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1. Introduction

In this paper we continue our study of integral representations of symmetric
groups, begun in [5]. Let Sn be the symmetric group of degree n > 0. Moreover,
for every partition λ of n, let SλQ be the corresponding Specht QSn-module. As λ
varies over the set of partitions of n, the Specht modules SλQ yield representatives of
the isomorphism classes of (absolutely) simple QSn-modules. Every Specht module
SλQ is already equipped with a particular integral form, the Specht ZSn-lattice SλZ .
In light of the celebrated Jordan–Zassenhaus Theorem, it is, therefore, natural to
ask for a description of all isomorphism classes of ZSn-lattices that are Z-forms of
a given Specht module SλQ, or at least for the number of these. To do so, a possible
strategy is to consider, for each prime p, the p-adic completion SλQp

:= Qp ⊗Q S
λ
Q

and determine the ZpSn-lattices that are Zp-forms of SλQp
. In general, this is way

too difficult a task.
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In [5] we investigated the case where λ is a hook partition of n > 3, that is,
a partition of the form (n − r, 1r), for some r ∈ {1, . . . , n − 2}. Specht modules
(and Specht lattices) labelled by hook partitions have been studied a lot and much
is known about their structure. Nevertheless, as far as the determination of the
Z-forms of S(n−r,1r)

Q as concerned, we so far only have complete information in the
case where r = 1: By work of Plesken [13] and Craig [3], the number of isomorphism
classes of Z-forms of S(n−1,1)

Q equals the number of positive divisors of n, and one
can give explicit representatives.

So, one may focus on the case where r > 1. If p is an odd prime, then the
QpSn-module S(n−r,1r)

Qp
admits precisely νp(n)+1 isomorphism classes of Zp-forms,

where νp(n) denotes the p-adic valuation of n. Explicit representatives of these
isomorphism classes have been determined in [5, Theorem 6.1]; see also the work of
Plesken in [14, Satz (III.8)] and [15, Theorem (VI.2)], who studied these modules
using different methods.

The case where p = 2 turned out to be considerably more difficult. In [5,
Section 7], we were only able to give explicit representatives of the isomorphism
classes of Z2-forms of the Q2Sn-module S(n−2,12)

Q2
, and only if n 6≡ 0 (mod 4). One

aim of the present paper is to settle the remaining case n ≡ 0 (mod 4). This will
be achieved in Theorem 3.7, which then entails Corollary 3.9 on the number of
isomorphism classes of Z-forms of S(n−2,12)

Q .
In fact, Theorem 3.7 will turn out to be a special instance of the more general

result in Theorem 3.2. The latter deals with the following situation: suppose that
G is a finite group, R is a principal ideal domain with field of fractions K of
characteristic 0 and residue field k := R/J(R) of characteristic p > 0. Suppose
further that V is an absolutely simpleKG-module with an R-form L whose modular
reduction k⊗R L has, as kG-module, precisely three composition factors satisfying
some additional properties. Then we shall determine all R-forms of the KG-module
V up to isomorphism.

The hypotheses of Theorem 3.2 might at first seem rather special. In Proposi-
tion 3.18, we shall see a second application of this result to the case where G is a
finite projective special linear group of degree 2 and V is the Steinberg module of
KG, for suitable fields K of characteristic 0.

In light of this, we are tempted to ask whether Theorem 3.2 can be used to treat
further finite groups and simple KG-modules arising as augmentation kernels of
two-transitive permutation representations; see Question 3.19. At the moment we
are, however, not able to answer this question.
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In Section 4 we then investigate the (Solomon) zeta functions of various families
of ZG-lattices, where G is a finite group. In [16] L. Solomon introduced a general-
ization of the Riemann zeta function with the aim to study enumerative problems
in integral representation theory. Subsequently, Bushnell and Reiner intensively
studied Solomon’s zeta functions; see [2] for an overview of their theory.

In Section 4, we shall give a concise summary of Solomon’s definitions and the
properties of the Solomon zeta functions relevant to our applications. In the case
where G is a finite group and L is a ZG-lattice, the zeta function of L is defined as

ζZG(L, s) :=
∑
N⊆L

[L : N ]−s (s ∈ C) ,

where N varies over all ZG-sublattices of L of finite index. This will usually be
viewed as a formal Dirichlet series, disregarding questions of convergence.

The concrete computation of zeta functions of ZG-lattices is in general a rather
difficult problem, and not too much is known in this direction. The case where
L is the regular ZG-lattice has been studied most intensively; for a list of known
results see [6]. In [6], the second author determined the zeta functions ζZSn

(L, s),
where L is a Z-form of the Specht QSn-module labelled by the hook partition
(2, 1n−2). In Section 4.5 of the present paper we shall generalize the results of [6],
and determine global and local zeta functions of further Specht lattices labelled by
hook partitions. As well, in Section 4.6 we again consider the projective special
linear group PSL2(q), where q is a prime power, and the Steinberg module of
Q[PSL2(q)]. We shall determine the zeta function of a distinguished Z-form of this
module. The key ingredient here will again be Theorem 3.2.

The present paper is organized as follows: In Section 2 we briefly summarize
some properties of graduated orders that will be relevant in subsequent sections.
Section 3 is then devoted to establishing Theorem 3.2 and its applications to the
study of integral forms of the Specht QSn-module S(n−2,12)

Q and the Steinberg
module of Q[PSL2(q)], respectively. In Section 4 we recall Solomon’s notion of
global and local zeta functions of modules over group algebra. We then explicitly
compute these zeta functions for various families of modules and lattices, including
Specht modules of symmetric groups labelled by hook partitions, and the Steinberg
module of PSL2(q).

2. Notation and prerequisites

In this section we fix some notation, briefly recall the notion of a graduated
order, and summarize the known results that will be relevant in Section 3 later. We
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follow the work of Plesken on the subject, and refer the reader to [14] and [15] for
further background.

Notation 2.1. (a) Let F be any field, and let A be a finite-dimensional F -algebra.
An A-module is always supposed to be a finitely generated left module. For an A-
module V , we denote by Rad(V ) the Jacobson radical of V , and by Hd(V ) :=

V/Rad(V ) the head of V . The socle of V will be denoted by Soc(V ).

(b) Let R be a principal ideal domain with field of fractions K, let m = (π) be
a maximal ideal in R, and let k := R/m be the corresponding residue field. By an
R-order we understand a finitely generated R-algebra Λ that is free over R of finite
R-rank. One has a k-algebra isomorphism k ⊗R Λ ∼= Λ/mΛ; for convenience, we
shall often identify these algebras and denote them simply by kΛ. A Λ-lattice is
then a finitely generated left Λ-module L that is R-free of finite R-rank, which we
denote by rkR(L). The factor module L̄ := L/mL naturally carries the structure of
a kΛ-module, and L/mL ∼= k ⊗R L.

If A is a finite-dimensional K-algebra and if an R-order Λ is a subring of A
with KΛ = A, then one calls Λ an R-order in A. In this case, we also identify the
K-algebras A and K ⊗R Λ. If V is an A-module and L is a Λ-lattice such that
K ⊗R L ∼= V as A-modules, then one calls L an R-form of V . As usual, we shall
often work with an R-form L of V such that L ⊆ V . Moreover, recall that every
R-form of V is isomorphic to a Λ-sublattice of any given R-form L.

(c) With the notation as in (b), suppose that L is a Λ-lattice, and let L′ ⊆ L

be a Λ-sublattice of L with rkR(L) = rkR(L′). If L′ ⊆ πiL, for some i ∈ N,
then we denote by L′/πi the Λ-sublattice {π−ix : x ∈ L′} of L, which satisfies
πi(L′/πi) = L′ and is isomorphic to L′.

(d) Now suppose that R is local, and again let Λ be an R-order. We shall call
a Λ-module L simple if L 6= {0} and if L and {0} are the only Λ-submodules of
L. If L is a simple Λ-module, then mL = πL is a Λ-submodule of L, and mL 6= L,
by Nakayama’s Lemma [4, (30.2)]. Thus mL = {0}; in particular, every simple
Λ-module is a torsion module. This shows that mΛ is contained in the Jacobson
radical J(Λ) of Λ, which entails k-algebra isomorphisms

Λ/J(Λ) ∼= (Λ/mΛ)/(J(Λ)/mΛ) = (Λ/mΛ)/J(Λ/mΛ) ∼= kΛ/J(kΛ) ;

in particular, there are bijections between the isomorphism classes of simple mod-
ules of Λ, Λ/J(Λ), kΛ and kΛ/J(kΛ), respectively.
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If L is any (finitely generated) Λ-module, then one also has πL = mL = mΛ ·L ⊆
J(Λ) · L ⊆ Rad(L), and

L/Rad(L) ∼= (L/mL)/(Rad(L)/mL) = (L/mL)/(Rad(L/mL)) ,

as Λ-modules and kΛ-modules.

For simplicity, for the remainder of this section, R will be a local principal ideal
domain with maximal ideal m = (π), field of fractionsK and residue field k := R/m.

Definition 2.2. Let n ∈ N. An R-order Λ in the matrix algebra A := Kn×n

is called a graduated R-order in A if there exist pairwise orthogonal idempotents
e1, . . . , en ∈ Λ such that 1A = 1Λ = e1 + · · ·+ en.

Remark 2.3. Suppose that A is any semisimple K-algebra, and let ε be a block
idempotent of A, that is, a projection onto one of the Wedderburn components of A.
If K is a splitting field of the simple K-algebra εAε, then εAε ∼= Kn×n, where n is
the dimension of the (up to isomorphism uniquely determined) simple εAε-module.
This is the situation we shall investigate in the following.

2.4. Exponent matrices and normal form. (a) Following [14, Definition (I.3)]
and [15, Definition (II.1), (II.2)], consider r, n, d1, . . . , dr ∈ N with n = d1 + · · ·+dr

as well as a matrix M = (mij) ∈ Zr×r all of whose entries are non-negative. Then
the set of block matrices

Λ := Λ(d1, . . . , dr;M) := {(aij) ∈ Rn×n : aij ∈ mmij ·Rdi×dj} ⊆ Rn×n ⊆ Kn×n

is a (graduated) order in Kn×n if and only if, for all i, j, k ∈ {1, . . . , r}, one has

mii = 0 (1)

and

mij +mjk > mik . (2)

If, moreover, one has

mij +mji > 0 , (3)

whenever i 6= j, one says that Λ is in standard form, and calls M the exponent
matrix of Λ. By [15, Remark (II.3)], every graduated order in Kn×n is isomorphic
to a graduated order in standard form.

Theorem 2.5 ([14, Satz (I.26)],[15, Theorem (II.16)]). Suppose that A is a semisim-
ple K-algebra, let Γ be any R-order in A, and let ε be a block idempotent of A.
Moreover, let V be an absolutely simple A-module with εV = V , and let L ⊆ V be
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a Γ-lattice that is an R-form of V . Then εΓε is a graduated order in εAε if and
only if the following conditions are satisfied:

(i) every composition factor of the kΓ-module L/mL occurs with multiplicity
1;

(ii) every composition factor of the kΓ-module L/mL is absolutely simple.

In the course of this paper we shall apply Theorem 2.5 in the case where A = KG

is the group algebra of a finite group G over K, and Γ is the R-order RG in A.
Therefore, we recall how to obtain a graduated order in standard form in εKGε

that is isomorphic to εRGε.

2.6. Sublattices and exponent matrices. We keep the notation of Theo-
rem 2.5, and suppose that conditions (i) and (ii) are satisfied. Denote the R-order
εΓε of εAε by Λ. Let D1, . . . , Dr be the pairwise non-isomorphic composition fac-
tors of the kΓ-module L/mL, with k-dimensions d1, . . . , dr.

(a) As mentioned in 2.1, one has bijections between the isomorphism classes
of simple modules of Λ, Λ/J(Λ), kΛ and kΛ/J(kΛ), respectively. Analogously,
mΓ ⊆ J(Γ), and one has bijections between the isomorphism classes of simple
modules of Γ, Γ/J(Γ), kΓ and kΓ/J(kΓ), respectively.

Since L ⊆ V and ε acts as the identity on V , it also acts as the identity on L and
all its sublattices. In particular, L = εL is also a Λ-lattice, and the Γ-sublattices
of L are just the inflations of the Λ-sublattices of L, along the surjective R-algebra
homomorphism Γ→ Λ = εΓε , a 7→ εa.

We may also view L/mL both as kΓ and kΛ-module. Since V is, up to isomor-
phism, the only simple εAε-module and since Λ is an R-order in εAε, the simple
kΛ-modules arise precisely as the composition factors of the kΛ-module L/mL.

On the other hand, if D is a simple Λ-module, then D also becomes a simple
Γ-module via inflation along the surjective R-algebra homomorphism Γ → Λ =

εΓε , a 7→ εa.
Thus, altogether, the simple kΓ-modules D1, . . . , Dr may also be viewed as sim-

ple kΛ-modules. As such they are the composition factors of the kΛ-module L/mL.
Moreover, D1, . . . , Dr are representatives of the isomorphism classes of simple kΛ-
modules.

(b) As observed in (a), every Γ-sublattice of L is also a Λ-sublattice of L, and
conversely. So consider the lattice of Γ-sublattices of L of full R-rank. By [14,
Folgerung (I.24)], [15, Remark (II.4); p. 14], for each i ∈ {1, . . . , r}, there is a
unique sublattice Li of L such that Li 6⊆ mL and Li/Rad(Li) ∼= Di as kΓ-modules.
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Then, for i, j ∈ {1, . . . , r}, let mij ∈ N0 be the multiplicity of Di as a composition
factor of L/Lj . Setting ML := (mij), one deduces Λ ∼= Λ(d1, . . . , dr;ML) as R-
orders, and Λ(d1, . . . , dr;ML) is in standard form. The definition of ML of course
depends on L as well as on the ordering of the simple modulesD1, . . . , Dr. However,
once the latter ordering has been fixed and L and L′ are R-forms of V , [14, Satz
(I.7)], [15, Proposition (II.6)] show that ML = ML′ if and only of L ∼= L′ as
Γ-lattices.

By [14, Satz (I.23)], [15, Remark (II.4)], every projective indecomposable Λ-
module is isomorphic to a Λ-sublattice of L of full rank. More precisely, if, for
i ∈ {1, . . . , r}, Pi denotes a projective cover of the simple Λ-module Di, then
Pi ∼= Li as Λ-modules. Note that, as Γ-module, Li is, in general, not projective.

(c) Again let L ⊆ V be a Λ-lattice that is an R-form of V , and let ML = (mij)

be the corresponding exponent matrix, so that Λ ∼= Λ(d1, . . . , dr;ML). By [14,
Satz (I.8)], [15, Remark (II.4)], there is a bijection between the set of isomorphism
classes of Λ-lattices that are R-forms of V and the set of r-tuples (m1, . . . ,mr) ∈ Nr0
satisfying

mij +mj > mi , for i, j ∈ {1, . . . , r} (4)

and

mk = 0 , for some k ∈ {1, . . . , r} . (5)

More precisely, to each such r-tuple (m1, . . . ,mr), one associates the unique full-
rank Λ-sublattice L(m1, . . . ,mr) of L such that, for i ∈ {1, . . . , r}, the simple Λ-
module Di occurs with multiplicity mi as a composition factor of L/L(m1, . . . ,mr).

(d) Now suppose that A = KG and Γ = RG, for a finite group G. Then
kΓ ∼= kG. Consider the simple A-module V ∗, that is, the K-linear dual of V , let ε∗

be the block idempotent of A with ε∗V ∗ = V ∗, and let T ⊆ V ∗ be an R-form of V ∗.
Then V ∗ and T also satisfy the hypotheses of Theorem 2.5. The composition factors
of the kG-module T/mT are isomorphic to the simple kG-modules D∗1 , . . . , D∗r . If
V is a self-dual KG-module, and if D1, . . . , Dr are self-dual kG-modules, then we
may take T ∼= L and, by [14, Satz (III.1)] and [15, Proposition (IV.1)], we obtain

mij +mjk +mki = mji +mkj +mik , (6)

for i, j ∈ {1, . . . , r}. It should be mentioned that, at the beginning of [14, Chapter
III], L is assumed to be projective, when viewed as εRGε-module. In our appli-
cations, we shall usually work with lattices that do not have this property. The
assertion of [14, Satz(III.1)(i)] is, however, valid without any restrictions on L.
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3. On simple KG-modules with three modular composition factors

Throughout this section, let R be a principal ideal domain with maximal ideal
m = (π), residue field k of characteristic p > 0, and field of fractions K of charac-
teristic 0. Moreover, let G be a finite group.

3.1. Submodule lattices. In this subsection, we shall investigate R-forms of
particular absolutely simple KG-modules with three modular composition factors.
Theorem 3.2 below will subsequently be applied to two examples on finite symmet-
ric and projective special linear groups, respectively. Throughout this subsection
suppose that R is local.

Hypotheses 3.1. Let V be an absolutely simple KG-module, and let S1 := L ⊆ V
be an R-form of V satisfying the following properties:

(a) there are pairwise non-isomorphic simple kG-modules D1, D2 and D3 with
k-dimensions d1,d2 and d3, respectively, such that d2 6= d1 6= d3 and d1 6=
d2 +d3, and such that the kG-module S1/πS1 has radical isomorphic to D1

and head isomorphic to D2 ⊕D3;
(b) D1

∼= D∗1 and (D2 ⊕D3)∗ ∼= D2 ⊕D3;
(c) Soc(S1/πS1) = Rad(S1/πS1);
(d) S2 and S3 are the maximal sublattices of S1 with S1/S2

∼= D2 and S1/S3
∼=

D3 as kG-modules;
(e) there is some t ∈ N and, for each i ∈ {1, . . . , t}, there is some sublattice

S3i+1 of S1 such that
(i) for each i ∈ {0, . . . , t− 1}, πS3i+1 ⊆ S3(i+1)+1 ⊆ S3i+1 and the dimen-

sion satisfies dimk(S3(i+1)+1/πS3i+1) = d1;
(ii) ∀i ∈ {1, . . . , t− 1}: S3i+1/πS3i+1

∼= D1 ⊕D2 ⊕D3;
(iii) S3t+1

∼= S∗1 .

Theorem 3.2. Suppose that Hypotheses 3.1 hold. Then one has the following:

(a) S4 is the unique common maximal sublattice of S2 and S3; moreover, S2/S4
∼=

D3 and S3/S4
∼= D2;

(b) for i ∈ {1, . . . , t − 1}, the lattice S3i+1 has precisely three maximal sublat-
tices S3i+2, S3i+3 and πS3(i−1)+1, where S3i+1/S3i+2

∼= D2, S3i+1/S3i+3
∼= D3 and

S3i+1/πS3(i−1)+1
∼= D1;

(c) for i ∈ {1, . . . , t − 1}, the lattice S3i+2 has at least two maximal sublattices
S3(i+1)+1 and πS3(i−1)+2; moreover, S3i+2/S3(i+1)+1

∼= D3 and S3i+2/pS3(i−1)+2
∼=

D1;
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(d) for i ∈ {1, . . . , t − 1}, the lattice S3i+3 has at least two maximal sublattices
S3(i+1)+1 and πS3(i−1)+3; moreover, S3i+3/S3(i+1)+1

∼= D2 and S3i+3/πS3(i−1)+3
∼=

D1;

(e) πS3(t−1)+1 is the unique maximal sublattice of S3t+1, and S3t+1/πS3(t−1)+1
∼=

D1;

(f) the RG-lattices S1, . . . , S3t+1 are pairwise non-isomorphic R-forms of V . If
S4 is the unique maximal sublattice of S2 as well as the unique maximal sublattice
of S3, then S1, . . . , S3t+1 are representatives of the isomorphism classes of R-forms
of V , and S1 has the following full-rank sublattices:

S1

S2 S3

S4

S5 πS1 S6

πS2 S7 πS3

S8 πS4 S9

πS5 π2S1 πS6

π2S2 S10 π2S3

πS7

S3(t−1)+2 S3(t−1)+3

πS3(t−2)+2 S3t+1 πS3(t−2)+3

πS3(t−1)+1

(7)

(g) if D1, D2 and D3 are absolutely simple, let ε be the block idempotent of KG
corresponding to V . Then Λ := εRGε is a graduated R-order in A := εKGε. One
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has Λ ∼= Λ(d1, d2, d3;ML), where

ML =


0 0 0

t 0 a

t b 0

 ,

for some a, b ∈ N. One has a = 1 = b if and only if S4 is the unique maximal
sublattice of S2 and the unique maximal sublattice of S3.

Proof. Assertion (a) is clear from our hypotheses. To prove assertions (b)–(d) we
argue by induction on i.

Suppose first that i = 1. The lattice S4 has three maximal sublattices, since
S4/πS4

∼= D1 ⊕ D2 ⊕ D3 as kG-module. By our hypotheses, πS1 ⊆ S4 ⊆ S1

and dimk(S4/πS1) = d1. By Hypotheses 3.1(a), this forces S4/πS1
∼= D1; in

particular, πS1 is maximal in S4. Now let S5 and S6 be the maximal sublattices
of S4 such that S4/S5

∼= D2 and S4/S6
∼= D3. Then we have S5/πS4

∼= D1 ⊕D3

and S6/πS4
∼= D1 ⊕D2. Moreover, from πS4 ⊆ S7 ⊆ S4 and dimk(S7/πS7) = d1

we deduce that S7/πS4
∼= D1, so that S7/πS4 is the unique submodule of S4/πS4

isomorphic to D1. In particular, S7/πS4 ⊆ S5/πS4 and S7/πS4 ⊆ S6/πS4. This
implies S7 ⊆ S5, S7 ⊆ S6, S5/S7

∼= D3, and S6/S7
∼= D2. Hence S7 is maximal in

both S5 and S6.
Next we show that πS2 is maximal in S5, πS3 is maximal in S6 and S5/πS2

∼=
D1
∼= S6/πS3. First assume that πS2 6⊆ S5. Since πS2 ⊆ πS1 ⊆ S4 and since S5 is

maximal in S4, this gives S4 = S5 + πS2 = S5 + πS1 and

S4/πS4 = (S5/πS4) + (πS2/πS4) ∼= (D1 ⊕D3) +D3 .

So either πS2/πS4 ⊆ S5/πS4 or S4/πS4 = S5/πS4 ⊕ πS2/πS4. Since we are
assuming πS2 6⊆ S5, the first case cannot occur, implying S4/πS4

∼= D1⊕D3⊕D3,
a contradiction, since D2 6∼= D3. Consequently, πS2 ⊆ S5 and

S5/πS2
∼= (S5/πS4)/(πS2/πS4) ∼= (D1 ⊕D3)/D3

∼= D1 ;

in particular, πS2 is maximal in S5 and πS2 6= S7.
Analogously, we deduce that πS3 6= S7 is maximal in S6 with S6/πS3

∼= D2.

So suppose now that i > 1. As above, we deduce that S3i+1 has precisely three
maximal sublattices πS3(i−1)+1, S3i+2 and S3i+3, where S3i+1/πS3(i−1)+1

∼= D1,
S3i+1/S3i+2

∼= D2 and S3i+1/S3i+3
∼= D3. Moreover, S3i+2 has at least two

maximal sublattices πS3(i−1)+2 and S3(i+1)+1, with S3i+2/πS3(i−1)+2
∼= D1 and

S3i+2/S3(i+1)+1
∼= D3. To see this, note that S3(i+1)+1/πS3i+1 is the unique sub-

module of S3i+1/πS3i+1 isomorphic to D1. Since S3i+1/S3i+2
∼= D2, we have
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S3i+2/πS3i+1
∼= D1 ⊕D3, implying S3(i+1)+1/πS3i+1 ⊆ S3i+2/πS3i+1, S3(i+1)+1 ⊆

S3i+2 and S3i+2/S3(i+1)+1
∼= D3. Assuming that πS3(i−1)+2 6⊆ S3i+2 and using

that S3(i−1)+2/S3i+1
∼= D3 by induction, we again obtain the contradiction

D1⊕D2⊕D3
∼= S3i+1/πS3i+1

∼= S3i+2/πS3i+1⊕πS3(i−1)+2/πS3i+1
∼= D1⊕D3⊕D3 .

Hence πS3(i−1)+2 ⊆ S3i+2 and

S3i+2/πS3(i−1)+2
∼= (S3i+2/πS3i+1)/(πS3(i−2)+1/πS3i+1) ∼= (D1 ⊕D3)/D3

∼= D1 .

This proves assertion (c), and assertion (d) concerning the maximal sublattices
of S3i+3 is proved analogously.

To show (e), recall that Soc(S1/πS1) ∼= D1 and D1
∼= D∗1 , by our hypotheses.

Since S3t+1
∼= S∗1 , we also have S3t+1/πS3t+1

∼= (S1/πS1)∗, so that S3t+1/πS3t+1

has head isomorphic to D1; in particular, S3t+1 has a unique maximal sublattice.
By our hypotheses, we further know that πS3(t−1)+1 ⊆ S3t+1 ⊆ S3(t−1)+1 and
dimk(S3t+1/πS3(t−1)+1) = dimk(D1). Hence S3t+1/πS3(t−1)+1

∼= D1, by Hypothe-
ses 3.1(a), and πS3(t−1)+1 is indeed the unique maximal sublattice of S3t+1.

To complete the proof of the theorem, it remains to settle (f) and (g). To do
so we shall apply [13, Proposition 2.3]. We first note that neither of the lattices
S1, . . . , S3t+1 is contained in πS1. Namely, by Hypotheses 3.1(d) and assertions (a)-
(d) above, for j ∈ {1, . . . , 3t+ 1}, every composition factor of S1/Sj is isomorphic
to D2 or D3, while S1/πS1 has a composition factor isomorphic to D1. Hence,
by [13, Proposition 2.3], the R-forms S1, . . . , S3t+1 are pairwise non-isomorphic
RG-lattices. By construction, (7) is part of the submodule lattice of S1.

Now suppose that both S2 and S3 have a unique maximal sublattice, which then
has to be equal to S4. We again argue by induction on i to show that each of
S3i+2 and S3i+3 has precisely two maximal sublattices, for all i ∈ {1, . . . , t − 1}.
So let i = 1, and assume that S5 has a maximal sublattice T with S7 6= T 6=
πS2. Then we must have S5/πS5

∼= D1 ⊕ D2 ⊕ D3, and S5/T ∼= D2. Since
πS2/πS5

∼= (πS2/π
2S2)/(πS5/π

2S2) and πS5/π
2S2
∼= S5/πS2

∼= D1, we conclude
that πS2/πS5

∼= D2 ⊕D3 is isomorphic to a factor module of πS2/π
2S2
∼= S2/πS2.

But S2/πS2 has a simple head isomorphic to D3, hence does not have a factor
module isomorphic to D2 ⊕D3.

This proves the assertions concerning S5, and the lattice S6 is treated analo-
gously.

Now let i > 1. Assume that we have a maximal sublattice T of S3i+2 with
πS3(i−1)+2 6= T 6= S3(i+1)+1. Then, as in the case where i = 1, we get S3i+2/πS3i+2

∼=
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D1 ⊕D2 ⊕D3 and S3i+2/T ∼= D2. We have πS3i+2 ⊆ πS3i+1 ⊆ πS3(i−1)+2, thus

πS3(i−1)+2/πS3i+2
∼= (S3(i−1)+2/π

2S3(i−1)+2)/(πS3i+2/π
2S3(i−1)+2)

and

(S3i+2/πS3i+2)/(πS3(i−1)+2/πS3i+2) ∼= S3i+2/πS3(i−1)+2
∼= D1 .

Note that since we are assuming S3i+2/πS3i+2 to be semisimple, this implies that
πS3(i−1)+2/πS3i+2

∼= D2 ⊕ D3. But we have just seen that πS3(i−1)+2/πS3i+2 is
isomorphic to a factor module of πS3(i−1)+2/π

2S3(i−1)+2
∼= S3(i−1)+2/πS3(i−1)+2,

which, by induction, has a head isomorphic to D1 ⊕D3. Since D1 6∼= D2 6∼= D3, we
obtain a contradiction.

This proves the assertions concerning S3i+2, and the lattice S3i+3 is treated
analogously. Consequently, we have now verified that (7) is the lattice of full-
rank sublattices of S1. Moreover, S1, . . . , S3t+1 are precisely those sublattices of S1

of full rank that are not contained in πS1, which are then representatives of the
isomorphism classes of R-forms of V , by [13, Proposition 2.3]. This settles (f).

Lastly suppose that D1, D2 and D3 are absolutely simple. Then Λ is a gradu-
ated R-order in A, by Theorem 2.5. By (e), the lattice S3t+1 must be the unique
sublattice of S1 not contained in πS1 that is a projective cover of D1, when viewed
as simple Λ-module as in 2.6(b). Consequently, S1 is an injective Λ-lattice, and [14,
Satz (I.23)(ii)], [15, Remark (II.4)] forces m1j = 0, for j ∈ {1, 2, 3}.

Hence, by 2.6(b), with respect to the chosen ordering on D1, D2, D3, we must
have

ML = MS1
=


0 0 0

t 0 a

t b 0

 ,

for some a, b ∈ N.
Consider the uniquely determined sublattices P2 and P3 of S1 not contained in

πS1 such that P2/Rad(P2) ∼= D2 and P3/Rad(P3) ∼= D3. That is, P2 is a projective
cover of D2 and P3 is a projective cover of D3, when viewed as Λ-modules. Then, by
2.6(b), we deduce that S1/P2 has only composition factors isomorphic to D3, and
the number of these is b. Similarly, S1/P3 has only composition factors isomorphic
to D2, and the number of these is a. Since S2 and S3 are the only maximal
sublattices of S1, this forces P2 ⊆ S3 and P3 ⊆ S2. Therefore, we have a = b = 1 if
and only if P2 = S3 and P3 = S2. This in turn is equivalent to S2 and S3 having a
unique maximal sublattice, which then has to be the common sublattice S4. �
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Remark 3.3. Keep the notation of Theorem 3.2. Suppose that the simple kG-
modules D1, D2, D3 are absolutely simple and suppose also that a = b = 1 in part
(g). Then the RG-lattices S1, . . . , S3t+1 are representatives of the R-forms of V ,
and Λ = εRGε is a graduated R-order of εKGε. Recall from 2.6(c) that the lattices
S1, . . . , S3t+1 bijectively correspond to the triples (m1,m2,m3) ∈ N3

0 satisfying the
following conditions:

t+m1 > m2 > m1

t+m1 > m3 > m1

1 +m3 > m2

1 +m2 > m3 .

Since at least one of m1,m2,m3 has to be 0, this gives m1 = 0 and

(m1,m2,m3) ∈ {(0, j, j), (0, j + 1, j), (0, j, j + 1), (0, t, t) : j ∈ {0, . . . , t− 1}} .

Moreover, by 2.6(c) and (7), the concrete correspondence between Sj and the triple
(m1,m2,m3) is given as follows:

j (m1,m2,m3)

3j + 1 (0, j, j)

3j + 2 (0, j + 1, j)

3j + 3 (0, j, j + 1)

3t+ 1 (0, t, t)

where j ∈ {0, . . . , t− 1}.

3.2. Application I: symmetric groups. Our first application of Theorem 3.2
will be concerned with the symmetric group Sn of degree n > 0. We begin by
setting up some notation that will be chosen in accordance with [5]. For details
on the representations of symmetric groups and the well-known properties of these
used below, we refer the reader to [9].

Notation 3.4. Suppose that R is a principal ideal domain with field of fractions K
of characteristic 0. Moreover, let (π) be a maximal ideal in R such that the residue
field k := R/(π) has characteristic p > 0. The isomorphism classes of (absolutely)
simple KSn-modules are labelled by the partitions of n: for every partition λ of n,
there is a simple KSn-module SλK , called the Specht KSn-module labelled by λ,
which carries a distinguished R-form SλR, called the Specht RSn-lattice labelled by
λ. The kSn-module SλR/πS

λ
R shall be denoted by Sλk . It is well known and easily
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deduced from the explicit construction of Specht modules in [8, Sections 4 and 8]
that SλR ∼= R⊗Z S

λ
Z , for every partition λ of n.

The isomorphism classes of (absolutely) simple kSn-modules are labelled by the
p-regular partitions of n, that is, partitions λ of n each of whose parts occurs with
multiplicity at most p−1. The simple kSn-module labelled by a p-regular partition
µ is usually denoted by Dµ

k . Recall also that Dµ
k is isomorphic to the head of Sµk .

Every simple KSn-module as well as every simple kSn-module is self-dual.

In [5], we considered the case where K ∈ {Q,Qp}, R ∈ {Z,Zp} and k = Fp,
for some prime number p. We studied the R-forms of the Specht KSn-modules
labelled by hook partitions (n−r, 1r), for r ∈ {0, . . . , n−1}. In [5, Theorem 6.1] we
determined a set of representatives of the isomorphism classes of Zp-forms of the
Specht QpSn-module S(n−r,1r)

Qp
, for p > 2 and r ∈ {0, . . . , n− 1}; see also [14, Satz

(III.8)]. The main ingredient in the proof of our result were the results of Plesken
[13] and Craig [3] on the case r = 1. The case where p = 2 turned out to be much
more difficult. In [5, Theorem 7.10, Theorem 7.16] we settled the case p = 2 = r,
for n 6≡ 0 (mod 4). In Theorem 3.7 below we shall now treat the case p = 2 = r

and n ≡ 0 (mod 4), thereby verifying [5, Conjecture 7.18(a)]. For a summary of
the known relationship between Specht modules labelled by hook partitions and
exterior powers, we refer to [5, Section 4; 5.5].

In what follows, for every prime number p and every n ∈ N, we denote by νp(n)

the p-adic valuation of n, that is, νp(n) = max{l ∈ N0 : pl | n}.

3.5. Specht modules labelled by hook partitions. (a) Suppose now that
p = 2 and n > 4. Let t := ν2(n). For R ∈ {Z2,Q2,F2}, one has RSn-isomorphisms
S

(n−2,12)
R

∼=
∧2

(S
(n−1,1)
R ); see [5, 5.5]. As in [5], we shall often view these isomor-

phisms as equalities, for convenience.

(b) Suppose that p | n. For j ∈ {0, . . . , ν2(n)}, let M2j be the Z2Sn-sublattice
of S(n−1,1)

Z2
in [5, Theorem 8.1]. Then

S
(n−1,1)
Z2

= M1 ⊇M2 ⊇M4 ⊇ · · · ⊇M2t ∼= (S
(n−1,1)
Z2

)∗ ,

and M1, . . . ,M2t are representatives of the isomorphism classes of Z2-forms of
S

(n−1,1)
Q2

. Moreover, for j ∈ {1, . . . , t}, one has 2M2j−1 ⊆ M2j ⊆ M2j−1 , [M2j−1 :

M2j ] = 2n−2 and M2j−1/M2j
∼= D

(n−1,1)
F2

as F2Sn-modules. If j ∈ {1, . . . , t − 1},
then M2j/2M2j

∼= D
(n−1,1)
F2

⊕ F2.
By [5, Theorem 4.5], the Z2Sn-lattices

∧2
(M1), . . . ,

∧2
(M2t) are pairwise non-

isomorphic Z2-forms of S(n−2,12)
Q2

. Lastly, recall that S(n−1,1)
Z2

has rank n − 1, and
D

(n−1,1)
F2

has dimension n− 2.
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Lemma 3.6. Let n > 4 be such that n ≡ 0 (mod 4), and let t := ν2(n). Let V
be the absolutely simple Q2Sn-module S(n−2,12)

Q2
. Moreover, let D1 := D

(n−1,1)
F2

,
D2 := D

(n)
F2

∼= F2, and D3 := D
(n−2,2)
F2

. With the notation as in 3.5(b), one has the
following:

(a)
∧2

(M2i) ⊆ 2i
∧2

(M1) = 2iS
(n−2,12)
Z2

, for i ∈ {0, . . . , t};
(b) for i ∈ {0, . . . , t}, let S3i+1 :=

∧2
(M2i)/2i. Then S1, S4, S7, . . . , S3t+1 are

Z2-forms of V satisfying Hypotheses 3.1.

Proof. As in the proof of [5, Proposition 6.5], we have 4
∧2

(M2i) ⊆
∧2

(M2i+1) ⊆
2
∧2

(M2i), for i ∈ {0, . . . , t − 1}. Thus, by induction on i, we deduce that the
modules S1, S4, . . . , S3t+1 are Z2-forms of V such that 2S3i+1 ⊆ S3(i+1)+1 ⊆ S3i+1,
for i ∈ {0, . . . , t− 1}.

Let di := dimF2
(Di), for i ∈ {1, 2, 3}. We have S1/pS1

∼= S
(n−2,12)
F2

, and it

follows from [11, Theorem 1.1] that Rad(S
(n−2,12)
F2

) = Soc(S
(n−2,12)
F2

) ∼= D1 and

Hd(S
(n−2,12)
F2

) ∼= D2 ⊕ D3. Furthermore, d1 = n − 2 and d2 = 1. Thus d3 =

dimF2
(S

(n−2,12)
F2

) − d1 − d2 =
(
n−1

2

)
− 1 − (n − 2). From this one immediately

deduces that Hypotheses 3.1(a) and (c) are satisfied. In particular, there is a unique
maximal sublattice S2 of S1 with S1/S2

∼= D2, and a unique maximal sublattice S3

of S1 with S1/S3
∼= D3. So Hypothesis 3.1(d) is satisfied.

Since every simple F2Sn-module is self-dual, also Hypothesis 3.1(b) is satisfied.
It remains to verify that Hypotheses 3.1(e) are satisfied. To this end, let i ∈
{0, . . . , t− 1}. Then

[S3i+1 : S3(i+1)+1] =

[
2∧

(M2i)/2i :

2∧
(M2i+1)/2i+1

]
=

[
2∧

(M2i) :

2∧
(M2i+1)/2

]

=
[
∧2

(M2i) :
∧2

(M2i+1)]

2(n−1
2 )

= 2(n−2)(n−2
1 )−(n−1

2 )

= 2(n−2
2 ) = 2(n−1

2 )−(n−2) = 2d2+d3 ,

by [5, Lemma 4.4, Proposition 2.5] and 3.5(b). Thus S3i+1/S3(i+1)+1 has F2-
dimension d2 + d3, and S3(i+1)+1/2S3i+1 has F2-dimension

(
n−1

2

)
− d2 − d3 = d1.

Next suppose that i ∈ {1, . . . , t − 1}. We need to show that S3i+1/2S3i+1 is
semisimple as F2Sn-module. By 3.5, we know that M2i/2M2i

∼= D1 ⊕ D2, as
F2-modules. Moreover, using [5, 4.1(d)] and [4, (12.2)], we also know that

S3i+1/2S3i+1
∼=

2∧
(M2i)/2

2∧
(M2i) ∼=

2∧
(M2i/2M2i)

∼=
2∧

(D2)⊕ (D1 ⊗D2)⊕
2∧

(D1) ∼= D1 ⊕
2∧

(D1)
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as F2Sn-modules. Consequently,
∧2

(D1) must have composition factors D2 and
D3. On the other hand, recall that D1 is isomorphic to the head of S(n−1,1)

F2
. The

resulting F2Sn-epimorphism S
(n−1,1)
F2

→ D1 gives rise to an F2Sn-epimorphism

S
(n−2,12)
F2

∼=
∧2

(S
(n−1,1)
F2

) →
∧2

(D1). But we have already seen above that the

only factor module of S(n−2,12)
F2

with composition factors D2 and D3 has to be
semisimple. Hence

∧2
(D1) ∼= D2 ⊕D3, and we have verified Hypothesis 3.1(e)(ii).

Lastly, we have M2t ∼= (S
(n−1,1)
Z2

)∗, and thus, by [5, 4.1(c)], also

S3t+1
∼=

2∧
(M2t) ∼=

(
2∧

(S
(n−1,1)
Z2

)

)∗
∼= (S

(n−2,12)
Z2

)∗ ∼= S∗1

as Z2Sn-lattices.
Therefore, S1, S4, . . . , S3t+1 indeed satisfy Hypotheses 3.1, and the proof of the

lemma is complete. �

In consequence of Lemma 3.6 we can now apply Theorem 3.2 to obtain

Theorem 3.7. Let n > 4 be such that n ≡ 0 (mod 4), let t := ν2(n), and keep
the notation from Lemma 3.6. Then the lattice of full-rank sublattices of the Z2Sn-
lattice S(n−2,12)

F2
is given by (7). The lattices S1, S2, . . . , S3t+1 are representatives

of the isomorphism classes of Z2-forms of the simple Q2Sn-module S(n−2,12)
Q2

.

Proof. By Lemma 3.6 and Theorem 3.2, we conclude that (7) is part of the lattice
of full-rank sublattices of S1 = S

(n−2,12)
Z2

and that S1, S2, . . . , S3t+1 are pairwise

non-isomorphic Z2-forms of S(n−2,12)
Q2

. Let ε be the block idempotent of Q2Sn cor-

responding to S(n−2,12)
Q2

, and let Λ the the graduated Z2-order εZ2Snε in εQ2Snε.
By Theorem 3.2, we also know that the exponent matrix of Λ with respect to S1

equals

M := (mij) :=


0 0 0

t 0 a

t b 0

 ,

for some a, b ∈ N. In order to complete the proof of the theorem, it suffices to
show that a = b = 1 or, equivalently, that each of the lattices S2 and S3 has
a unique maximal sublattice, namely the common maximal sublattice S4. We
examine S2. By construction, S2 is the unique maximal sublattice of S1 such that
S1/S2

∼= D2
∼= F2. Therefore, S2 has to be the Z2Sn-sublattice of S1 constructed

in [5, Lemma 7.5]; in particular, S2 does not have a maximal sublattice T such that
S2/T ∼= D2, by [5, Lemma 7.7(a)]. Let L ⊆ S1 be the unique sublattice of S1 such
that L 6⊆ 2S1 and L/Rad(L) ∼= D3. Then, due to the structure ofM , we must have
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S1 6= L 6⊆ S3. Hence L ⊆ S2, since S2 and S3 are the only maximal sublattices of
S1. If L 6= S2, then a > 1 and so there would be a maximal sublattice T of S2 such
that S2/T ∼= D2, a contradiction. Therefore, L = S2 and a = 1.

Since S(n−2,12)
Q2

is a self-dual Q2Sn-module and D1, D2, D3 are self-dual F2Sn-
modules, (6) gives

0 + a+ t = m12 +m23 +m31 = m21 +m32 +m13 = t+ b+ 0 ,

that is, b = a = 1 as well. So, by Theorem 3.2(f), S4 is also the unique maximal
sublattice of S3, and the assertion of the theorem follows. �

Remark 3.8. For completeness, we also comment on the simple Q2S4-module
S

(2,12)
Q2

. It is well known that, for every r ∈ {0, . . . , n− 1} and every prime p, one

has S(r+1,1n−r−1)
Qp

∼= S
(n−r,1r)
Zp

⊗ sgnQp
, where sgnQp

denotes the one-dimensional
sign module of QpSn; see [9, Theorem 6.7].

Thus, in particular, if M1,M2,M3 denote the Z2S4-sublattices of S(3,1)
Z2

men-
tioned in 3.5, then M1 ⊗ sgnZ2

, M2 ⊗ sgnZ2
and M3 ⊗ sgnZ2

are representatives of

the isomorphism classes of Z2-forms of S(2,12)
Q2

.

Together with [5, Theorem 1.1, Corollary 3.4] we now also have the following
immediate corollary:

Corollary 3.9. Let n > 4, and let V ∈ {S(n−2,12)
Q , S

(3,1n−3)
Q }. Let h(V ) be the

number of isomorphism classes of Z-forms of V , and let d(n) be the number of
divisors of n in N. Then one has

h(V ) =



3d(n) if 2 - n ,

2d(n) if n ≡ 2 (mod 4) ,

3 if n = 4 ,

(3ν2(n)+1)d(n)
ν2(n)+1 if n ≡ 0 (mod 4), n > 4 .

3.3. Application II: projective special linear groups. Our second application
of Theorem 3.2 will involve the Steinberg module of the projective special linear
group PSL2(q) over suitable local fields of characteristic 0. We begin by setting up
the necessary notation.

3.10. Two-fold transitive permutation lattices. (a) Let R be a principal
ideal domain with field of fractions K of characteristic 0. Moreover, let r ∈ N with
r > 2 and let G be a finite group acting two-transitively on a set Ω := {ω1, . . . , ωr}.
Let further MR be the corresponding permutation RG-lattice with R-basis Ω, and
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let

LR := R〈ω2 − ω1, . . . , ωr − ω1〉 ,

which is an RG-sublattice of MR of rank r− 1. Then the KG-module VK := KLR

is absolutely simple, and KMR
∼= VK ⊕K; see [7, Satz V.20.2]. Since KMR and K

are a self-dual KG-modules, so is VK . Note that we also have MR
∼= R⊗ZMZ and

LR ∼= R⊗Z LZ.

(b) Now suppose that K is a finite extension of the field Qp of p-adic num-
bers. Let R be the valuation ring of K with respect to the extension of the p-adic
valuation, and let m = (π) be the maximal ideal in R.

Suppose that p | r, and let t ∈ N be such that (r) = mt = (πt). For j ∈ {0, . . . , t},
the map ιj : LR/π

jLR → MR/π
jMR , x + πjLR 7→ x + πjMR is easily checked

to be an injective homomorphism of RG-modules and R/(πj)[G]-modules. Since
πj | r, the element

∑r
i=1 ωi + πjMR spans a trivial submodule of MR/π

jMR, and
so
∑r
i=2(ωi−ω1) + πjLR spans a trivial submodule of LR/πjLR. The preimage of

the latter under the canonical surjective RG-homomorphism LR → LR/π
jLR is

Mπj := R〈
r∑
i=2

(ωi − ω1)〉+ πjLR ⊆ LR ; (8)

in particular, Mπ0 ,Mπ, . . . ,Mπt are RG-sublattices of LR. As well, Mπj has R-
basis (

∑r
i=2(ωi−ω1), πj(ω3−ω1), . . . , πj(ωr−ω1)), for j ∈ {0, . . . , t}. In particular,

Mπ0 ,Mπ, . . . ,Mπt are R-forms of the KG-module VK not contained in πLR. Thus,
by [13, Proposition 2.3], they are pairwise non-isomorphic as RG-lattices.

Now suppose, in addition, that the factor module D of LR/πLR modulo the
trivial submodule D1 mentioned above is a non-trivial, simple kG-module. By
Lemma 3.11 below, the kG-module LR/πLR then has to be indecomposable. Hence,
by [15, Theorem (VI.1)] and [13, Proposition 2.3], one deduces that there are pre-
cisely t + 1 isomorphism classes of R-forms of VK , and hence Mπ0 , . . . ,Mπt are
representatives of these.

In fact, in this case, the kG-modules Mπj/πMπj , for j ∈ {1, . . . , t − 1} are all
semisimple, hence isomorphic to D ⊕D1. Moreover, for j ∈ {0, . . . , t− 1}, one has
Mπj/Mπj+1

∼= D as kG-modules. This can, for instance, be deduced from Plesken’s
results in [13, Theorem 3.22] and [12, Satz (I.6)], which we shall also recall in 4.7.

Note that, in this case, the permutation kG-module kΩ ∼= MR/πMR has com-
position factors D (with multiplicity 1) and k (with multiplicity 2). Since kΩ and
k are self-dual, so is D.
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The following properties of the RG-lattices introduced above are certainly well
known. They will be important in the proofs of Lemma 3.17 and Proposition 3.18
below, so we include their proofs here.

Lemma 3.11. In the notation of 3.10(a), let R be a principal ideal domain with
field of fractions K, let m := (π) be a maximal ideal in R, let k := R/(π) be the
corresponding residue field. Then the kG-module LR/πLR does not have a trivial
factor module.

Proof. For x ∈ πLR, let x̄ := x + πLR ∈ LR/πLR. Assume that LR/πLR has a
trivial factor module, and let ϕ : LR/πLR → k be a non-trivial kG-homomorphism.
Since the elements ωi − ω1, for i ∈ {2, . . . , r}, form a k-basis of LR/πLR, there is
some j ∈ {2, . . . , r} with ϕ(ωj − ω1) 6= 0. For g ∈ G, we have ϕ(g(ωj − ω1)) =

gϕ(ωj − ω1) = ϕ(ωj − ω1). Since r > 2, there is some i ∈ {2, . . . , r} such that
i 6= j. Since G acts two-transitively on Ω, there exist g, h ∈ G such that g(ωj , ω1) =

(ωj , ωi) and h(ωj , ω1) = (ωi, ω1). We get

0 6= gϕ(ωj − ω1) = ϕ(ωj − ωi) = ϕ(ωj − ω1)− ϕ(ωi − ω1)

= ϕ(ωj − ω1)− hϕ(ωj − ω1) = 0 ,

a contradiction. �

Lemma 3.12. In the notation of 3.10(b), one has an RG-isomorphismMπt ∼= M∗1 .

Proof. The permutationKG-moduleMK = KMR carries its natural non-degenerate
symmetricG-invariant bilinear form β such that β(ωi, ωj) = δij , for i, j ∈ {1, . . . , r}.
Via restriction, β induces a symmetric G-invariant bilinear form on VK , and one
easily checks that this is still non-degenerate. Let N ⊆ VK be any R-form of VK ,
let (b1, . . . , br−1) be an R-basis of N , and consider N# := {v ∈ VK : β(v,N) ⊆ R}.
Then N# is also an R-form of VK . Moreover, N ⊆ N# and, since R is local with
finite residue field k, one has

[N# : N ] = |R/det((β(bi, bj))1,6i,j6r−1| ;

see [5, Proposition 2.5]. Also note that the map N# → N∗ , x 7→ (y 7→ β(x, y))

defines an RG-isomorphism.

Next observe that we have πtMπt ⊆ Mπt ⊆ M1 ⊆ πtM#
πt , by the choice of t.

So, in order to complete the proof of the lemma, it suffices to show that [M1 :

πtMπt ] = [M#
πt : Mπt ]. For then we get [M1 : πtMπt ] = [πtM#

πt : πtMπt ], and
hence M1 = πtM#

πt
∼= M#

πt
∼= M∗πt as RG-lattices.
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So consider the R-basis (b1, . . . , br−1) := (ω2 − ω1, . . . , ωr − ω1) of M1 and the
R-basis (c1 . . . , cr−1) := (

∑r
i=2(ωi − ω1), πt(ω3 − ω1), . . . , πt(ωr − ω1)) of πtMπt .

Then one has

det((β(ci, ci)16i,j6r−1) = (πt)2(r−2) · det((β(bi, bj)16i,j6r−1) = (πt)2(r−2) · r ,

hence [M#
πt : Mπt ] = |R/((πt)2(r−2) ·r)| = |R/r2r−3R|. On the other hand, using [5,

Proposition 2.5], we also see that [M1 : πtMπt ] = |R/((πt)2(r−2) ·πt)| = |R/r2r−3R|.
This completes the proof of the lemma. �

3.13. (Projective) general linear and (projective) special linear groups.
Keep the notation as in 3.10.

(a) Let n ∈ N with n > 1, let p be a prime, and let q be a power of a prime.
The general linear group GLn(q) acts two-transitively on the set of one-dimensional
subspaces of Fnq ; as above, we simply denote this set by Ω = {ω1, . . . , ωr}, where r =

1+ q+ · · ·+ qn−1. Suppose that p - q. In the notation of 3.10 above, the k[GLn(q)]-
module LR/πLR is absolutely simple if p - r; see [10, p.16, p.47, Theorem 20.3]
So, in this case LR is up to isomorphism the unique R-form of VK ; this follows
from [4, Proposition (16.16)], see also [5, Proposition 2.12]. If p | r, then LR/pLR
has precisely two absolutely simple composition factors D and D1 satisfying the
properties of 3.10(b); see, for instance, [10, (11.12)(iii), Theorem 16.3, Theorem
20.7]. The same is true when replacing GLn(q) by the projective general linear
group PGLn(q). So, in these cases, Plesken’s result [15, Theorem (VI.1)] determines
the R-forms of VK listed in (8).

(b) One has SLn(q) P GLn(q), and one can also regard PSLn(q) as a normal
subgroup of PGLn(q) in the obvious way. Via restriction, the K[GLn(q)]-module
VK in (a) becomes a K[SLn(q)]-module (and also a K[PSLn(q)]-module), which is
still absolutely simple, since also SLn(q) acts two-transitively on Ω.

(c) In the following, we shall focus on the case n = 2. Then VK is the Steinberg
module of the (projective) general and (projective) special linear groups under
consideration; see [1, Chapter 9]. Moreover, we shall from now on suppose that K
is a finite unramified extension of Qp and R is the valuation ring in K with respect
to the extension of the p-adic valuation. In this case we may take π := p. The
residue field k is isomorphic to Fpf , where f is the degree of K over Qp. We shall
use the results of Plesken in [15, Theorem (VI.1); Chapter VII] and Theorem 3.2
to obtain representatives of the isomorphism classes of R-forms of Res

PGL2(q)
PSL2(q) (VK).
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Remark 3.14. (a) Keep the notation from 3.13(c). Suppose first that p is odd and
that q is power of a prime different from p. Let G := PGL2(q) and H := PSL2(q). If
p does not divide the order of H, then the kH-module ResGH(LR/pLR) is absolutely
simple. Thus, in this case, ResGH(LR) is up to isomorphism the unique R-form of
ResGH(VK); see [4, Proposition (16.16)], [5, Proposition 2.12].

Hence, we may suppose that p | |H|. Recall that |H| is a divisor of (q+1)q(q−1).
If p | (q−1), then, by [1, Section 9.4.2], the kH-module ResGH(LR/pLR) is absolutely
simple. So, also in this case, ResGH(LR) is up to isomorphism the unique R-form of
ResGH(VK). If p | (q+ 1), then it follows from [1, Section 9.4.3] that the kH-module
ResGH(LR/pLR) has a trivial submodule with (absolutely) simple quotient. So, we
are in the situation of 3.10(b), and representatives of the isomorphism classes of
R-forms of VK are given by the RH-lattices in (8), for t = νp(q + 1).

(b) Now let p = 2, and let q be odd. If q ≡ ±3 (mod 8) and if the degree of K
over Q2 is odd, then the kH-module ResGH(LR/2LR) has two composition factors;
see [15, p. 110]. In consequence of 3.13(a) and Lemma 3.11, we are then again in
the situation of 3.10(b), and representatives of the isomorphism classes of R-forms
of ResGH(VK) are given by the lattices in (8), for t = ν2(q + 1).

If q ≡ ±1 (mod 8), or if q ≡ ±3 (mod 8) and the degree of K over Q2 is even,
then ResGH(LR/2LR) has three (absolutely) simple composition factors; see [15, p.
110], [1, Section 9.4.4]. These cases will be dealt with in the following.

Remark 3.15. As for the case of equal characteristic, that is, in the case where
p | q, note that the kH-module ResGH(LR/pLR) is projective and absolutely simple;
see [1, Lemma 10.2.4]. So, also in this case, ResGH(LR) is up to isomorphism the
unique R-form of ResGH(VK).

Hypotheses 3.16. For the remainder of this subsection, we suppose that q is an
odd prime power and p = 2. We set G := PGL2(q), and let H := PSL2(q). Let
(K,R, k) be as in 3.13(c). If q ≡ ±1 (mod 8), then we may take K to be any finite
unramified extension of Q2. If q ≡ ±3 (mod 8), then let K be a finite unramified
extension of Q2 of even degree; in particular, k then contains the field with four
elements. Lastly, let VK be the absolutely simple KG-module with R-form LR as
defined in 3.13(a).

Lemma 3.17. Let q be an odd prime power, and let t := ν2(q+ 1). With Hypothe-
ses 3.16 one has the following:

(a) The kH-module ResGH(L/2L) has precisely three composition factors D1, D2

and D3, all of which are absolutely simple and pairwise non-isomorphic.



150 SUSANNE DANZ AND TOMMY HOFMANN

More precisely, D1
∼= k, and ResGH(D) ∼= D2⊕D3; in particular dimk(D2) =

(q − 1)/2 = dimk(D3).
(b) For i ∈ {0, . . . , t}, let M2i ⊆ LR be the RG-lattice in (8), and let S3i+1 :=

ResGH(M2i). Then S1, S4, . . . , S3t+1 are R-forms of ResGH(VK) satisfying
Hypotheses 3.1.

Proof. Assertion (a) is well known; see, for instance, [1, Section 9.4.4] and [15,
p.110]. Note that D2 is G-conjugate to D3. As for assertion (b), note first that
S1, S4, . . . , S3t+1 are of course R-forms of ResGH(VK) satisfying Hypothesis 3.1(e)(i).
Recall from 3.10(b) and 3.13(a) thatM2i/2M2i

∼= D1⊕D, for i ∈ {1, . . . , t−1}, and
thatM2i/M2i+1

∼= D, for i ∈ {0, . . . , t−1}, as kG-modules. Hence S1, S4, . . . , S3t+1

satisfy Hypothesis 3.1(e)(ii). By Lemma 3.12, also Hypothesis 3.1(e)(iii) is satisfied.
Since the simple kG-module D is self-dual and since ResGH(D) ∼= D2 ⊕ D3,

Hypotheses 3.1(b) are satisfied. Setting di := dimk(Di), for i ∈ {1, 2, 3}, we have
d2 = d3 = (q − 1)/2 6= 1 = d1 and d1 6= d2 + d3.

It remains to verify the assertion on the submodule structure of the kH-module
ResGH(L̄) := ResGH(LR/2LR). We know that L̄ has a trivial submodule U with
factor module isomorphic to ResGH(D) ∼= D2 ⊕D3; in particular, Rad(ResGH(L̄)) ⊆
U . By Lemma 3.11, we also know that ResGH(L̄) does not have a trivial factor
module; in particular, ResGH(L̄) cannot be semisimple, implying Rad(ResGH(L̄)) =

U . Therefore, ResGH(L̄) has precisely two maximal submodules, U2 and U3, where U2

has composition factors D2 and D1, and U3 has composition factors D1 and D3. So
U2 has to be G-conjugate to U3. Since ResGH(L̄) is not semisimple, both U2 and U3

are indecomposable, and the common trivial submodule of U2 and U3 is the unique
simple submodule of ResGH(L̄). Thus Soc(ResGH(L̄)) = Rad(ResGH(L̄)) ∼= k ∼= D1.
This completes the proof of the lemma. �

Proposition 3.18. Let q be an odd prime power, and let t := ν2(q + 1). In the
notation of Lemma 3.17, the RH-lattice LR has submodule lattice (7). The lattices
S1, S2, . . . , S3t+1 are representatives of the isomorphism classes of R-forms of the
absolutely simple KH-module ResGH(VK).

Proof. Let ε be the block idempotent of KH corresponding to the absolutely
simple module ResGH(VK). Consider the graduated R-order Λ := εRHε in εKHε.
By Lemma 3.17 and Theorem 3.2, we know that (7) is part of the lattice of full-rank
sublattices of LR = S1. Moreover, S1, S2, . . . , S3t+1 are pairwise non-isomorphic
R-forms of the KH-module VK . On the other hand, by [15, Chapter VII], there is
a KH-lattice L′ ⊆ VK that is an R-form of VK and the exponent matrix of Λ with



LATTICES AND SOLOMON ZETA FUNCTIONS 151

respect to L′ is

ML′ =


0 t t

0 0 1

0 1 0

 .

From this and 2.6(c) one easily deduces that the isomorphism classes of R-forms of
the KH-module VK are in bijection with the set

{(0, 0, 0), (j, 0, 0), (j, 0, 1), (j, 1, 0) : j ∈ {1, . . . , t}} ,

which has cardinality 3t+ 1. Hence, (7) has to be the complete lattice of full-rank
sublattices of LR = S1, and S1, S2, . . . , S3t+1 are representatives of the isomorphism
classes of R-forms of the KH-module VK . �

Question 3.19. To conclude this section, suppose again that G is any finite group
acting two-transitively on a finite set Ω = {ω1, . . . , ωr} with r > 2. In the notation
of 3.10, we know that the absolutely simple KG-module VK admits at least t + 1

pairwise non-isomorphic R-forms, representatives of which are given by the RG-
lattices LR = Mπ0 , . . . ,Mπt in (8). We also know, by Lemma 3.12, that Mπt is
isomorphic to the dual lattice M∗1 = L∗R. Consider the kG-module Lk := LR/πLR

and its trivial submodule D1 as in 3.10. Suppose that Lk/D1 is the direct sum
of two non-trivial pairwise non-isomorphic simple kG-modules D2 and D3. For
i ∈ {0, . . . , t}, set S3i+1 := Mπi .

Do these RG-lattices then satisfy Hypotheses 3.1? If so, is S4 the only maximal
RG-sublattice of each of the maximal sublattices S2 and S3 of S1? If this was the
case, then Theorem 3.2 would be applicable to determine representatives of the
isomorphism classes of R-forms of VK , generalizing Proposition 3.18.

4. Zeta functions

In this section we briefly review the notion of zeta functions of modules. We
follow Solomon [16], who introduced these objects to study enumerative problems
in integral representation theory. After introducing the general zeta function, we
focus on the case over local principal ideal domains and determine zeta functions
of various types of lattices, including the ones from Section 3.

4.1. Local and global zeta functions.

Notation 4.1. Let R be a unitary ring, and let M be a left R-module such that,
for all n ∈ N, the number an of R-sublattices of M with index n is finite. One
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defines the zeta function of M by

ζR(M, s) :=

∞∑
n=1

ann
−s, where s ∈ C.

We view this as a formal Dirichlet series and ignore questions of convergence. Note
that if M is a free Z-module of finite rank r, then, by comparing ζR(M, s) with
ζZ(M, s), one sees that ζR(M, s) converges absolutely for Re(s) > r; see also [2].

4.2. Local zeta functions. (a) Let R be a local principal ideal domain with
maximal ideal m = (π), field of fractions K and finite residue field k = R/m of
cardinality q. Assume that Λ is an R-order and M a Λ-lattice. Since k is finite, the
number of Λ-sublattices ofM with bounded index is finite. Moreover, as the indices
of such Λ-sublattices of M must be powers of q, there exists some Z(M) ∈ Z[[X]]

such that Z(M)(q−s) = ζΛ(M, s). By defining (M : N) := Xi, for i ∈ N0 and every
R-submodule of N of M with [M : N ] = qi, this can be rewritten as

Z(M) =
∑
N⊆M

(M : N),

where the sum is taken over all Λ-sublattices N of M such that [M : N ] <∞.

(b) Assume that, up to isomorphism, there are only finitely many Λ-sublattices
M = M1,M2, . . . ,Mr of M with finite index, for some r ∈ N. For j ∈ {1, . . . , r},
one defines

Z(M,Mj) =
∑
N⊆M

[M :N ]<∞
N∼=Mj

(M : N) .

Analogously, one defines Z(Mi,Mj), for all i, j ∈ {1, . . . , r}. Having fixed an or-
dering on M1, . . . ,Mr, the matrix (Z(Mi,Mj))16i,j6r ∈ Z[[X]]r×r is uniquely de-
termined by M , and we shall from now on denote it by BM . Note that Z(Mi) is
the sum of the entries of the ith row of BM , for i ∈ {1, . . . , r}.

(c) We denote by max(M) the set of maximal Λ-sublattices of M , and by
Rad(M) =

⋂
N∈max(M)N again the Jacobson radical of M . Furthermore, we con-

sider the following sets of Λ-sublattices of M : Φ(M) := {N : Rad(M) ⊆ N ⊆ M}
and Φ(M,L) := {N ∈ Φ(M) : N ∼= L}. Finally, for L ∈ Φ(M), let µ(M,L) :=∑
J(−1)|J|, where the sum runs over all subsets J ⊆ max(M) with

⋂
N∈J N = L.

The matrix (Aij)16i,j6r ∈ Z[X]r×r defined by

Aij =
∑

L∈Φ(Mi,Mj)

µ(Mi, L)(Mi : L)
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is uniquely determined by M , and we denote it by AM . By [16, Lemma 3], the
matrix AM is the inverse of BM .

4.3. Global zeta functions. Assume that M is a Z-form of a QG-module V ,
for which we want to determine the zeta function ζZG(M, s). Then, for every
prime p, the p-adic completion Mp := Zp ⊗Z M is a Zp-form of the QpG-module
Vp := Qp ⊗Q V , giving rise to a local zeta function ζZpG(Mp, s). By 4.2, we know
that

ζZpG(Mp, s) = Z(Mp)(p
−s) .

Let P ⊂ N be the set of all prime numbers. By [16], one has

ζZG(M, s) =
∏
p∈P

ζZpG(Mp, s) .

In [16] it is also shown that there exists a complex function

ζV (s) =
∏
p∈P

ζV,p(s) ,

depending only on V , such that ζV,p(s) = ζZpG(Mp, s), for all primes p not dividing
the group order |G|. In particular, if P is a finite set of prime numbers containing
all prime divisors of |G|, then

ζZG(M, s) = ζV (s)
∏
p∈P

ζZpG(Mp, s)

ζV,p(s)
.

Thus, when determining the global zeta function ζZG(M, s), it is sufficient to de-
termine ζV (s) as well as the local zeta functions ζZpG(Mp, s), for all prime divisors
of |G|. The task of determining ζV (s) is straightforward, once the structure of the
blocks of QG containing the indecomposable direct summands of V are known; see
[16, (1.2)]. If V is absolutely simple of dimension d, then ζV (s) = ζQ(ds), where
ζQ is the Riemann zeta function. In particular, in this case, we have ζV,p(s) =

(1− p−ds)−1, for all p ∈ P.
Lastly, note that if V is simple and if p ∈ P is such that the FpG-module

M/pM ∼= Mp/pMp is also simple, then ζZpG(Mp, s) = ζV,p(s). Namely, in this
case, pMp is the unique maximal sublattice of Mp and {piMp : i ∈ N0} is the set
of all ZpG-sublattices of Mp. Hence

ζZpG(Mp, s) =

∞∑
i=0

(pid)−s =
1

1− p−ds
= ζV,p(s) .
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4.2. Uniserial reductions. Throughout this subsection, let R be a local principal
ideal domain with maximal ideal m = (π), field of fractions K and finite residue
field k = R/m of cardinality q. Assume further that G is a finite group and M

is an R-form of an absolutely simple KG-module V such that the lattice of RG-
sublattices of M of full R-rank is totally ordered. This happens, for instance, if
the reduction modulo m of every R-form of V is a uniserial kG-module; see [5,
Proposition 3.7].

Denote by πM = Mr+1 ⊆ Mr ⊆ · · · ⊆ M1 = M a chain of R-forms of V ,
such that, for i ∈ {1, . . . , r}, the module Mi+1 is a maximal RG-sublattice of Mi.
By [13, Proposition 2.3], we know that M1, . . . ,Mr form a set of representatives of
the R-forms of V .

Our next aim is to determine, for each i ∈ {1, . . . , r}, the zeta function ζRG(Mi, s),
by determining BM and Z(Mi) ∈ Z[[X]]. For i ∈ {1, . . . , r}, we denote by di the
k-dimension of Mi/Mi+1, and we set d := d1 + · · ·+ dr.

Lemma 4.4. With the above notation, the matrix AM = (Aij) ∈ Z[X]r×r is given
by

Aij =



1 if i = j,

−Xdi if i 6= r, j = i+ 1,

−Xdr if i = r, j = 1,

0 otherwise.

Thus

AM =



1 −Xd1 0 0 . . . 0

0 1 −Xd2 0 . . . 0
...

...
...

...
...

...
0 0 0 0 1 −Xdr−1

−Xdr 0 0 0 0 1


.

Proof. Since the lattice of full-rank RG-sublattices ofM is totally ordered, we have
max(Mi) = {Mi+1}, for i ∈ {1, . . . , r− 1}, and max(Mr) = {πM1}. Thus Φ(Mi) =

{Mi,Mi+1}, for i ∈ {1, . . . , r − 1}, and Φ(Mr) = {Mr, πM1}. In particular,

Φ(Mi,Mj) =


{Mj} if i 6= r, j ∈ {i, i+ 1},

{Mj} if i = r, j ∈ {1, r},

∅ otherwise.

For i, j ∈ {1, . . . , r} and L ∈ Φ(Mi,Mj), we have µ(Mi, L) = 1 if L = Mi, and
µ(Mi, L) = −1 otherwise. Thus the claim follows. �
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Proposition 4.5. The matrix B = (Bij)16i,j6r defined by

Bij =
1

1−Xd

Xdi+···+dj−1 if j > i,

XdB−1
ji if j < i

satisfies B = BM .

Proof. It is sufficient to show that BAM is the identity matrix. To this end, let
Aj be the jth column of AM and Bi the ith row of B. Then

(1−Xd) ·Bj ·A1

= Bj1 −XdrBjr

=


1−XdrB1r = 1−Xd if j = 1,

XdB−1
1j −XdrBjr = Xdj+···+dr −Xdj+···+dr if 1 < j < r

Br1 −XdrBrr = Xdr −Xdr if j = r

=

1−Xd if j = 1

0 otherwise.

Now let i > 1 and consider (1−Xd)Bj ·Ai = Bj,i−1 · (−Xdi−1) +Bji. If j < i− 1,
then

(1−Xd)Bj ·Ai = X
∑i−2

k=j dk(−Xdi−1) +X
∑i−1

k=j dk = 0 ;

if j = i− 1, then

(1−Xd)Bj ·Ai = −Xdi−1 +Bi−1,i = −Xdi−1 +Xdi−1 = 0 ;

and if j > i, then

(1−Xd)Bj ·Ai = −Xdi−1XdB−1
i−1,j +XdB−1

i,j = 0 ,

since Bi,j/Bi−1,j = Xdi−1 . Finally, if j = i, then

(1−Xd)Bi ·Ai = Bi,i−1(−Xdi−1) + 1 = XdB−1
i−1,i(−X

di−1) = 1−Xd.

�

By summing up the entries of BM row-wise, we obtain:

Corollary 4.6. For i ∈ {1, . . . , r}, one has

Z(Mi) =
1

1−Xd

i−1∑
j=1

Xd−dj−···−di−1 +

r∑
j=i

Xdi+···+dj−1

 .
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4.3. Modular reductions with two non-isomorphic composition factors.
In this section, let R be a local principal ideal domain with maximal ideal m = (π),
field of fractions K, and finite residue field k = R/m of cardinality q. Let V be an
absolutely simple KG-module of dimension d such that the reduction modulo m of
any R-form of V has two non-isomorphic composition factors D1 and D2. Assume
further that the Jordan–Zassenhaus theorem holds for R-forms of V , that is, up to
isomorphism there are only finitely many R-forms of V . By [12, Satz (I.6)], there
exists an R-form M of V such that M/πM is indecomposable. We fix such an
R-form M of V , for the remainder of this subsection. We shall suppose that the
head of M/πM is isomorphic to D1. In fact, [12, Satz (I.6)] is stated in the case
where R = Z and m is any maximal ideal in Z. The proof, however, generalizes
literally to our situation. Alternatively, see also [13, Theorem 3.22].

4.7. The submodule lattice of M . Now let t+1 be the number of isomorphism
classes of R-forms of V . In [13, Theorem 3.22] (see also [12, Satz (I.6)] for the case
R = Z) Plesken has shown that there exist R-formsM0 = M,M1, . . . ,Mt of V such
that

(a) M1 is the unique maximal RG-sublattice of M0,
(b) for i ∈ {1, . . . , t− 1}, Mi+1 6= πMi−1 are the only maximal RG-sublattices

of Mi,
(c) πMt−1 is the unique maximal RG-sublattice of Ms.

Moreover, M0, . . . ,Mt are representatives of the isomorphism classes of R-forms of
V . The lattice of full-rank RG-sublattices of M therefore looks as in diagram (9)
below.

M0

M1

M2 πM0

Mt−1 πM1

Mt πMt−2

πMt−1

D1

D1 D2

D2

D1

D2D1

D2

D1

(9)

We set dimk(M0/M1) = dimk(D1) =: d1 and dimk(M1/πM0) = dimk(D2) =: d2,
so that d = d1 + d2.
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Lemma 4.8. The matrix AM = (Aij) ∈ Z[X](t+1)×(t+1) satisfies

Aij =



1 if i = j = 1 or i = j = t+ 1,

1 +Xd if i = j, i /∈ {1, t+ 1},

−Xd1 if j = i+ 1,

−Xd2 if j = i− 1,

0 otherwise.

Thus

A =



1 −Xd1 0 0 . . . 0

−Xd2 1 +Xd −Xd1 0 . . . 0
...

...
...

...
...

...
0 0 0 −Xd2 1 +Xd −Xd1

0 0 0 0 −Xd2 1


.

Proof. From 4.7 and diagram (9) we can read off the following properties. First of
all we have max(M0) = {M1}, max(Mt) = {πMt−1}, and max(Mi) = {Mi, πMi−1},
for i ∈ {1, . . . , t − 1}. In particular, Φ(M0) = {M0,M1}, Φ(Mt) = {Mt, πMt−1}
and Φ(Mi) = {Mi,Mi+1, πMi−1, πMi}, for i ∈ {1, . . . , t − 1}. Since M0, . . . ,Mt

are representatives of the isomorphism classes of R-forms of V , we conclude that
Φ(M0,Mj) = {Mj}, for j ∈ {0, 1}, and Φ(M0,Mj) = ∅ otherwise. Moreover, for
i ∈ {1, . . . , t}, we have

Φ(Mi,Mj) =



{Mi, πMi} if i = j, i 6= t,

{Mi} if i = j, i = t,

{Mi+1} if j = i+ 1,

{πMi−1} if j = i− 1.

From this the assertion of the lemma follows. �

Proposition 4.9. The matrix B = (Bij)16i,j6t+1 defined by

Bij =
1

1−Xd

X(j−i)d1 if j > i,

X(i−j)d2 if i > j.
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satisfies BM = B. Thus

BM =
1

1−Xd



1 Xd1 X2d1 X3d1 X4d1 · · · Xtd1

Xd2 1 Xd1 X2d1 X3d1 · · · X(t−1)d1

X2d2 X 1 Xd1 X2d1 · · · X(t−2)d1

...
...

...
...

...
...

...
X(t−2)d2 X(t−3)d2 · · · X 1 Xd1 X2d1

X(t−1)d2 X(t−2)d2 X(t−3)d2 · · · X 1 Xd1

Xtd2 X(t−1)d2 X(t−2)d2 · · · X2d2 Xd2 1


.

Proof. As usual we prove the assertion by showing that the matrix B is the inverse
of AM , which is a straightforward calculation. Let Ai be the ith row of AM and
Bj the jth column of B. We need to show that AiBj = δij , for i, j ∈ {1, . . . , t+ 1}.
For instance, for i, j ∈ {2, . . . , t− 1}, we have

Ai ·Bj = Ai,i−1Bj,i−1 +Ai,iBj,i +Ai,i+1Bj,i+1

= −Xd2Bj,i−1 + (1 +Xd1+d2)Bj,i −Xd1Bj,i+1.

Now AiBj = δij follows by observing that

(Bj,i−1, Bj,i, Bj,i+1) =


(X(j−i+1)d1 , X(j−i)d1), X(j−i−1)d1) if i < j,

(Xd1 , 1, Xd2) if i = j,

(X(i−j−1)d2 , X(i−j)d2 , X(i−j+1)d2) if i > j.

The remaining cases are treated analogously. �

We have now established the following:

Corollary 4.10. With the notation as in 4.7, for i ∈ {0, . . . , t}, one has

Z(Mi) =
1

1−Xd

 i∑
j=0

Xjd2 +

t−i∑
j=1

Xjd1

 .

4.4. Modular reductions with three non-isomorphic composition factors.
Throughout this subsection, let R be a local principal ideal domain with maximal
ideal m = (π), field of fractions K, and finite residue field k = R/m of cardinality
q. Assume further that G is a finite group and S = S1 is an R-form of an ab-
solutely simple KG-module V satisfying Hypotheses 3.1. Let S1, S2, . . . , S3t+1 be
RG-lattices as in Theorem 3.2, and suppose that S1, S2, . . . , S3t+1 are representa-
tives of the isomorphism classes of R-forms of V .

Our next aim in this subsection is to determine Z(S).
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Lemma 4.11. With the above notation, let

A1 =


1 −Xd2 −Xd3 Xd2+d3

0 1 0 −Xd3

0 0 1 −Xd2

 ∈ Z[X]3×4 .

Then

AS =

[
A1 03×3(t−1)

∗

]
.

Proof. From Theorem 3.2 and diagram (7) we know that max(S1) = {S2, S3},
max(S2) = max(S3) = {S4}, and Rad(Si) = S4, for i ∈ {1, 2, 3}. Thus Φ(S1) =

{S1, S2, S3, S4} and Φ(Si) = {Si, S4}, for i ∈ {2, 3}. As S1, . . . , S3t+1 are repre-
sentatives of the isomorphism classes of R-forms of V , we obtain Φ(S1, Sj) = {Sj}
for j ∈ {1, 2, 3, 4}, and Φ(S1, Sj) = ∅ otherwise. As well, for i ∈ {2, 3}, we have
Φ(Si, Sj) = {Sj} for j ∈ {i, 4}, and Φ(Si, Sj) = ∅ otherwise. From this the assertion
of the lemma follows. �

Lemma 4.12. Let i ∈ {1, . . . , t−1}, and let A′ = (Alj)3i+16l63i+3,16j63t+1 be the
submatrix of AS consisting of rows 3i+ 1, 3i+ 2, 3i+ 3. Then

A′ =
[
03×3(i−1) A2 03×3(t−i)−3

]
,

where

A2 =


−Xd1 Xd1+d2 Xd1+d3 1−Xd −Xd2 −Xd3 Xd2+d3

0 −Xd1 0 Xd1+d3 1 0 −Xd3

0 0 −Xd1 Xd1+d2 0 1 −Xd2

 ∈ Z[X]3×7 .

Proof. Let i ∈ {1, . . . , t− 1}. We use again Theorem 3.2 and diagram (7) to con-
clude that max(S3i+1) = {S3i+2, S3i+3, πS3(i−1)+1}, max(S3i+2) = {S3(i+1)+1, πS3(i−1)+2}
and max(S3i+3) = {S3(i+1)+1, πS3(i−1)+3}. In particular, we obtain Rad(S3i+1) =

Rad(S3i+2) = Rad(S3i+3) = πS3i+1 and

Φ(S3i+1) = {S3i+1, S3i+2, S3i+3, S3(i+1)+1,

πS3(i−1)+1, πS3(i−1)+2, πS3(i−1)+3, πS3i+1},

Φ(S3i+2) = {S3(i+1)+1, πS3(i−1)+2, πS3i+1},

Φ(S3i+3) = {S3(i+1)+1, πS3(i−1)+3, πS3i+1}.
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Thus

Φ(S3i+1, Sj) =



{Sj} if j ∈ {3i+ 2, 3i+ 3},

{πSj} if j ∈ {3(i− 1) + 1, 3(i− 1) + 2, 3(i− 1) + 3},

{S3i+1πS3i+1} if j = 3i+ 1,

∅ otherwise,

Φ(S3i+2, Sj) = Φ(S3i+3, Sj) = {Sj} for j = 3(i + 1) + 1, Φ(S3i+2, Sj) = {πSj} for
j ∈ {3(i−1)+2, 3i+1} and Φ(S3i+2, Sj) = ∅ otherwise. Analogously, Φ(S3i+3, Sj) =

{πSj} for j ∈ {3(i− 1) + 3, 3i+ 1}, and Φ(S3i+3, Sj) = ∅ otherwise. �

We have now determined all the rows of AS , except for the last one.

Lemma 4.13. The last row of AS is equal to
[
01×(3t−6) A3

]
, where

A3 =
(

0 0 0 −Xd1 0 0 1
)
∈ Z[X]1×7.

Proof. We have max(S3t+1) = {πS3(t−1)+1} and Rad(S3t+1) = πS3(t−1)+1. Hence
Φ(S3t+1) = {S3t+1, πS3(t−1)+1}, and it follows that Φ(S3t+1, Sj) = {Sj} for j =

3t+1, Φ(S3t+1, Sj) = {πSj} for j = 3(t−1)+1, and Φ(S3t+1, Sj) = ∅ otherwise. �

To summarize, we have now established

Proposition 4.14. The matrix AS is given as follows:

A1 03×(3t−3)

A2 03×(3t−6)

03×3 A2 03×(3t−9)

03×6 A2 03×(3t−12)

...
. . . . . . . . . . . .

...

03×3t−9 03×3A2

03×3t−6 A2

01×3t−6 A3

4.15. The matrix B. We shall now define a matrixB = (Bij) ∈ Q(X)(3t+1)×(3t+1),
and shall successively prove that this is precisely the matrix BS . For i, j ∈
{1, . . . , 3t+ 1}, we write Bij = bij · 1

1−Xd , where bij is given as follows:

(a) If m ≡ 1 (mod 3), then, for i > 0, we set bm+3i+1,m = X(i+1)d1+d3 ,
bm+3i+2,m = X(i+1)d1+d2 , and bm+3i+3,m = X(i+1)d1 .
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(b) If m ≡ 2 (mod 3), then, for i > 0, we set bm+3i+1,m = X(i+1)d1+2d2 ,
bm+3i+2,m = X(i+1)d1+d2 , and bm+3i+3,m = X(i+1)d1 .

(c) If m ≡ 0 (mod 3), then, for i > 0, we set bm+3i+1,m = X(i+1)d1+d3 ,
bm+3i+2,m = X(i+2)d1+2d3 , and bm+3i+3,m = X(i+1)d1 .

(d) If m ≡ 1 (mod 3), then, for i > 0, we set bm,m+3i+1 = X(i+1)d2+id3 ,
bm,m+3i+2 = Xid2+(i+1)d3 , and bm,m+3i+3 = X(i+1)(d2+d3).

(e) Ifm ≡ 2 (mod 3), then we set bm,m+1 = Xd1+2d3 , bm,m+3i+1 = X(i−1)d2+(i+1)d3

for i > 1, bm,m+3i+2 = Xid2+(i+1)d3 for i > 0, and bm,m+3i+3 = X(i+1)(d2+d3) for
i > 0.

(f) If m ≡ 0 (mod 3), then, for i > 0, we set bm,m+3i+1 = X(i+1)d2+id3 ,
bm,m+3i+2 = X(i+2)d2+id3 , and bm,m+3i+3 = X(i+1)(d2+d3).

Moreover, we set bii := 1, for i > 1.
We aim to show that B is the inverse of A. To do this, we partition (1−Xd) ·B

into blocks: First we define B1 = (bij)16i,j67 ∈ Z[X]7×7, that is,

B1 =



1 Xd2 Xd3 Xd2+d3 X2d2+d3 Xd2+2d3 X2d2+2d3

Xd1+d3 1 Xd1+2d3 Xd3 Xd2+d3 X2d3 Xd2+2d3

Xd1+d2 Xd1+2d2 1 Xd2 X2d2 Xd2+d3 X2d2+d3

Xd1 Xd1+d2 Xd1+d3 1 Xd2 Xd3 Xd2+d3

X2d2+d3 Xd1 X2d1+2d3 Xd1+d3 1 Xd1+2d3 Xd3

X2d1+d2 X2d1+2d2 Xd1 Xd1+d2 Xd1+2d2 1 Xd2

X2d1 X2d1+d2 X2d1+d3 Xd1 Xd1+d2 Xd1+d3 1


.

Next we set B3 = (bij)(3t+1)−76i63t+1,16j63t+1 ∈ Z[X]7×(3t+1−7) and B2 =

(bij)16i67,86j63t+1 ∈ Z[X]7×(3t+1−7). Thus we have

B =
1

1−Xd


B1 B2

∗
B3 B1

 .

Let D = (1−Xd).

Lemma 4.16. With the above notation, the following holds:

(a) For l ∈ {1, . . . , t− 2}, one has B1 = (bij)3l+16i63l+7,
3l+16j63l+7

.

(b) For l ∈ {1, . . . , t− 2}, there exists some c′l ∈ Q(X) such that

(bij)3l+16i63l+7,
16j63l

= c′l · ((B3)ij)16i67,
16j63l

.
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(c) For l ∈ {1, . . . , t− 2}, there exists some c′′l ∈ Q(X) such that

(bij)3l+16i63l+7,
3l+86j63t+1

= c′′l · ((B2)ij) 16i67,
3l+86j63t+1

.

Proof. Let l ∈ {1, . . . , t−2}, and let i, j ∈ {1, . . . , 7}. Then 4.15 immediately gives
bi+3l,j+3l = bij , proving (a).

Next let m ∈ {1, . . . , 3t− 2} and r ∈ {1, . . . ,m}. Then, by 4.15(a)–(c), we have
bm,r = X−d1 · bm+3,r. This, in particular, implies (b).

If r ∈ {m+ 4, . . . , 3t− 1} and r > m+ 4 in the case where m ≡ 2 (mod 3), then
4.15(d)–(f) gives bm,r = Xd2+d3 · bm+3,r, which implies (c). �

Lemma 4.17. With the above notation, one has the following:

(a) A2 ·B1 = [ 03×3 | D · 13 | 03×1 ],
(b) A2 ·B2 = 0,
(c) A2 ·B3 = 0,
(d) [ A1 | 03×3 ] ·B1 = [ D · 13 | 03×4 ],
(e) [ 01×(3t−6) | A3 ] ·B = [ 01×3t | D · 11 ],
(f) [ A1 | 03×3 ] ·B2 = 0.

Proof. To prove (a) and (d), we compute(
A1 0

A2

)
·B1 = [ D · 16 | 06×1 ].

Next we show (b) and (f): We claim that every column of B2 is of the form

a · (1, X−d2 , X−d3 , X−d2−d3 , X−2d2−d3 , X−d2−2d3 , X−2d2−2d3)t , (10)

for some a ∈ Q(X). Once we have this, we immediately get[
A1 03×3

A2

]
·B2 = 0 .

Obviously, (10) is true for the first three columns of B2. So suppose that m ∈
{1, . . . , 7} and r ∈ {8, . . . , 3t − 2}. Then 4.15(d)-(f) shows that bm,r+3 = Xd2+d3 ·
bm,r, whence (10).

To prove (c), we first claim that, for i ∈ {1, . . . , 3t − 6}, the ith column of B3

has the form

ai(X
−2d1 , Xd3−d1 , Xd2−d1 , X−d1 , Xd3 , Xd2 , 1)t if i ≡ 1 (mod 3),

ai(X
−2d1 , X−d2−2d1 , Xd2−d1 , X−d1 , X−d2−d1 , Xd2 , 1)t if i ≡ 2 (mod 3),

ai(X
−2d1 , X−d1+d3 , X−2d1−d3 , X−d1 , Xd3 , X−d1−d3 , 1)t if i ≡ 0 (mod 3),
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for suitable ai ∈ Q(X). Once we have this, we immediately get A2 ·B3 = 0. The
claim is easily verified for the first three columns of B3. If m ∈ {3t− 5, . . . , 3t+ 1}
and r ∈ {1, . . . , 3t− 9}, then 4.15(a)–(c) gives bm,r = Xd1 · bm,r+3. Thus the claim
follows by induction.

It remains to prove (e). To do so, it is sufficient to compute

A3 ·
[
B3 B1

]
.

Denoting by B3,i the ith column of B3, we have

A3 ·B3,i = (1−Xd(ai − ai)) = 0 .

On the other hand, a quick calculation shows

A3 ·B1 =
(

0 0 0 0 0 0 1−Xd
)
,

which finishes the proof. �

We now obtain

Theorem 4.18. The matrix B defined in 4.15 is the inverse of AS, that is, B =

BS.

Proof. We show that AS ·B = 13t+1. To this end, we multiply B with the rows
of A successively from the left. First note that, by Lemma 4.17, we have[

A1 03×3 03×3t−6

A2 03×3t−6

]
·B =

[
A1 03×3

A2

]
· [ B1 | B2 ] = [ 16 | 06×3t−5 ].

Next consider

[ 03×3 | A2 | 03t−9×3t−9 ] ·B = A2 · (Bij)46i610,16j63t+1 .

Let us write (Bij)46i610,16j63t+1 = [ B′ |B1 |B′′ ] withB′ = (Bij)46i610,16j63 and
B′′ = (Bij)46i610,116j63t+1. By Lemma 4.16, we know B′ = c′((B3)ij)16i67,16j63

and B′′ = c′′((B2)ij)16i67,116j63t+1, for some c′, c′′ ∈ Q(X). Together with
Lemma 4.17 this shows that

[ 03×3 | A2 | 03×3t−9 ] ·B = A2 · [ B′ | B1 | B′′ ] = [A2 ·B′ | A2 ·B1 | A2 ·B′′ ]

= [ 03×6 | 13 | 03×3t−8 ] .
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We now do the previous step for an arbitrary slice of AS . Let 1 6 l 6 t − 1 and
consider

(Aij)3l+16i63(l+1),
16j63t+1

·B = [ 03×3(l−1) | A2 | 03×3(t−l−1) ] ·B

= A2 · (Bij)3(l−1)+16i63(l−1)+7,
16j63t+1

.

We write

B′ = (Bij)3(l−1)+16i63(l−1)+7,16j63(l−1),

B′′ = (Bij)3(l−1)+16i63(l−1)+7,3(l−1)+86j63t+1,

and note that B1 = (Bij)3(l−1)+16i63(l−1)+7,3(l−1)+16j63(l−1)+7. By Lemma 4.16,
we knowB′ = c′((B3)ij)16i67,16j63(l−1) andB′′ = c′′((B2)ij)16i67,3(l−1)+86j63t+1,
for some c′, c′′ ∈ Q(X). Thus, using Lemma 4.17,

(Aij)3l+16i63(l+1),
16j63t+1

·B = [ A2 ·B′ | A2 ·B1 | A2 ·B′′ ] ·B

= [ 03×3(l−1) | 13 | 03×3t−3(l−1)−3 ].

Finally note that [ 01×3t−6 | A3 ] ·B = [ 01×3t | D · 11 ] by Lemma 4.17 �

As an immediate consequence of Theorem 4.18 and 4.2, we have

Corollary 4.19. With the above notation, one has

Z(S) =
1

1−Xd

(
1 +

t∑
i=1

Xid2+id3 +X(i−1)d2+id3 +Xid2+(i−1)d3

)
.

Remark 4.20. Of course, given BS, we can also read off Z(S2), . . . , Z(S3t+1).
Since the formulae become more complicated and we shall not need them for our
applications below, we do, however, not write them down explicitly here.

4.5. Application I: Specht lattices labelled by hook partitions. We want
to use the previous results to determine the zeta functions of certain lattices over
p-adic group algebras, the first of which will come from the symmetric group Sn of
degree n > 4. In the language of 3.4, our aim is to determine the zeta functions of
the Specht lattices associated to the hook partitions (n−r, 1r), for r ∈ {0, . . . , n−1}.
For r = 1, the zeta functions of S(2,1n−2)

Z and S(2,1n−2)
Zp

, where p is any prime, have

been determined by the second author in [6]. Here we shall investigate S(n−r,1r)
Zp

,

for all r ∈ {1, . . . , n− 2} and odd primes p, as well as S(n−2,12)
Z2

and S(n−2,12)
Z . We

begin with the local zeta functions at the odd primes p. Recall from 3.4 and 3.5
that S(n−r,1r)

Zp

∼= Zp⊗ZS
(n−r,1r)
Z and that rkZp

(S
(n−r,1r)
Zp

) = rkZ(S
(n−r,1r)
Z ) =

(
n−1
r

)
,

for r ∈ {0, . . . , n− 1}.
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Proposition 4.21. Let p > 3 be a prime number, let r ∈ {1, . . . , n − 2}, and let
d :=

(
n−1
r

)
.

(a) If p - n, then

ζZpSn(S
(n−r,1r)
Zp

, s) =
1

1− p−ds
.

(b) If p | n, then

ζZpSn
(S

(n−r,1r)
Zp

, s) =
1

1− p−ds

νp(n)∑
i=0

p−sia ,

where a =
(
n−2
r

)
.

Proof. (a) Since p > 3 is not dividing n, by [8, Theorem 23.7], the reduction of
S

(n−r,1r)
Zp

modulo p is absolutely simple. So the assertion follows from 4.3.
(b) By [5, Section 6] we know that there are νp(n) + 1 isomorphism classes of

Zp-forms in S(n−r,1r)
Qp

. Moreover the reduction of S(n−r,1r)
Zp

modulo p has precisely
two non-isomorphic composition factors, and is indecomposable. By [8, Theorem
24.1], the head of S(n−r,1r)

Zp
/pS

(n−r,1r)
Zp

has Fp-dimension d −
(
n−2
r−1

)
=
(
n−2
r

)
=: a.

Thus, by Corollary 4.10, it follows that

Z(S
(n−r,1r)
Zp

) =
1

1−Xd

νp(n)∑
i=0

Xia.

Now the assertion follows from 4.2. �

Remark 4.22. For r = 2, the next proposition yields the local zeta functions for
p = 2. This will involve the dimension of the simple F2Sn-module D(n−2,2)

F2
, for

n > 4, which is well known, by [8, Theorem 24.15]. For n > 4, one has

dimF2(D
(n−2,2)
F2

) =



1
2 (n2 − 5n+ 4) if n ≡ 0 (mod 4) ,

1
2 (n2 − 3n− 2) if n ≡ 1 (mod 4) ,

1
2 (n2 − 5n+ 2) if n ≡ 2 (mod 4) ,

1
2 (n2 − 3n) if n ≡ 3 (mod 4) .

This can also be read off from [5, Proposition 7.2], recalling that dimF2
(D

(n−1,1)
F2

) =

n− 1 if 2 - n, and dimF2(D
(n−1,1)
F2

) = n− 2 if 2 | n.

Proposition 4.23. Let d :=
(
n−1

2

)
, and let d3 := dimF2(D

(n−2,2)
F2

) if n > 4. Then
the following hold:

(a) If n ≡ 1 (mod 4), then

ζZ2Sn(S
(n−2,12)
Z2

, s) =
1

1− 2−sd
(1 + 2−s + 2−s(d3+1)) .



166 SUSANNE DANZ AND TOMMY HOFMANN

(b) If n ≡ 2 (mod 4), then

ζZ2Sn
(S

(n−2,12)
Z2

, s) =
1

1− 2−sd
(1 + 2−s + 2−s(d3+1) + 2−s(d3+2)) .

(c) If n ≡ 3 (mod 4), then

ζZ2Sn
(S

(n−2,12)
Z2

, s) =
1

1− 2−sd
(1 + 2−s + 2−sd3) .

(d) If n ≡ 0 (mod 4) and n > 4, then

ζZ2Sn(S
(n−2,12)
Z2

, s) =

1

1− 2−sd

1 +

ν2(n)∑
i=1

2−is−isd3 + 2−s(i−1)−sid3 + 2−si−s(i−1)d3

 .

(e) If n = 4, then

ζZ2S4
(S

(2,12)
Z2

, s) =
1

1− 2−sd
(1 + 2−s + 2−2s) .

Proof. We set M1 = S
(n−2,12)
Z2

. We shall determine Z(M1), and then apply 4.2.
(a) Recall that, by [5, Section 7], the (partial) submodule lattice of M1 is given

by

2M1 ⊆M3 ⊆M2 ⊆M1 ,

with M1/M2
∼= F2, M2/M3

∼= D
(n−2,2)
F2

and M3/2M1
∼= F2. Here F2 denotes the

trivial F2Sn-module. Moreover,M1,M2,M3 are representatives of the isomorphism
classes of Z2-forms of S(n−1,12)

Q2
. By [5, proof of Theorem 7.10], the reduction modulo

2 of every Z2-form of S(n−2,12)
Q2

is a uniserial F2Sn-module. So, by [5, Proposition
3.7], we can apply Corollary 4.6, which shows that

Z(M1) =
1

1−Xd
(1 +X +Xd3+1) .

(b) By [5, Section 7], the (partial) submodule lattice of M1 is give by

2M1 ⊆M4 ⊆M3 ⊆M2 ⊆M1 ,

with M1/M2
∼= M3/M4

∼= F2, M2/M3
∼= D

(n−2,2)
F2

and M4/2M1
∼= D

(n−1,1)
F2

. More-
over, M1, . . . ,M4 are representatives of the isomorphism classes of Z2-forms of
S

(n−1,12)
Q2

In [5, proof of Theorem 7.16] it is also shown that the reduction modulo 2

of every Z2-form of S(n−2,12)
Q2

is a uniserial F2Sn-module. Thus, by [5, Proposition
3.7] and Corollary 4.6, we have

Z(M1) =
1

1−Xd
(1 +X +Xd3+1 +Xd3+2).
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(c) By [5, Proposition 7.9, Theorem 7.10], there are precisely three isomorphism
classes of Z2-forms of S(n−2,12)

Q2
. There are representatives M1, M2, M3 of these

isomorphism classes with the following properties: M1 = S
(n−2,12)
Z2

, M2 and M3 are
maximal in M1, M2 ∩M3 = 2M1, M1/M2

∼= M3/2M1
∼= F2, M1/M3

∼= M2/2M1
∼=

D
(n−2,2)
F2

. Both M2/2M2 and M3/2M3 are indecomposable, with head isomorphic
to D(n−2,2)

F2
and F2, respectively, Thus, we can apply Corollary 4.10 to M2 and the

chain of sublattices 2M3 ⊆ 2M1 ⊆ M2. With respect to this ordering, the second
row of the matrix BM2 gives

Z(M1) =
1

1−Xd
(1 +X +Xd3).

(d) This follows from Corollary 4.19 together with Lemma 3.6.

(e) Lastly, let n = 4 and letM := S
(2,12)
Z2

. Then, by [8, Theorem 8.15],M/2M ∼=
(S

(3,1)
F2

)∗ is indecomposable, with two composition factors, socle isomorphic toD(3,1)
F2

and trivial head. So the assertion follows from Corollary 4.10. �

Theorem 4.24. Let n > 4, and let S = S
(n−2,12)
Z be the Specht ZSn-lattice labelled

by the hook partition (n−2, 12). Set d = (n−1)(n−2)/2, and d3 = dimF2
(D

(n−2,2)
F2

)

if n > 4. Then one has

ζZSn
(S, s) = ζQ(ds)

∏
p|n

ϕp(p
−s) ,

where ζQ is the Riemann zeta function, ϕp(X) =
∑νp(n)
i=0 Xi ∈ Z[X] if p > 3, and

ϕ2(X) =



1 +X +Xd3+1 if n ≡ 1 (mod 4),

1 +X +Xd3+1 +Xd3+2 if n ≡ 2 (mod 4),

1 +X +Xd3 if n ≡ 3 (mod 4),

1 +
∑ν2(n)
i=1 Xi+id3 +X(i−1)+id3 +Xi+(i−1)d3 if n ≡ 0 (mod 4),

and n > 4,
1 +X +X2 if n = 4 .

Proof. Since V = S
(n−2,12)
Q is an absolutely simple QG-module of dimension d,

we have ζV (s) = ζQ(ds), as mentioned in 4.3. The claim now follows from 4.3,
Proposition 4.21 and Proposition 4.23. �

4.6. Application II: projective special linear groups. For the rest of this
subsection, let q be a prime power, and let H = PSL2(q). If R is a principal ideal
domain, we denote by MR the permutation RH-lattice associated to the action of
H on the one-dimensional subspaces of F2

q, as defined in 3.13. Let LR ⊆MR be the
RH-lattice investigated in 3.10 and 3.13. Our aim is to determine the zeta function
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ζZH(LZ, s). To this end we first compute the local zeta functions ζZpH(LZp
, s), for

all primes p.
If R = Z and K = Q, or R = Zp and K = Qp, for some prime p, then we denote

by VK the absolutely simple KH-module with R-form LR as defined in 3.13(b).

Lemma 4.25. Let p be a prime.

(a) If p | q, or if p is odd with p - |H| or p | (q − 1), then

ζZpH(LZp , s) =
1

1− p−qs
.

(b) If p is odd and p | (q + 1), then

ζZpH(LZp
, s) =

1

1− p−qs

vp(q+1)∑
i=0

p−i(q−1)s.

Proof. (a) We have already seen in Remark 3.14 that in all three cases LZp
is up

to isomorphism the unique Zp-form of VQp
. Thus the claim follows from 4.2.

(b) By Remark 3.14, we know that LZp
/pLZp

has two non-isomorphic compo-
sition factors, is indecomposable and has a trivial submodule. Thus, by 3.10 and
Corollary 4.10, it follows that

Z(LZp
) =

1

1−Xq

vp(q+1)∑
i=0

Xi(q−1).

Now the assertion follows from 4.2. �

Lemma 4.26. (a) If q ≡ ±3 mod 8, then

ζZ2H(LZ2 , s) =
1

1− 2−sq

v2(q+1)∑
i=0

2−si(q−1).

(b) If q ≡ ±1 mod 8, then

ζZ2H(LZ2 , s) =
1

1− 2−sq

1 +

ν2(q+1)∑
i=1

2−si(q−1) + 2−s(2i−1)(q−1)/2+1

 .

Proof. (a) This follows from Remark 3.14 (b) and Corollary 4.10.

(b) Lemma 3.17 and Proposition 3.18 show that LZ2/2LZ2 has three composition
factors of dimensions d1 = 1 and d2 = d3 = (q − 1)/2, respectively. Moreover,
Corollary 4.19 applies, with t = ν2(q + 1). So we get

Z(LZ2) =
1

1−Xq

1 +

ν2(q+1)∑
i=1

Xi(q−1) + 2X(2i−1)(q−1)/2

 .

The assertion of the lemma now follows from 4.2. �
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Theorem 4.27. The zeta function of the ZH-lattice LZ is given as

ζZH(LZ, s) = ζQ(qs)ϕ2(q−s)
∏
p>3
p|q+1

ϕp(q
−s) ,

where ζQ is the Riemann zeta function, ϕp(X) =
∑νp(q+1)
i=0 Xi(q−1) if p > 3 and

p | q + 1, and

ϕ2(X) =


∑ν2(q+1)
i=0 Xi(q−1) if q ≡ ±3 (mod 8),

1 +
∑ν2(q+1)
i=1 (Xq−1 + 2X(2i−1)(q−1)/2) if q ≡ ±1 (mod 8).

Proof. First note that, since VQ is an absolutely simple QH-module of dimension
q, we have ζV (s) = ζQ(qs), as mentioned in 4.3. The assertion of the theorem
follows from Lemma 4.25 and Lemma 4.26 together with 4.2 and 4.3. �
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