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ABSTRACT. In this paper we are mainly concerned with DW rings, i.e., rings
in which every ideal is a w-ideal. We give some new classes of DW rings and we
show how the concept of DW domains is used to characterize Priifer domains
and Dedekind domains. Namely, we prove that a ring is a Priifer domain
(resp., Dedekind domain) if and only if it a coherent (resp., Noetherian) DW

domain with finite weak global dimension.
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1. Introduction

Let R be a domain with quotient field K, and let F(R) denote the set of nonzero
fractional ideals of R. A map * : F(R) — F(R), I — I, is said to be a star operation
on R if the following conditions hold for every nonzero a € K and I, J € F(R): (1)
(al)y = al, and R, = R; (2) I C J implies I, C J,; and (3) I C I, and (I,)s = L.
It is common to denote the trivial star operation (I — I) by “d”. For any fractional
ideal I of R, I is called a fractional x-ideal if I, = I and I is called a x-ideal of R
if I is anideal of R and I, = I.

For I € §(R),set It ={x € K | zI C R}. Anideal J of R is called a GV-ideal
if J is a finitely generated nonzero fractional ideal of R and J~! = R. The set
of all GV-ideals of R is denoted by GV (R). The w-operation on R is defined by
I, = {x € K| there exists J € GV(R) such that J C I'}. One can see that the
notion of a w-ideal coincides with the notion of a semi-divisorial ideal introduced
by Glaz and Vasconcelos in 1977 [4] which may have some far reaching effects on
the theory of star operations. As a star operation, the w-operation was briefly
but effectively touched on by Hedstrom and Houston in 1980 under the name of
F-operation [5]. Later, this star operation was intensely studied by Wang and
McCasland in a more general setting. In particular, Wang and McCasland showed
that the w-envelope notion is a very useful tool in studying strong Mori domains
[21,22].
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For a domain R and a nonzero fractional ideal I of R, the v- and t-closures of I
are defined, respectively, by I, := (I"!)~! and I; := UJ,, where J ranges over the
set of nonzero finitely generated subideals of I. The ¢t- and v-operations are also
examples of star operations. It is well-known that for a domain R, d < w <t < wvin
the sense that for each nonzero fractional ideal I of R, [ =1, C I, C I; C I, and
the inclusions may be strict [15]. In [6], Heinzer has initiated the study of domains
in which each ideal is divisorial (i.e. each ideal is a v-ideal, or d = v) and called
them divisorial domains. Inspired by this work, Houston and Zafrullah studied the
so-called TV domains, i.e. domains in which each ¢-ideal is a v-ideal (or, t = v, see
[8]). Mimouni has studied the TW domains, i.e., domains in which each w-ideal is
a t-ideal, or w =t (see [15]) and DW domains, or domains in which each ideal is a
w-ideal, i.e. the d = w (see [16]).

In [25], the authors extend the notion of the w-operation to commutative rings
with zero-divisors. Let R be a commutative ring (not necessary a domain) and J
an ideal of R. Following [25], J is called a GV-ideal if J is finitely generated and
the natural homomorphism ¢ : R — J* = Hompg(J, R) is an isomorphism. Let M

be an R-module, and define
torgy (M) ={z € M | Jx =0 for someJ € GV(R)}

where GV (R) is the set of GV-ideals of R. It is clear that torgy (M) is a submodule
of M. Now, M is said to be GV-torsion (resp., GV-torsion-free) if torgy (M) = M
(resp., torgy (M) = 0). A GV-torsion-free module M is called a w-module if
Extp(R/J, M) = 0 for any J € GV (R). Projective modules and reflexive modules
are w-modules. In [27], it was shown that flat modules are w-modules.

A commutative ring is called a DW ring if every ideal of R is a w-ideal. Over a
domain this last definition coincides with the definition of DW domain in [16].

In Section 2, we give some new classes of DW rings. Section 3 gives new char-
acterizations of Krull domains, Dedekind domains and PvMDs.

Throughout, all rings considered are commutative with unity and all modules
are unital. Let R be a ring and M be an R-module. As usual, we use pdy (M),
idg(M), and fdg(M) to denote, respectively, the classical projective dimension,
injective dimension, and flat dimension of M, and wdim(R) and gldim(R) to denote,

respectively, the weak and global homological dimensions of R.

2. On DW rings

Let w-Max(R) denote the set of w-ideals of R maximal among proper integral
w-ideals of R (maximal w-ideals). By [25, Proposition 3.8], every maximal w-ideal
is prime. Let M and N be R-modules and let f : M — N be a homomorphism.
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Following [18], f is called a w-monomorphism if fo : My — Ny is a monomorphism
for all m € w—Max(R). An R-module M is called a w-flat module if the induced
map 1® f : M ® A - M ® B is a w-monomorphism for any w-monomorphism
f+ A — B. Certainly, flat modules are w-flat. The notion of w-flat modules
appeared first in [17] over a domain and was extended to arbitrary commutative
rings in [12]. Recently, modules of this type have received attention in several
papers in the literature (see for example [12,19,23]).

By [23, Proposition 1.1], it is clear that over a DW ring, w-flat modules coincide
with flat modules. The next result shows that DW rings are the only rings with
this property.

Proposition 2.1. Let R be a ring. The following are equivalent:
(1) R is a DW ring.
2
3
4

Every w-flat module is flat.
Every finitely presented w-flat module is projective.

Every GV -torsion module is flat.

7) fdr(F) < 1 for every finitely presented w-flat module F.
8) fdr(F) <1 for every GV -torsion module F.
(F)

)

)

)

5) Ewvery finitely presented GV -torsion module is projective.
)

)

)

9) fdr(F

(
(
(
(
(6) fdr(F) <1 for every w-flat module F.
(
(
(

< 1 for every finitely presented GV -torsion module F.

Proof. It is proved in [24, Theorem 2.7] that an R-module M is GV-torsion if
and only if My, = 0 for all maximal w-ideals m of R. Hence, by [23, Proposition
1.1], it is clear that a GV-torsion R-module is necessary a w-flat R-module. Hence,
the implications (1) = (2) = (3) = (7) = (9), (2) = 4) = (B) = (9), and
(2) = (6) = (8) = (9) hold. So, we have only to prove the implication (9) = (1).
So, let J € GV(R). The R-module R/J is a finitely presented GV-torsion module,
and so fdg(R/J) < 1. Then, J is a flat R-module, and so a w-ideal. Thus, J = .J,,.
On the other hand, by [25, Proposition 3.5], J,, = R. Thus, GV (R) = {R}, which
means that R is a DW ring (by [18, Theorem 3.8]). O

The next proposition gives a new class of DW rings.

Proposition 2.2. Let R be a ring such that fdr(I) < 1 for any injective R-module
I. Then R is a DW ring. In particular, if wdim(R) < 1, then R is a DW ring.

Proof. Let J be a GV ideal of R and let E(R/.J) denote the the injective hull of
R/J. Pick a short exact sequence 0 - K — F — R/J — 0 where F is a flat
R-module. By hypothesis, K is a flat R-module. Then, by [20, Theorem 6.1.17],
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E(R/J) is a GV-torsion free R-module. Hence, R/.J is a GV-torsion free R-module
(as a submodule of E(R/J)). Then, R/J = {0} (since R/J is also a GV-torsion
R-module). Thus, GV(R) = {R}, which means that R is a DW ring (by [18,
Theorem 3.8]). O

Remark 2.3. Let R be a ring. An R-module M is called Gorenstein flat, if there
exists an eract sequence of flat R-modules F : ... — F, — Fy — F° — F1 — .
such that M = Im(Fy — FO) and such that the functor — ®g I leaves F exact
whenever I is an injective R-module. The Gorenstein flat dimension is defined in
terms of Gorenstein flat resolutions and denoted by Gfd(—) (see [7]). The weak
Gorenstein global dimension of R is defined by

wGgldim(R) = sup{Gfd(M) | M is an R-module}.

The class of rings indicated in Proposition 2.2 is exactly the class of rings with
wGgldim(R) <1 (by [13, Theorem 2.12]).

Example 2.4. Let n be a positive integer and set R := Z/nZ. It is well known
that R is a quasi-Frobenius ring. Hence, every injective module is projective (and so
flat). Thus, R is a DW ring. Moreover, by [13, Theorem 3.2], wGgldim(R[X]) =1
since wGgldim(R) = 0 (by [13, Theorem 2.12]). Thus, R[X] is also a DW ring.
Moreover, R (and so R[X]) has an infinite weak global dimension when n is not

square-free.

Proposition 2.5. Let Ry and Rs be two rings. Then Ry X Ry is a DW ring if
and only if R1 and Rs are DW rings.

Proof. Follows immediately from [25, Propositionl.2(5)] and [18, Theorem3.8]. O

The next example shows that, for a positive integer n > 1, we can always find
an example of a ring R with sup{fdr(F) | F is an injective R-module} = n (that
is wGgldim(R) = n by [13, Theorem 2.12]) and R is not a DW ring.

Example 2.6. (1) Let (R,m) be a regular local ring with gldim(R) = n > 2.
By [11, 13, Exercise 2, p. 102], m~! = R (since grad(m) = n > 2 where
grad(m) is the grade of m). Thus, m € GV(R), and so R is not DW (by
[18, Theorem 3.8]). By [1, Corollary 3.3] and [13, Theorems 2.12], we have
wGgldim(R) = n.

(2) Let T := Z/AZ which is a quasi-Frobenius ring with infinite weak global
dimension. Then, wdim(R x T) = oo, wGgldim(R x T) = n (by [13,
Theorem 3.1] since wGgldim(T) = 0), and R x T is not a DW ring by
Proposition 2.5.



NOTE ON THE DW RINGS 47

In [16, Proposition 2.12], Mimouni proved that, for an integral domain R, the
polynomial ring R[X] is a DW domain if and only if R is a field. However, even
outside the context of integral domains, the ring R[X] may be a DW ring. For
example, the ring Z/4Z[X] is a DW ring which is not a domain (by Example 2.4).

Proposition 2.7. Let R be a ring and let X be an indeterminate over R. If the
ring R[X] is DW then:
(1) every non-zero-divisor element of R is unit (that is R = T(R) where T(R)

denotes the total ring of fractions of R).
(2) ([20, Corollary 6.3.15]) R is a DW ring.

Proof. (1) Let a be a non-zero-divisor element of R and set J = (a,X). Then J
is a finitely generated regular ideal of R[X]. Thus, by [20, Corollary 6.6.9], J €
GV (R[X]) if and only if J=! = R[X] (with J=! := {u € T(R[X]) | uJ C R[X]}).
Let u € J~1. Then au € R[X], and so u € T(R)[X]. Moreover, uX € R[X] implies
that v € R[X]. Hence, J-! = R[X], and since R[X] is a DW ring, J = R[X].
Thus, a is a unit.

(2) Let J € GV(R), then J[X] € GV(R[X]) = {R[X]}. Thus, J = R, and so R is
DW. ]

Recall that a ring R is called Gorenstein Von Neumann regular [14] if
wGgldim(R) = 0 (that is every R-module is Gorenstein flat).

Corollary 2.8. If R is a Gorenstein Von Neumann regular ring, then T(R) = R.

Proof. By [13, Theorem 3.2], we have wGgldim(R[X]) = 1. Hence, by Proposition
2.2 and Remark 2.3, R[X] is a DW ring. Accordingly, by Proposition 2.7, T(R) =
R. O

3. On DW domains

Let x be a star operation on a domain R. A fractional ideals I of R is said to be
x-invertible if (II71), = R. A domain R is called a Krull domain if it satisfies the

following three conditions:

(1) for every prime ideal p of R of height one, R, is a discrete valuation ring;
(2) R =nNR,, where p ranges over all prime ideals of R of height one;
(3) any nonzero element of R lies in only a finite number of prime ideals of

height one.

It is proved that a ring R is a Krull domain if and only if R is a domain over

which every nonzero w-ideal is w-invertible (see [20]).
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Let I be a nonzero fractional ideal of R. Recall that I is a t-finite (or v-finite)
ideal if there exists a finitely generated fractional ideal J of R such that I = J, = J,;
and R is called a Priifer v-multiplication domain (PvM D) if the set of its ¢-finite
t-ideals forms a group under ideal ¢-multiplication (((,J) — (IJ);). A useful
characterizations is that R is a PuvM D if and only if each localization at a maximal
t-ideal is a valuation domain if and only if every nonzero finitely generated ideal
of R is t-invertible if and only if every nonzero finitely generated ideal of R is
w-invertible. The class of PvM D’s includes Krull domains. A domain R is a v-
domain if each nonzero finitely generated ideal of R is v-invertible. An integrally
closed domain R is an integral domain whose integral closure in its field of fractions
is R itself. We have that

Priifer domain — PvMD — v — domain — integrally closed domain,

and all arrows are irreversible (see [9]). Clearly, Priifer domains are DW domains.
However, this is not the case for the PvM D’s. Moreover, a DW domain needs not
to be integrally closed.

Recall that a ring R is called a regular ring if every finitely generated ideal of R
has finite projective dimension [3]. This notion, extending Noetherian regularity,
was extensively studied for coherent rings. Coherent rings of finite weak global
dimensions are regular rings. In particular, Von Neumann regular rings and semi-
hereditary rings are regular rings. But, there are coherent rings, even local, with

infinite weak global dimension which are regular.

Proposition 3.1. Let R be a ring. The following are equivalent:

(1) R is a coherent DW domain with finite weak dimension.
(2) R is a coherent reqular and DW domain.

(3) R is PvMD and DW domain.

(4) R is coherent DW and v-domain.

()

(6)

R is coherent integrally closed and DW domain.

R is a Prifer domain.

Proof. The implications (1) = (2), (6) = (4), (6) = (1), and (4) = (5) are clear.
(2) = (3) Follows from [20, Theorem 9.1.13].
(3) = (6) Follows from [20, Corollary 7.5.10].
(5) = (3) Follows from the fact that every coherent integrally closed ring is a
PuMD. ([l

The condition “domain” in the previous result is necessary. Indeed, a Priifer ring

(every finitely generated regular ideal is invertible) may have an infinite weak global
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dimension even if it is coherent and DW. As an easy example, we can consider
R = Z/47Z which is a Noetherian Priifer ring with infinite (weak) global dimension.
However, R is quasi-Frobenius (and so every injective module is projective). Then,
by Proposition 2.2, R is a DW ring.

Recall that, according to Zafrullah [26], a domain R is said to be an fgv domain
if each finitely generated ideal is divisorial. Clearly R is an fgv domain if and only
if the t-operation on R is trivial, that is ¢t = d. Trivially, every fgv domain is a DW
domain, while the converse is not true ([16, Example 2.1]). Kang [10] showed that
a domain R is a PuMD if and only if R is integrally closed with ¢ = w (see also
[20, Theorem 7.5.12]). As a consequence of Proposition 3.1, we obtain the following

well-known result:

Corollary 3.2. Let R be a ring. Then, R is a Prifer domain if and only if R is

an fgv integrally closed domain.

Corollary 3.3. Let R be a ring. Then, R is a valuation domain if and only if R

is a coherent local DW ring with finite weak dimension.

Proof. It is known that local coherent rings with finite weak dimension are domains
([3, Corollary 4.2.4]). Hence, the desired result follows from Proposition 3.1. O

A domain R is called a Bézout domain if every finitely generated ideal of R is
principal, and R is called a GC'D domain if for any two nonzero a,b € R, (a)N(b) is
principal. It is known that an integral domain is a Priifer GC'D-domain if and only
if it is a Bézout domain, and that a Priifer domain need not be a GC'D domain.
Hence, clearly Bézout domains are DW domains. Now, seen [20, Theorem 7.6.3],

we obtain easily the following result.

Proposition 3.4. Let R be a ring. The following are equivalent:
(1) R is a GCD and DW.

(2) R is a Bézout domain.

Let R be a ring and let f € R[X] be a polynomial in one variable over R. The
content of f, denoted by ¢(f), is the ideal of R generated by the coefficients of f.
Let % be a star operation on a domain R and set Sy, = {f € R[X] | (¢(f))« = R)}.
It is easy to see that S, is a multiplicatively closed set of R[z]. In [10], the author
introduced and studied the ring R[X]gs,. He proved that a ring R is PvM D if and
only if R[X]g, is a PvMD if and only if R[X]s, is a Priler domain if and only if
R[X]s, is a Bézout domain ([10, Theorem 3.7]). In [23], the authors defined the
w-Nagata rings (not necessary a domain) to be R{X} := R[X]g,. It is proved
that R{X} is a DW ring ([23, Proposition 4.5]). Note that the notation R{X}
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was used by many authors to denote the ring R[X]s,. However, even if R is a

PvM D (which is a subject of our next result), we can have v # w. For example,
[16, Example 2.1(2)] gave an example of a PvM D (and so w = t) with ¢ # v. In
[23], the authors introduced and investigated also the w-flat dimensions of modules
and rings. Let R be a ring and n be a positive integer. We say that an R-module
has a w-flat dimension less than or equal to n, w—fdg (M) < n, if Tor'}™ (M, N) is
a GV-torsion R-module for all R-modules N. Hence, the w-weak global dimension

of R is defined to be
w — wdim(R) = sup{w — fdg(M) | M is an R — module}.

Let R be a ring. An R-module M is said to be of finitely presented type (with
respect to the w-operation) if there exists a w-isomorphism f : M — N (that is
fm : My — Ny is an isomorphism for all m € w — Maz(R)) where N is a finitely
presented R-module. An R-module is called w-coherent if every finitely generated
ideal of R is of finitely presented type. Clearly, every coherent ring is w-coherent
with equivalence if R is a DW ring. In what follows, we characterize the ring R{X}

to be a Priifer domain.

Proposition 3.5. Let R be a domain. The following are equivalent:

(1) Ris a PuMD.

(2) R{X} is a Prifer domain.

(3) wdim(R{X}) < 0o and R{X} is coherent.
(4) w—wdim(R) < oo and R[X] is w-coherent.
(5) R{X} is a GCD.

(6) R{X} is a Bézout domain.

Proof. (1) & (2) Follows from [20, Theorem 7.5.14].

(2) = (3) Clear.

(3) = (2) Since R{X} is a coherent DW domain with finite weak global dimension,
it is a Priifer domain (by Proposition 3.1).

(3) & (4) Note that if R[X] is w-coherent then R{X} is coherent (by [23, Corollary
4.6]), and under this last condition, w — wdim(R) = wdim(R{X}) (by [23, Propo-
sition 4.2]). So, we have the desired equivalence.

(5) < (6) Clear since R{X} is a DW domain.

(6) = (2) Clear.

(2) = (6) Let I be a non-zero finitely generated ideal of R{X}. Since R{X} is
a Priifer domain, I is invertible. Using [10, Theorem 2.14], I is principal, and so
R{X} is a Bézout domain. O
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Recall that a ring R is called regular if R is Noetherian such that gldim(Ry,) <
oo for every maximal ideal m of R. Note that if R is a Noetherian ring with
gldim(R) < oo, then R is regular with equivalence when R is local. However, there
is an example of a Noetherian domain with infinite weak global dimension which is

regular (see [2]).

Proposition 3.6. Let R be a ring. The following are equivalent:

(1) R is a Noetherian DW domain with finite global dimension.
(2) R is a regular DW domain.

(3) R is a Krull DW domain.

(4) R is Dedekind domain.

Proof. The equivalence (1) < (4) follows from Proposition 3.7. Note that Dedekind
domains are clearly DW domains. Also, recall that a domain R is Krull domain if
and only if every nonzero w-ideal is w-invertible (by [20, Theorem 7.9.3]). Hence,
if R is a DW domain, R is Krull if and only if every nonzero ideal is invertible if
and only if R is a Dedekind domain. Thus, the equivalence (3) < (4) holds.

(1) = (2) Clear.

(2) = (4). If R is a field then the result is trivial. Otherwise, let m be a maximal
ideal of R. Then, R, is a local regular ring. Hence, by Proposition 3.1, R is a
Noetherian local Priifer domain, and so a discrete valuation domain. Hence, R is a
Dedekind domain. (]

An element p in a ring R is called prime if the principal ideal (p) generated by p
is a nonzero prime ideal of R. A unique factorization domain (UF D) is an integral
domain R in which every non-zero element can be written as a finite product of

prime elements of R. By [20, Theorem 7.9.5], we have the following result.

Proposition 3.7. Let R be a ring. The following are equivalent:

(1) Ris a UFD and DW.
(2) Ris a PID.

A Strong Mori domain (SM domain, called also w-Noetherian domain) is domain
for which the ascending chain condition on w-ideals holds. Clearly, Noetherian

domains are Strong Mori domains with equivalence when the domain is DW.

Proposition 3.8. Let R be a domain. The following are equivalent:

(1) R is a Krull domain.

(2) R{X} is a Dedekind domain.

(3) gldim(R{X}) < oo and R{X} is Noetherian.
(4) w—wdim(R) < oo and R is SM domain.
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(5) R{X} is an UFD.
(6) R{X} is a PID.

Proof. (1) = (2) Since R is a Krull domain, then so is R{X} as a localization of
R[X]. Moreover, R{X} is a DW domain (by [23, Proposition 4.5]). Then, R{X}
is a Dedekind domain (by Proposition 3.6).

(2) = (3) Clear.

(3) = (1) Since R{X} is Noetherian DW domain with finite global dimension, it is
a Dedekind domain (by Proposition 3.6). Hence, by [23, Proposition 4.2], we have
that w — wdim(R) = wdim(R{X}) = gldim(R{X}) < 1. Then, by [23, Theorem
3.5] and [20, Theorem 6.8.8], R is a PuM D and SM domain. Thus, R is a Krull
domain (by [20, Theorem 7.9.3]).

(3) < (4) Note that R is an SM domain if and only if R{X} is a Noetherian domain
(by [20, Theorem 6.8.8]), and under this condition, w —wdim(R) = wdim(R{X}) =
gldim(R{X?}) (by [23, Proposition 4.2]). So, we have the desired equivalence.

(5) < (6) Clear since R{X} is a DW domain.

(6) = (2) Clear.

(2) = (6) Let I be a nonzero ideal of R{X}. Since R{X} is a Dedekind domain, I
is invertible. Using [10, Theorem 2.14], I is principal, and so R{X} is a PID. O

Proposition 3.9. Let R be a domain and suppose that there is a prime ideal p
of R such that pR, = p. Then, R is a DW domain if and only if R/p is a DW

domain.

Proof. Consider the following pullback of rings:

R#R/p

-

Ry L>Rp/p

Since R, is local, by applying [16, Theorem 3.1(2)] to the above pullback, we get
that R is a DW domain if and only if so is R/p. O

Remark 3.10. (1) Ezamples of rings R with a prime ideal p such that pR, = p
are the non-Noetherian coherent local rings with wdim(R) = gldim(R) = 2
(by [3, Theorem 6.3.3] ).
(2) The requirement pR, = p in the above result can’t be dropped. For example,
consider the ring R = klx,y] where k is a field. The ideal (x) of R is prime
and R/(x) = kly] which is a DW ring, while R is not.
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