are commutative with unity and all modules

are unital. Let R be a ring and M be an R-module. As usual, we use pdR(M),

idR(M), and fdR(M) to denote, respectively, the classical projective dimension,

injective dimension, and flat dimension of M , and wdim(R) and gldim(R) to denote,

respectively, the weak and global homological dimensions of R.

2. On DW rings

Let w-Max(R) denote the set of w-ideals of R maximal among proper integral

w-ideals of R (maximal w-ideals). By [25, Proposition 3.8], every maximal w-ideal

is prime. Let M and N be R-modules and let f : M → N be a homomorphism.



NOTE ON THE DW RINGS 45

Following [18], f is called a w-monomorphism if fm : Mm → Nm is a monomorphism

for all m ∈ w−Max(R). An R-module M is called a w-flat module if the induced

map 1 ⊗ f : M ⊗ A → M ⊗ B is a w-monomorphism for any w-monomorphism

f : A → B. Certainly, flat modules are w-flat. The notion of w-flat modules

appeared first in [17] over a domain and was extended to arbitrary commutative

rings in [12]. Recently, modules of this type have received attention in several

papers in the literature (see for example [12,19,23]).

By [23, Proposition 1.1], it is clear that over a DW ring, w-flat modules coincide

with flat modules. The next result shows that DW rings are the only rings with

this property.

Proposition 2.1. Let R be a ring. The following are equivalent:

(1) R is a DW ring.

(2) Every w-flat module is flat.

(3) Every finitely presented w-flat module is projective.

(4) Every GV -torsion module is flat.

(5) Every finitely presented GV -torsion module is projective.

(6) fdR(F ) ≤ 1 for every w-flat module F .

(7) fdR(F ) ≤ 1 for every finitely presented w-flat module F .

(8) fdR(F ) ≤ 1 for every GV -torsion module F .

(9) fdR(F ) ≤ 1 for every finitely presented GV -torsion module F .

Proof. It is proved in [24, Theorem 2.7] that an R-module M is GV -torsion if

and only if Mm = 0 for all maximal w-ideals m of R. Hence, by [23, Proposition

1.1], it is clear that a GV -torsion R-module is necessary a w-flat R-module. Hence,

the implications (1) ⇒ (2) ⇒ (3) ⇒ (7) ⇒ (9), (2) ⇒ (4) ⇒ (5) ⇒ (9), and

(2) ⇒ (6) ⇒ (8) ⇒ (9) hold. So, we have only to prove the implication (9) ⇒ (1).

So, let J ∈ GV (R). The R-module R/J is a finitely presented GV -torsion module,

and so fdR(R/J) ≤ 1. Then, J is a flat R-module, and so a w-ideal. Thus, J = Jw.

On the other hand, by [25, Proposition 3.5], Jw = R. Thus, GV (R) = {R}, which

means that R is a DW ring (by [18, Theorem 3.8]). �

The next proposition gives a new class of DW rings.

Proposition 2.2. Let R be a ring such that fdR(I) ≤ 1 for any injective R-module

I. Then R is a DW ring. In particular, if wdim(R) ≤ 1, then R is a DW ring.

Proof. Let J be a GV ideal of R and let E(R/J) denote the the injective hull of

R/J . Pick a short exact sequence 0 → K → F → R/J → 0 where F is a flat

R-module. By hypothesis, K is a flat R-module. Then, by [20, Theorem 6.1.17],
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E(R/J) is a GV -torsion free R-module. Hence, R/J is a GV -torsion free R-module

(as a submodule of E(R/J)). Then, R/J = {0} (since R/J is also a GV -torsion

R-module). Thus, GV (R) = {R}, which means that R is a DW ring (by [18,

Theorem 3.8]). �

Remark 2.3. Let R be a ring. An R-module M is called Gorenstein flat, if there

exists an exact sequence of flat R-modules F : ... → F1 → F0 → F 0 → F 1 → ...

such that M ∼= Im(F0 → F 0) and such that the functor − ⊗R I leaves F exact

whenever I is an injective R-module. The Gorenstein flat dimension is defined in

terms of Gorenstein flat resolutions and denoted by Gfd(−) (see [7]). The weak

Gorenstein global dimension of R is defined by

wGgldim(R) = sup{Gfd(M) |M is an R-module}.

The class of rings indicated in Proposition 2.2 is exactly the class of rings with

wGgldim(R) ≤ 1 (by [13, Theorem 2.12]).

Example 2.4. Let n be a positive integer and set R := Z/nZ. It is well known

that R is a quasi-Frobenius ring. Hence, every injective module is projective (and so

flat). Thus, R is a DW ring. Moreover, by [13, Theorem 3.2], wGgldim(R[X]) = 1

since wGgldim(R) = 0 (by [13, Theorem 2.12]). Thus, R[X] is also a DW ring.

Moreover, R (and so R[X]) has an infinite weak global dimension when n is not

square-free.

Proposition 2.5. Let R1 and R2 be two rings. Then R1 × R2 is a DW ring if

and only if R1 and R2 are DW rings.

Proof. Follows immediately from [25, Proposition1.2(5)] and [18, Theorem3.8]. �

The next example shows that, for a positive integer n > 1, we can always find

an example of a ring R with sup{fdR(E) | E is an injective R-module} = n (that

is wGgldim(R) = n by [13, Theorem 2.12]) and R is not a DW ring.

Example 2.6. (1) Let (R,m) be a regular local ring with gldim(R) = n ≥ 2.

By [11, 13, Exercise 2, p. 102], m−1 = R (since grad(m) = n ≥ 2 where

grad(m) is the grade of m). Thus, m ∈ GV (R), and so R is not DW (by

[18, Theorem 3.8]). By [1, Corollary 3.3] and [13, Theorems 2.12], we have

wGgldim(R) = n.

(2) Let T := Z/4Z which is a quasi-Frobenius ring with infinite weak global

dimension. Then, wdim(R × T ) = ∞, wGgldim(R × T ) = n (by [13,

Theorem 3.1] since wGgldim(T ) = 0), and R × T is not a DW ring by

Proposition 2.5.
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In [16, Proposition 2.12], Mimouni proved that, for an integral domain R, the

polynomial ring R[X] is a DW domain if and only if R is a field. However, even

outside the context of integral domains, the ring R[X] may be a DW ring. For

example, the ring Z/4Z[X] is a DW ring which is not a domain (by Example 2.4).

Proposition 2.7. Let R be a ring and let X be an indeterminate over R. If the

ring R[X] is DW then:

(1) every non-zero-divisor element of R is unit (that is R = T (R) where T (R)

denotes the total ring of fractions of R).

(2) ([20, Corollary 6.3.15]) R is a DW ring.

Proof. (1) Let a be a non-zero-divisor element of R and set J = (a,X). Then J

is a finitely generated regular ideal of R[X]. Thus, by [20, Corollary 6.6.9], J ∈
GV (R[X]) if and only if J−1 = R[X] (with J−1 := {u ∈ T (R[X]) | uJ ⊆ R[X]}).
Let u ∈ J−1. Then au ∈ R[X], and so u ∈ T (R)[X]. Moreover, uX ∈ R[X] implies

that u ∈ R[X]. Hence, J−1 = R[X], and since R[X] is a DW ring, J = R[X].

Thus, a is a unit.

(2) Let J ∈ GV (R), then J [X] ∈ GV (R[X]) = {R[X]}. Thus, J = R, and so R is

DW . �

Recall that a ring R is called Gorenstein Von Neumann regular [14] if

wGgldim(R) = 0 (that is every R-module is Gorenstein flat).

Corollary 2.8. If R is a Gorenstein Von Neumann regular ring, then T (R) = R.

Proof. By [13, Theorem 3.2], we have wGgldim(R[X]) = 1. Hence, by Proposition

2.2 and Remark 2.3, R[X] is a DW ring. Accordingly, by Proposition 2.7, T (R) =

R. �

3. On DW domains

Let ? be a star operation on a domain R. A fractional ideals I of R is said to be

?-invertible if (II−1)? = R. A domain R is called a Krull domain if it satisfies the

following three conditions:

(1) for every prime ideal p of R of height one, Rp is a discrete valuation ring;

(2) R = ∩Rp, where p ranges over all prime ideals of R of height one;

(3) any nonzero element of R lies in only a finite number of prime ideals of

height one.

It is proved that a ring R is a Krull domain if and only if R is a domain over

which every nonzero w-ideal is w-invertible (see [20]).
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Let I be a nonzero fractional ideal of R. Recall that I is a t-finite (or v-finite)

ideal if there exists a finitely generated fractional ideal J of R such that I = Jt = Jv;

and R is called a Prüfer v-multiplication domain (PvMD) if the set of its t-finite

t-ideals forms a group under ideal t-multiplication (((I, J) 7→ (IJ)t). A useful

characterizations is that R is a PvMD if and only if each localization at a maximal

t-ideal is a valuation domain if and only if every nonzero finitely generated ideal

of R is t-invertible if and only if every nonzero finitely generated ideal of R is

w-invertible. The class of PvMD’s includes Krull domains. A domain R is a v-

domain if each nonzero finitely generated ideal of R is v-invertible. An integrally

closed domain R is an integral domain whose integral closure in its field of fractions

is R itself. We have that

Prüfer domain → PvMD → v − domain→ integrally closed domain,

and all arrows are irreversible (see [9]). Clearly, Prüfer domains are DW domains.

However, this is not the case for the PvMD’s. Moreover, a DW domain needs not

to be integrally closed.

Recall that a ring R is called a regular ring if every finitely generated ideal of R

has finite projective dimension [3]. This notion, extending Noetherian regularity,

was extensively studied for coherent rings. Coherent rings of finite weak global

dimensions are regular rings. In particular, Von Neumann regular rings and semi-

hereditary rings are regular rings. But, there are coherent rings, even local, with

infinite weak global dimension which are regular.

Proposition 3.1. Let R be a ring. The following are equivalent:

(1) R is a coherent DW domain with finite weak dimension.

(2) R is a coherent regular and DW domain.

(3) R is PvMD and DW domain.

(4) R is coherent DW and v-domain.

(5) R is coherent integrally closed and DW domain.

(6) R is a Prüfer domain.

Proof. The implications (1)⇒ (2), (6)⇒ (4), (6)⇒ (1), and (4)⇒ (5) are clear.

(2)⇒ (3) Follows from [20, Theorem 9.1.13].

(3)⇒ (6) Follows from [20, Corollary 7.5.10].

(5) ⇒ (3) Follows from the fact that every coherent integrally closed ring is a

PvMD. �

The condition “domain” in the previous result is necessary. Indeed, a Prüfer ring

(every finitely generated regular ideal is invertible) may have an infinite weak global
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dimension even if it is coherent and DW . As an easy example, we can consider

R = Z/4Z which is a Noetherian Prüfer ring with infinite (weak) global dimension.

However, R is quasi-Frobenius (and so every injective module is projective). Then,

by Proposition 2.2, R is a DW ring.

Recall that, according to Zafrullah [26], a domain R is said to be an fgv domain

if each finitely generated ideal is divisorial. Clearly R is an fgv domain if and only

if the t-operation on R is trivial, that is t = d. Trivially, every fgv domain is a DW

domain, while the converse is not true ([16, Example 2.1]). Kang [10] showed that

a domain R is a PvMD if and only if R is integrally closed with t = w (see also

[20, Theorem 7.5.12]). As a consequence of Proposition 3.1, we obtain the following

well-known result:

Corollary 3.2. Let R be a ring. Then, R is a Prüfer domain if and only if R is

an fgv integrally closed domain.

Corollary 3.3. Let R be a ring. Then, R is a valuation domain if and only if R

is a coherent local DW ring with finite weak dimension.

Proof. It is known that local coherent rings with finite weak dimension are domains

([3, Corollary 4.2.4]). Hence, the desired result follows from Proposition 3.1. �

A domain R is called a Bézout domain if every finitely generated ideal of R is

principal, and R is called a GCD domain if for any two nonzero a, b ∈ R, (a)∩(b) is

principal. It is known that an integral domain is a Prüfer GCD-domain if and only

if it is a Bézout domain, and that a Prüfer domain need not be a GCD domain.

Hence, clearly Bézout domains are DW domains. Now, seen [20, Theorem 7.6.3],

we obtain easily the following result.

Proposition 3.4. Let R be a ring. The following are equivalent:

(1) R is a GCD and DW .

(2) R is a Bézout domain.

Let R be a ring and let f ∈ R[X] be a polynomial in one variable over R. The

content of f , denoted by c(f), is the ideal of R generated by the coefficients of f .

Let ? be a star operation on a domain R and set S? = {f ∈ R[X] | (c(f))? = R)}.
It is easy to see that S? is a multiplicatively closed set of R[x]. In [10], the author

introduced and studied the ring R[X]S? . He proved that a ring R is PvMD if and

only if R[X]Sv
is a PvMD if and only if R[X]Sv

is a Prüer domain if and only if

R[X]Sv is a Bézout domain ([10, Theorem 3.7]). In [23], the authors defined the

w-Nagata rings (not necessary a domain) to be R{X} := R[X]Sw
. It is proved

that R{X} is a DW ring ([23, Proposition 4.5]). Note that the notation R{X}



50 M. TAMEKKANTE, R.A.K. ASAAD, E.M. BOUBA

was used by many authors to denote the ring R[X]Sv
. However, even if R is a

PvMD (which is a subject of our next result), we can have v 6= w. For example,

[16, Example 2.1(2)] gave an example of a PvMD (and so w = t) with t 6= v. In

[23], the authors introduced and investigated also the w-flat dimensions of modules

and rings. Let R be a ring and n be a positive integer. We say that an R-module

has a w-flat dimension less than or equal to n, w−fdR(M) ≤ n, if Torn+1
R (M,N) is

a GV -torsion R-module for all R-modules N . Hence, the w-weak global dimension

of R is defined to be

w − wdim(R) = sup{w − fdR(M) |M is an R−module}.

Let R be a ring. An R-module M is said to be of finitely presented type (with

respect to the w-operation) if there exists a w-isomorphism f : M → N (that is

fm : Mm → Nm is an isomorphism for all m ∈ w −Max(R)) where N is a finitely

presented R-module. An R-module is called w-coherent if every finitely generated

ideal of R is of finitely presented type. Clearly, every coherent ring is w-coherent

with equivalence if R is a DW ring. In what follows, we characterize the ring R{X}
to be a Prüfer domain.

Proposition 3.5. Let R be a domain. The following are equivalent:

(1) R is a PvMD.

(2) R{X} is a Prüfer domain.

(3) wdim(R{X}) <∞ and R{X} is coherent.

(4) w − wdim(R) <∞ and R[X] is w-coherent.

(5) R{X} is a GCD.

(6) R{X} is a Bézout domain.

Proof. (1)⇔ (2) Follows from [20, Theorem 7.5.14].

(2)⇒ (3) Clear.

(3)⇒ (2) Since R{X} is a coherent DW domain with finite weak global dimension,

it is a Prüfer domain (by Proposition 3.1).

(3)⇔ (4) Note that if R[X] is w-coherent then R{X} is coherent (by [23, Corollary

4.6]), and under this last condition, w − wdim(R) = wdim(R{X}) (by [23, Propo-

sition 4.2]). So, we have the desired equivalence.

(5)⇔ (6) Clear since R{X} is a DW domain.

(6)⇒ (2) Clear.

(2) ⇒ (6) Let I be a non-zero finitely generated ideal of R{X}. Since R{X} is

a Prüfer domain, I is invertible. Using [10, Theorem 2.14], I is principal, and so

R{X} is a Bézout domain. �
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Recall that a ring R is called regular if R is Noetherian such that gldim(Rm) <

∞ for every maximal ideal m of R. Note that if R is a Noetherian ring with

gldim(R) <∞, then R is regular with equivalence when R is local. However, there

is an example of a Noetherian domain with infinite weak global dimension which is

regular (see [2]).

Proposition 3.6. Let R be a ring. The following are equivalent:

(1) R is a Noetherian DW domain with finite global dimension.

(2) R is a regular DW domain.

(3) R is a Krull DW domain.

(4) R is Dedekind domain.

Proof. The equivalence (1)⇔ (4) follows from Proposition 3.7. Note that Dedekind

domains are clearly DW domains. Also, recall that a domain R is Krull domain if

and only if every nonzero w-ideal is w-invertible (by [20, Theorem 7.9.3]). Hence,

if R is a DW domain, R is Krull if and only if every nonzero ideal is invertible if

and only if R is a Dedekind domain. Thus, the equivalence (3)⇔ (4) holds.

(1)⇒ (2) Clear.

(2) ⇒ (4). If R is a field then the result is trivial. Otherwise, let m be a maximal

ideal of R. Then, Rm is a local regular ring. Hence, by Proposition 3.1, Rm is a

Noetherian local Prüfer domain, and so a discrete valuation domain. Hence, R is a

Dedekind domain. �

An element p in a ring R is called prime if the principal ideal (p) generated by p

is a nonzero prime ideal of R. A unique factorization domain (UFD) is an integral

domain R in which every non-zero element can be written as a finite product of

prime elements of R. By [20, Theorem 7.9.5], we have the following result.

Proposition 3.7. Let R be a ring. The following are equivalent:

(1) R is a UFD and DW .

(2) R is a PID.

A Strong Mori domain (SM domain, called also w-Noetherian domain) is domain

for which the ascending chain condition on w-ideals holds. Clearly, Noetherian

domains are Strong Mori domains with equivalence when the domain is DW .

Proposition 3.8. Let R be a domain. The following are equivalent:

(1) R is a Krull domain.

(2) R{X} is a Dedekind domain.

(3) gldim(R{X}) <∞ and R{X} is Noetherian.

(4) w − wdim(R) <∞ and R is SM domain.
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(5) R{X} is an UFD.

(6) R{X} is a PID.

Proof. (1) ⇒ (2) Since R is a Krull domain, then so is R{X} as a localization of

R[X]. Moreover, R{X} is a DW domain (by [23, Proposition 4.5]). Then, R{X}
is a Dedekind domain (by Proposition 3.6).

(2)⇒ (3) Clear.

(3)⇒ (1) Since R{X} is Noetherian DW domain with finite global dimension, it is

a Dedekind domain (by Proposition 3.6). Hence, by [23, Proposition 4.2], we have

that w − wdim(R) = wdim(R{X}) = gldim(R{X}) ≤ 1. Then, by [23, Theorem

3.5] and [20, Theorem 6.8.8], R is a PvMD and SM domain. Thus, R is a Krull

domain (by [20, Theorem 7.9.3]).

(3)⇔ (4) Note that R is an SM domain if and only if R{X} is a Noetherian domain

(by [20, Theorem 6.8.8]), and under this condition, w−wdim(R) = wdim(R{X}) =

gldim(R{X}) (by [23, Proposition 4.2]). So, we have the desired equivalence.

(5)⇔ (6) Clear since R{X} is a DW domain.

(6)⇒ (2) Clear.

(2)⇒ (6) Let I be a nonzero ideal of R{X}. Since R{X} is a Dedekind domain, I

is invertible. Using [10, Theorem 2.14], I is principal, and so R{X} is a PID. �

Proposition 3.9. Let R be a domain and suppose that there is a prime ideal p

of R such that pRp = p. Then, R is a DW domain if and only if R/p is a DW

domain.

Proof. Consider the following pullback of rings:

R

ι2

��

π2 // R/p

ι1

��
Rp

π1 // Rp/p

Since Rp is local, by applying [16, Theorem 3.1(2)] to the above pullback, we get

that R is a DW domain if and only if so is R/p. �

Remark 3.10. (1) Examples of rings R with a prime ideal p such that pRp = p

are the non-Noetherian coherent local rings with wdim(R) = gldim(R) = 2

(by [3, Theorem 6.3.3]).

(2) The requirement pRp = p in the above result can’t be dropped. For example,

consider the ring R = k[x, y] where k is a field. The ideal (x) of R is prime

and R/(x) ∼= k[y] which is a DW ring, while R is not.
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