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Abstract. Let R = ⊕n∈ZRn be a strongly graded ring of type Z and R0

is a prime Goldie ring. It is shown that the following three conditions are

equivalent: (i) R0 is a Z-invariant Krull ring, (ii) R is a Krull ring and (iii) R

is a graded Krull ring. We completely describe all v-invertible R-ideals in Q,

where Q is a quotient ring of R.
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1. Introduction

Let R = ⊕n∈ZRn be a strongly graded ring of type Z, that is, RnRm = Rn+m

for all n,m ∈ Z, where Z is the ring of integers and R0 is a prime Goldie ring with

quotient ring Q0 and R0 ⊂ Q0. Let C0 = {c0 ∈ R0 | c0 is regular} is a regular

Ore set of R and Qg = RC0−1, the quotient ring of R at C0, which is of the form

Qg = ⊕n∈ZQ0Rn (Q0Rn = RnQ0). It follows that Qg = Q0[X,X−1, σ], a skew

Laurent polynomial ring over Q0, where σ is an automorphism of Q0 and X is a

unit in Qg with X ∈ R1 (see [2] or [7]). We denote by Q the quotient ring of R.

A graded right R-submodule I of Qg is called a graded right R-ideal if I contains

a regular homogeneous element in Qg and aI ⊆ R for some regular homogeneous

element a in Qg. In a similar way, we define a graded left R-ideal in Qg. Note

that if I is a graded right R-ideal in Qg, then I = I0R, where I0 = I ∩ Q0 is a

right R0-ideal in Q0 since Qg is a strongly graded ring of type Z (see [5, Corollary

I.3.8]). We refer the readers to [3] and [5] for some properties and definitions of

order theory and graded rings which are not mentioned in this paper, respectively.

2. Main results

We use the following notation: for a right R-ideal I in Q define (R : I)l = {q ∈
Q | qI ⊆ R}, a left R-ideal in Q and for a left R-ideal J in Q (R : J)r = {q ∈
Q | Jq ⊆ R}, a right R-ideal in Q. Let I be a right ideal of R and r ∈ R. We define
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r−1 · I = {s ∈ R | rs ∈ I}. We first study some properties of graded right ideals of

R.

Lemma 2.1. Let I = I0R be a graded right R-ideal in Qg. Then

(1) (R : I0R)l = R(R0 : I0)l and is a graded left R-ideal in Qg.

(2) If I is a graded right ideal of R and rn ∈ Rn, then r−1n · I is a graded right

ideal and r−1n · I = (r−1n · (I0Rn))R, where r−1n · (I0Rn) = {s0 ∈ R0 | rns0 ∈
I0Rn}. In particular, for r0 ∈ R0, r

−1
0 · (I0R) = (r−10 · I0)R.

Proof. (1) It is clear.

(2) Let s = sn1
+ · · · + snk

∈ r−1n · (I0R), where n1 > · · · > nk. Then I0R 3
rns = rnsn1

+ · · · + rnsnk
and so rnsnj

∈ I0R(n+nj) ⊆ I0R for any j (1 ≤ j ≤ k).

Thus snj ∈ r−1n · (I0R) and hence r−1n · (I0R) is a graded right ideal. Furthermore

s0 ∈ (r−1n · (I0R))0 if and only if rns0 ∈ I0Rn if and only if s0 ∈ r−1n · (I0Rn), and

so (r−1n · (I0R))0 = r−1n · (I0Rn). Hence r−1n · I = (r−1n · (I0Rn))R follows. The last

statement is now clear. �

Definition 2.2. A graded right ideal I of R is called graded essential if I ∩J 6= (0)

for any non-zero graded right ideal J of R.

Lemma 2.3. Let I = I0R and J = J0R be graded right ideals of R. Then

(1) I ∩ J = (I0 ∩ J0)R and so I ∩ J is also a graded right ideal.

(2) I is graded essential if and only if I0 is essential, that is, I0 ∩ C0 6= ∅.

Proof. The proof is obvious. �

By considering that R ⊂ Q, we define

FR = {F : right ideal of R | (R : r−1 · F )l = R for all r ∈ R}

is a right Gabriel topology on R (see [3], p.116).

Similarly,

F ′R = {F ′ : left ideal of R | (R : F ′ · r−1)r = R for all r ∈ R}

is a left Gabriel topology on R, where F ′ · r−1 = {s ∈ R | sr ∈ F ′}.
For a right ideal I of R, we define the τ -closure of I,

clτ (I) = {r ∈ R | rF ⊆ I for some F ∈ FR}

and I is called τ -closed if I = clτ (I). Similarly we can define a τ -closed left ideal

of R. Recall that R is τ -Noetherian if R satisfies the ascending chain conditions on

τ -closed right ideals as well as τ -closed left ideals.
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Furthermore, we consider that R0 ⊂ Q0 and define

F0 = {F0 : right ideal of R0 | (R0 : r−10 · F0)l = R0 for all r0 ∈ R0},

a right Gabriel topology on R0, and

F ′0 = {F ′0 : right ideal of R0 | (R0 : F ′0 · r−10 )r = R0 for all r0 ∈ R0},

a left Gabriel topology on R0. Note that any F0 ∈ F0 is an essential right ideal by

[3, Proposition 2.2.1].

For graded case we introduce the following topology.

Definition 2.4. A non-empty set F ′ of graded right ideals of R is called a graded

right Gabriel topology on R if the following two conditions are satisfied:

a. For any F ∈ F ′, a−1n · F ∈ F ′ for all an ∈ Rn.

b. Let G = G0R be a graded right ideal of R and F ∈ F ′ such that r−1n ·G ∈
F ′ for any rn ∈ Fn. Then G ∈ F ′.

If F ′ is a graded right Gabriel topology on R, then the following conditions are

satisfied:

(i) For any F ∈ F ′ and a graded right ideal G such that F ⊆ G, then G ∈ F ′.

(ii) If F and G are graded right ideals such that F, G ∈ F ′, then so is F ∩G.

Moreover, we consider that R ⊂ Qg, and we define

Fg = {F : graded essential right ideal of R | (R : r−1n · F )l = R

for any rn ∈ Rn and n ∈ Z}.

We prove in Lemma 2.6 that Fg is a graded right Gabriel topology on R.

Lemma 2.5. Let F0 be a right ideal of R0. Then F0 ∈ F0 if and only if F0R ∈ Fg.

Proof. Suppose F0 ∈ F0. Let rn ∈ Rn. Then we claim that r−1n · (F0R) ∩ C0 6= ∅.
Let c0 ∈ F0 ∩ C0 (see [3, Proposition 2.2.1]). Then there are d0 ∈ C0 and sn ∈
Rn such that rnd0 = c0sn. Thus d0 ∈ r−1n · (F0R) as claimed. It follows that

(r−1n · (F0R))Qg = Qg. Let q ∈ (R : r−1n · (F0R))l. Then q ∈ Qg. By Lemma

2.1, (R : r−1n · (I0R))l is a graded left R-ideal and so we may assume that q is

homogeneous, say, q ∈ Q0Rl = RlQ0. Write 1 =
∑
biai ∈ R−n · Rn = R0, where

bi ∈ R−n and ai ∈ Rn. For fixed bi, qbi(rnbi)
−1 · F0R ⊆ q(r−1n · (F0R)) ⊆ R. So

qbi(rnbi)
−1 · F0 ⊆ RlR−n = Rl−n and Rn−lqbi(rnbi)

−1 · F0 ⊆ R0 follows. Thus

Rn−lqbi ⊆ (R0 : (rnbi)
−1 · F0)l = R0 since F0 ∈ F0, that is, qbi ∈ Rl−n and so

qbiai ∈ Rl−n · Rn = Rl for all i. Thus q ∈ Rl and hence (R : r−1n · (F0R))l = R,

that is, F0R ∈ Fg.
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Suppose F = F0R ∈ Fg. Then, by Lemma 2.3, F0 ∩ C0 6= ∅. For any r0 ∈ R0,

R = (R : r−10 · (F0R))l = (R : (r−10 · F0)R)l = R(R0 : r−10 · F0)l by Lemma 2.1.

Hence R0 = (R0 : r−10 · F0)l, that is, F0 ∈ F0. �

Lemma 2.6. Fg is a graded right Gabriel topology on R.

Proof. It is enough to prove the condition (b). Let G = G0R and F = F0R be

graded right ideals such that F ∈ Fg and r−1n · (G0R) ∈ Fg for any rn ∈ Fn. By

Lemma 2.5, F0 ∈ F0 and for any r0 ∈ F0, since r−10 ·G ∈ Fg, R = (R : r−10 ·G)l =

(R : (r−10 ·G0)R)l = R(R0 : r−10 ·G0)l by Lemma 2.5.

ThusR0 = (R0 : r−10 ·G0)l for all r0 ∈ F0, that is, G0 ∈ F0. HenceG = G0R ∈ Fg
by Lemma 2.5. �

Let I = I0R be a graded right ideal. As in ungraded case, we define

clτg (I) = {r ∈ R | rF ⊆ I for some F ∈ Fg}.

Lemma 2.7. Let I = I0R be a graded right ideal. Then

(1) clτg (I) is a graded right ideal.

(2) clτg (I) = clτ0(I0)R, where clτ0(I0) = {r0 ∈ R0 | r0F0 ⊆ I0 for some F0 ∈
F0}.

Proof. (1) clτg (I) is closed under addition since Fg is a graded right Gabriel topol-

ogy on R. For any rn ∈ Rn and x ∈ clτg (I), there is an F = F0R ∈ Fg such

that xF ⊆ I. Then I ⊇ xF0R ⊇ xrnr
−1
n · (F0R) implies xrn ∈ clτg (I). Thus

for any r = rn1 + · · · + rnk
∈ R, xrnj ∈ clτg (I) for any j (1 ≤ j ≤ k) and so

xr ∈ clτg (I). Hence clτg (I) is a right ideal of R. To prove that clτg (I) is graded, let

x = xn1
+ · · ·+xnk

∈ clτg (I). Then there is an F0 ∈ F0 such that xF0R ⊆ I = I0R

by Lemma 2.5. Since xF0 ⊆ I0R, xnjF0 ⊆ I0Rnj for any j (1 ≤ j ≤ k) and

xnj
F0R ⊆ I0Rnj

R = I0R. Hence xnj
∈ clτg (I), that is, clτg (I) is graded.

(2) is easy to prove by using Lemma 2.5 and (1). �

A graded right ideal I is called τg-closed if clτg (I) = I. Similarly

F ′g = {G : graded essential left ideal of R | (R : G · r−1n )r = R}

is a graded left Gabriel topology on R, where G · r−1n = {s ∈ R | srn ∈ G}. For any

graded left ideal J , we define

clτg (J) = {r ∈ R | Gr ⊆ J for some G ∈ F ′g}

and J is τg-closed if clτg (J) = J .

R is called a τg-Noetherian if R satisfies the ascending chain conditions on τg-

closed right ideals as well as τg-closed left ideals.
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Proposition 2.8. The following three conditions are equivalent:

(1) R0 is τ -Noetherian.

(2) R is τg-Noetherian.

(3) R is τ -Noetherian.

Proof. (1)⇔ (2) This follows from Lemma 2.7.

(1)⇒ (3) This follows exactly from the same proof of [7, Theorem 4.2].

(3)⇒ (1) Let ER(Q/R) be the injective hull of Q/R as a right R-module, I0 be a

right ideal of R0 and ϕ0 be a right R0-homomorphism from I0 to ER(Q/R). We

define a map ϕ : I0R→ ER(Q/R) by

ϕ(x) =

l∑
i=0

ϕ0(ai)ri, where x =
∑

airi ∈ I0R (ai ∈ I0 and ri ∈ R),

which extends ϕ0 to I0R. If ϕ is well-defined, then it is easy to see that ϕ is a right

R-homomorphism. To prove ϕ is well-defined, for any ri, let ri = rin1
+ · · ·+ rink

,

where rinj ∈ Rnj (n1 > n2 > · · · > nk, including rinj = 0). Then x = 0 if and

only if
∑l
j=1 ajrjn1

= 0, . . . ,
∑l
j=1 ajrjnk

= 0. If x = 0, then

ϕ(x) =

l∑
i=1

ϕ0(ai)ri = ϕ0(a1)r1n1
+ · · ·+ ϕ0(a1)r1nk

+ ϕ0(a2)r2n1 + · · ·+ ϕ0(a2)r2nk

...

+ ϕ0(al)rln1 + · · ·+ ϕ0(al)rlnk
.

For any s−n1
∈ R−n1

,

(

l∑
j=1

ϕ0(aj)rjn1
)s−n1

=

l∑
j=1

ϕ0(aj)rjn1
s−n1

=

l∑
j=1

ϕ0(ajrjn1
s−n1

)

= ϕ0(

l∑
j=1

ajrjn1s−n1) = ϕ0((

l∑
j=1

ajrjn1)s−n1) = ϕ0(0) = 0.

Thus 0 = (
∑l
j=1 ϕ0(aj)rjn1

)R−n1
and

∑l
j=1 ϕ0(aj)rjn1

= 0 follows. Similarly,

0 =
∑l
j=1 ϕ0(aj)rjnp for any p (1 ≤ p ≤ k). Hence ϕ(x) = 0, that is, ϕ is well-

defined.

Hence ϕ is extended to ϕ′ from R to ER(Q/R) and so there is a y ∈ ER(Q/R)

such that ϕ′(1) = y, that is, ϕ′(r) = yr for all r ∈ R. In particular, ϕ(r0) = yr0

for all r0 ∈ R0. Hence ER(Q/R) is injective as a right R0-module. Since Q0/R0 ⊆
Q/R ⊆ ER(Q/R), it follows that ER0(Q0/R0) ⊆ ER(Q/R). Hence R0 is right
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τ -Noetherian (by [6, Proposition 2.4] p. 264). Similarly R0 is left τ -Noetherian.

Hence R0 is τ -Noetherian. �

Recall that an R0-ideal A0 in Q0 is called Z-invariant if RnA0 = A0Rn for all

n ∈ Z. it is easy to see that A0 is Z-invariant if and only if A = A0R is an R-ideal

in Qg ([8, Lemma 2]).

R0 is called a Z-invariant maximal order in Q0 if Ol(A0) = R0 = Or(A0) for any

non-zero Z-invariant ideal A0 of R0. We say that R0 is a Z-invariant Krull ring if

it is a Z-invariant maximal order and τ -Noetherian.

R is called a graded Krull ring if R is a graded maximal order in Qg and is

τg-Noetherian (see [7] p. 205, for definition of graded maximal order). In [7] they

obtained that if R0 is a Krull ring, then R is a Krull ring. Combining Proposition

2.8 with [4, Theorem 1], we have the following theorem.

Theorem 2.9. Let R = ⊕n∈ZRn be a strongly graded ring of type Z and R0 be a

prime Goldie ring. Then the following conditions are equivalent:

(1) R0 is a Z-invariant Krull ring.

(2) R is a graded Krull ring.

(3) R is a Krull ring.

Next, in case R is a Krull ring, we describe all v-invertible R-ideals in Q by using

the v-invertible R0-ideals in Q0 and the propoerties of Qg. Here an R-ideal A in Q

is called v-invertible if v((R : A)lA) = R = ((R : A)r)v.

Let I be a right R-ideal in Q. We define Iv = (R : (R : I)l)r containing I. I is

called a right v-ideal in Q if I = Iv. Similarly we can define a left v-ideal in Q.

In particular, an R-ideal A in Q is called a v-ideal if Av = A = vA. Note that

for each R-ideal A, Av = vA if R is a maximal order ([3] p.110).

The following lemma was obtained in [8].

Lemma 2.10. (1) [8, Lemma 2] Let A0 be a Z-invariant ideal of R0. Then

(A0R)v = (A0)vR.

(2) [8, Lemma 3] Let P be a prime ideal of R and P0 = P ∩R0. Then P0R is

a prime ideal of R.

(3) [8, Lemma 6] Let A be a graded R-ideal in Qg with A0 = A ∩ Q0 6= (0).

Then A = A0R = RA0 and A0 is Z-invariant.

In the remainder of this section, let R = ⊕n∈ZRn be a Krull ring. Let D(R) and

D(R0) be the set of all v-R-ideals in Q and the set of all Z-invariant v-R0-ideals in

Q0, respectively. Then D(R) is a free Abelian group generated by maximal v-ideals

of R with respect to multiplication A ◦ B = (AB)v for A, B ∈ D(R) by (see the
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proof of [3, Theorem 2.1.2]). Similarly D(R0) is a free Abelian group generated by

maximal Z-invariant v-ideals of R0. (see the proof of [3, Theorem 2.1.2]. Note that

the intersection of Z-invariant ideals is also Z-invariant.)

Let Dg(R) be the set of all graded v-R-ideals in Qg.

Lemma 2.11. The mapping ϕ : D(R0) → Dg(R) given by ϕ(A0) = A0R is iso-

morphic as an Abelian group, where A0 ∈ D(R0).

Proof. Let A0 ∈ D(R0). Then by Lemma 2.10, (A0R)v = (A0)vR = A0R and

so ϕ(A0) ∈ Dg(R). It is clear that ϕ is one-to-one since A0R ∩ R0 = A0 for any

R0-ideal A0 in Q0. For A0, B0 ∈ D(R0), ϕ(A0 ◦B0) = ϕ((A0B0)v) = (A0B0)vR =

(A0B0R)v = (A0RB0R)v = (A0R) ◦ (B0R) = ϕ(A0) ◦ ϕ(B0). That is ϕ is a

semigroup homomorphism. To prove ϕ is onto, let A ∈ Dg(R). Then A = A0R =

RA0 and A0 is a Z-invariant v-R0-ideal in Q0 by Lemma 2.10, that is A0 ∈ D(R0).

�

Lemma 2.12. Let M be an ideal of R. Then M is a maximal v-ideal of R with

M ∩R0 = (0) if and only if M = M ′ ∩R, where M ′ is a maximal ideal of Qg.

Proof. Note Qg is a principal ideal ring. Let A′ be a non-zero proper ideal of Qg

and A = A′ ∩ R. Then we prove A′ = AQg, A ∩ R0 = (0) and A is a v-ideal.

For a′ ∈ A′, there is a c0 ∈ C0 with a′c0 ∈ A and so a′ ∈ AQg. Thus A′ = AQg.

Because A′ ⊂ Qg, A ∩ R0 = (0) holds. Since A′ = A′v = (AQg)v = AvQ
g by [1,

Lemma 3.2], A is a v-ideal.

Thus it follows that if M is a maximal v-ideal of R with M ∩ R0 = (0), then

M ′ = MQg is a maximal ideal of Qg with M = M ′ ∩R.

Conversely let M ′ be a maximal ideal of Qg. Then it is clear that M = M ′ ∩R
is a maximal v-ideal of R with M ∩R0 = (0). �

Let D0(R) be the free Abelian subgroup of D(R) generated by maximal v-ideals

M of R with M ∩R0 = (0). By Lemma 2.12, D0(R) is isomorphic to D(Qg).

Lemma 2.13. (1) Let M be a maximal v-ideal of R with M0 = M ∩R0 6= (0).

Then M0 is a maximal Z-invariant v-ideal of R0 and M = M0R.

(2) Let M0 be a maximal Z-invariant v-ideal of R0. Then M = M0R is a

maximal v-ideal of R.

Proof. (1) By Lemma 2.10, M0 is Z-invariant. Since M = Mv ⊇ (M0R)v =

M0vR ⊇ M0v by Lemma 2.10, M0 is a v-ideal of R0. Since R is a Krull ring, (R :

M)l ⊆ (R : M0R)l = (R : M0R)r. Hence M0R(R : M)l ⊆ M0R(R : M0R)r ⊆ R

and M0R(R : M)lM ⊆ M0R. If M ⊃ M0R, then M0R(R : M)l ⊆ M0R because
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M0R is a prime ideal of R by Lemma 2.10, and so (R : M)l ⊆ Or(M0R) = R, that

is, Mv = R, a contradiction. Thus M = M0R. Now it is easily proved that M0 is

a maximal Z-invariant v-ideal of R.

(2) This is clear from the proof of (1). �

Let M be a maximal v-ideal of R. Then either M = M0R, where M0 is a Z-

invariant maximal v-ideal of R0 or M = M ′ ∩ R, where M ′ is a maximal ideal of

Qg, which follows from Lemma 2.11 and Lemma 2.12. Thus we have the following

theorem.

Theorem 2.14. Suppose R = ⊕n∈ZRn is a Krull ring. Then

D(R) = Dg(R)×D0(R) ∼= D(R0)×D(Qg).
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