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1. Introduction

In this paper we continue our study of integral representations of symmetric
groups, begun in [5]. Let &,, be the symmetric group of degree n > 0. Moreover,
for every partition A of n, let S@ be the corresponding Specht Q&,,-module. As A
varies over the set of partitions of n, the Specht modules S@ yield representatives of
the isomorphism classes of (absolutely) simple Q& ,,-modules. Every Specht module
S@ is already equipped with a particular integral form, the Specht Z&,,-lattice 5'2.
In light of the celebrated Jordan—Zassenhaus Theorem, it is, therefore, natural to
ask for a description of all isomorphism classes of Z&,,-lattices that are Z-forms of
a given Specht module S, or at least for the number of these. To do so, a possible
strategy is to consider, for each prime p, the p-adic completion S@p = Q, ®g Sa
and determine the 7,8, -lattices that are Z,-forms of S@p. In general, this is way
too difficult a task.
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In [5] we investigated the case where A is a hook partition of n > 3, that is,
a partition of the form (n — r,1"), for some r € {1,...,n — 2}. Specht modules
(and Specht lattices) labelled by hook partitions have been studied a lot and much
is known about their structure. Nevertheless, as far as the determination of the
Z-forms of S(()nfr’lr) as concerned, we so far only have complete information in the
case where r = 1: By work of Plesken [13] and Craig [3], the number of isomorphism

) equals the number of positive divisors of n, and one

classes of Z-forms of S(gl_l’l
can give explicit representatives.

So, one may focus on the case where r > 1. If p is an odd prime, then the
Q,6,-module S&_r’l’.) admits precisely v,(n)+1 isomorphism classes of Z,-forms,
where v,(n) denotes the p-adic valuation of n. Explicit representatives of these
isomorphism classes have been determined in [5, Theorem 6.1]; see also the work of
Plesken in [14, Satz (IIL.8)] and [15, Theorem (VI.2)], who studied these modules
using different methods.

The case where p = 2 turned out to be considerably more difficult. In [5,
Section 7], we were only able to give explicit representatives of the isomorphism
classes of Zs-forms of the Q2&,,-module 5’&72’12), and only if n Z 0 (mod 4). One
aim of the present paper is to settle the remaining case n = 0 (mod 4). This will
be achieved in Theorem 3.7, which then entails Corollary 3.9 on the number of
isomorphism classes of Z-forms of S’Q(znfmz).

In fact, Theorem 3.7 will turn out to be a special instance of the more general
result in Theorem 3.2. The latter deals with the following situation: suppose that
G is a finite group, R is a principal ideal domain with field of fractions K of
characteristic 0 and residue field k := R/J(R) of characteristic p > 0. Suppose
further that V is an absolutely simple K G-module with an R-form L whose modular
reduction k ®g L has, as kG-module, precisely three composition factors satisfying
some additional properties. Then we shall determine all R-forms of the K G-module
V up to isomorphism.

The hypotheses of Theorem 3.2 might at first seem rather special. In Proposi-
tion 3.18, we shall see a second application of this result to the case where G is a
finite projective special linear group of degree 2 and V' is the Steinberg module of
KQ@G, for suitable fields K of characteristic 0.

In light of this, we are tempted to ask whether Theorem 3.2 can be used to treat
further finite groups and simple KG-modules arising as augmentation kernels of
two-transitive permutation representations; see Question 3.19. At the moment we

are, however, not able to answer this question.
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In Section 4 we then investigate the (Solomon) zeta functions of various families
of ZG-lattices, where G is a finite group. In [16] L. Solomon introduced a general-
ization of the Riemann zeta function with the aim to study enumerative problems
in integral representation theory. Subsequently, Bushnell and Reiner intensively
studied Solomon’s zeta functions; see [2| for an overview of their theory.

In Section 4, we shall give a concise summary of Solomon’s definitions and the
properties of the Solomon zeta functions relevant to our applications. In the case
where G is a finite group and L is a ZG-lattice, the zeta function of L is defined as

(za(L,s):= Y [L:N]™* (s€C),
NCL
where N varies over all ZG-sublattices of L of finite index. This will usually be
viewed as a formal Dirichlet series, disregarding questions of convergence.

The concrete computation of zeta functions of ZG-lattices is in general a rather
difficult problem, and not too much is known in this direction. The case where
L is the regular ZG-lattice has been studied most intensively; for a list of known
results see [6]. In [6], the second author determined the zeta functions (zs, (L, s),
where L is a Z-form of the Specht Q&,,-module labelled by the hook partition
(2,1"2). In Section 4.5 of the present paper we shall generalize the results of [6],
and determine global and local zeta functions of further Specht lattices labelled by
hook partitions. As well, in Section 4.6 we again consider the projective special
linear group PSLs(gq), where ¢ is a prime power, and the Steinberg module of
Q[PSL2(gq)]. We shall determine the zeta function of a distinguished Z-form of this

module. The key ingredient here will again be Theorem 3.2.

The present paper is organized as follows: In Section 2 we briefly summarize
some properties of graduated orders that will be relevant in subsequent sections.
Section 3 is then devoted to establishing Theorem 3.2 and its applications to the
study of integral forms of the Specht Q&,,-module S(SL_Z’lz) and the Steinberg
module of Q[PSLa(q)], respectively. In Section 4 we recall Solomon’s notion of
global and local zeta functions of modules over group algebra. We then explicitly
compute these zeta functions for various families of modules and lattices, including
Specht modules of symmetric groups labelled by hook partitions, and the Steinberg
module of PSLy(q).

2. Notation and prerequisites

In this section we fix some notation, briefly recall the notion of a graduated

order, and summarize the known results that will be relevant in Section 3 later. We
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follow the work of Plesken on the subject, and refer the reader to [14] and [15] for
further background.

Notation 2.1. (a) Let F be any field, and let A be a finite-dimensional F-algebra.
An A-module is always supposed to be a finitely generated left module. For an A-
module V, we denote by Rad(V) the Jacobson radical of V, and by Hd(V) :=
V/Rad(V) the head of V. The socle of V will be denoted by Soc(V).

(b) Let R be a principal ideal domain with field of fractions K, let m = (7) be
a maximal ideal in R, and let k£ := R/m be the corresponding residue field. By an
R-order we understand a finitely generated R-algebra A that is free over R of finite
R-rank. One has a k-algebra isomorphism k @ g A = A/mA; for convenience, we
shall often identify these algebras and denote them simply by kA. A A-lattice is
then a finitely generated left A-module L that is R-free of finite R-rank, which we
denote by tkr(L). The factor module L := L/mL naturally carries the structure of
a kA-module, and L/mL = k ®@p L.

If A is a finite-dimensional K-algebra and if an R-order A is a subring of A
with KA = A, then one calls A an R-order in A. In this case, we also identify the
K-algebras A and K ®g A. If V is an A-module and L is a A-lattice such that
K ®r L =2V as A-modules, then one calls L an R-form of V. As usual, we shall
often work with an R-form L of V such that L C V. Moreover, recall that every

R-form of V is isomorphic to a A-sublattice of any given R-form L.

(¢c) With the notation as in (b), suppose that L is a A-lattice, and let L' C L
be a A-sublattice of L with rkz(L) = rkg(L'). If L' C 'L, for some i € N,
then we denote by L’/r® the A-sublattice {m~‘z : € L'} of L, which satisfies
7' (L' /7*) = L’ and is isomorphic to L’.

(d) Now suppose that R is local, and again let A be an R-order. We shall call
a A-module L simple if L # {0} and if L and {0} are the only A-submodules of
L. If L is a simple A-module, then mL = 7L is a A-submodule of L, and mL # L,
by Nakayama’s Lemma [4, (30.2)]. Thus mL = {0}; in particular, every simple
A-module is a torsion module. This shows that mA is contained in the Jacobson

radical J(A) of A, which entails k-algebra isomorphisms
A/T(A) =2 (A/mA)/(J(A)/mA) = (A/mA)/T(A/mA) = EA/T(KA);

in particular, there are bijections between the isomorphism classes of simple mod-
ules of A, A/J(A), kA and kA/J(kA), respectively.
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If L is any (finitely generated) A-module, then one also has 7L = mL = mA-L C
J(A) - L CRad(L), and

L/Rad(L) = (L/mL)/(Rad(L)/mL) = (L/mL)/(Rad(L/mL)),
as A-modules and kA-modules.

For simplicity, for the remainder of this section, R will be a local principal ideal

domain with maximal ideal m = (), field of fractions K and residue field k := R/m.

Definition 2.2. Let n € N. An R-order A in the matrix algebra A := K™*"
is called a graduated R-order in A if there exist pairwise orthogonal idempotents

€1,...,e, € Asuch that 14, =1y =e1 +---+ e,.

Remark 2.3. Suppose that A is any semisimple K-algebra, and let € be a block
idempotent of A, that is, a projection onto one of the Wedderburn components of A.
If K is a splitting field of the simple K-algebra € Ae, then e Ae = K™*", where n is
the dimension of the (up to isomorphism uniquely determined) simple € Ae-module.

This is the situation we shall investigate in the following.

2.4. Exponent matrices and normal form. (a) Following [14, Definition (I.3)]
and [15, Definition (I1.1), (I1.2)], consider r,n,dy,...,d, € Nwithn =d; +---+d,
as well as a matrix M = (m;;) € Z"™" all of whose entries are non-negative. Then

the set of block matrices
A= A(dy,...,dy; M) = {(a;;) € R™™ : a;; € m™i . REX%} C R C KmXn

is a (graduated) order in K™*™ if and only if, for all ¢, 5,k € {1,...,r}, one has

my; =0 (1)
and
mij + My 2 Mg - (2)
If, moreover, one has
My + Mg > 0, (3)

whenever i # j, one says that A is in standard form, and calls M the exponent
matrix of A. By [15, Remark (I1.3)], every graduated order in K™*"™ is isomorphic

to a graduated order in standard form.

Theorem 2.5 ([14, Satz (1.26)],[15, Theorem (I1.16)]). Suppose that A is a semisim-
ple K-algebra, let T' be any R-order in A, and let € be a block idempotent of A.
Moreover, let V' be an absolutely simple A-module with €V =V, and let L C'V be
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a T-lattice that is an R-form of V. Then el'c is a graduated order in cAec if and

only if the following conditions are satisfied:

(i) every composition factor of the kI'-module L/mL occurs with multiplicity
1;

(ii) every composition factor of the kI'-module L/mL is absolutely simple.

In the course of this paper we shall apply Theorem 2.5 in the case where A = KG
is the group algebra of a finite group G over K, and I' is the R-order RG in A.
Therefore, we recall how to obtain a graduated order in standard form in e KGe

that is isomorphic to e RGe.

2.6. Sublattices and exponent matrices. We keep the notation of Theo-
rem 2.5, and suppose that conditions (i) and (ii) are satisfied. Denote the R-order
ele of eAe by A. Let Dy,..., D, be the pairwise non-isomorphic composition fac-
tors of the kI-module L/mL, with k-dimensions di, ..., d,.

(a) As mentioned in 2.1, one has bijections between the isomorphism classes
of simple modules of A, A/J(A), kA and kA/J(kA), respectively. Analogously,
ml C J(T'), and one has bijections between the isomorphism classes of simple
modules of T', I'/J(T"), kI" and kI'/J(kL), respectively.

Since L C V and ¢ acts as the identity on V, it also acts as the identity on L and
all its sublattices. In particular, L = €L is also a A-lattice, and the I'-sublattices
of L are just the inflations of the A-sublattices of L, along the surjective R-algebra
homomorphism I' -+ A = el'e,a — ea.

We may also view L/mL both as kI" and kA-module. Since V' is, up to isomor-
phism, the only simple € Ae-module and since A is an R-order in €Ae, the simple
kA-modules arise precisely as the composition factors of the kA-module L/mL.

On the other hand, if D is a simple A-module, then D also becomes a simple
I-module via inflation along the surjective R-algebra homomorphism I' — A =
ele,a — ca.

Thus, altogether, the simple kI'-modules D1, ..., D, may also be viewed as sim-
ple kA-modules. As such they are the composition factors of the kA-module L/mL.
Moreover, Dy, ..., D, are representatives of the isomorphism classes of simple kA-

modules.

(b) As observed in (a), every I'-sublattice of L is also a A-sublattice of L, and
conversely. So consider the lattice of I'-sublattices of L of full R-rank. By [14,
Folgerung (I.24)], [15, Remark (II.4); p. 14|, for each i € {1,...,r}, there is a
unique sublattice L; of L such that L; € mL and L;/Rad(L;) = D; as kI-modules.
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Then, for 4,5 € {1,...,r}, let m;; € Ny be the multiplicity of D; as a composition
factor of L/L;. Setting My := (m;;), one deduces A = A(ds,...,d,; M) as R-
orders, and A(ds,...,d,; M) is in standard form. The definition of Mj, of course
depends on L as well as on the ordering of the simple modules Dy, ..., D,. However,
once the latter ordering has been fixed and L and L’ are R-forms of V, [14, Satz
(I7)], [15, Proposition (II.6)] show that My = My, if and only of L & L’ as
I'-lattices.

By [14, Satz (1.23)], [15, Remark (II.4)], every projective indecomposable A-
module is isomorphic to a A-sublattice of L of full rank. More precisely, if, for
i € {1,...,r}, P; denotes a projective cover of the simple A-module D;, then

P; = L; as A-modules. Note that, as I'-module, L; is, in general, not projective.

(c) Again let L CV be a A-lattice that is an R-form of V, and let My, = (m;;)
be the corresponding exponent matrix, so that A & A(dy,...,d,; My). By [14,
Satz (1.8)], [15, Remark (I1.4)], there is a bijection between the set of isomorphism
classes of A-lattices that are R-forms of V' and the set of r-tuples (mq,...,m,) € Nj
satisfying

mi; +m; =>m;, fori,je{l,... r} (4)
and

my =0, for some k€ {1,...,7}. (5)

More precisely, to each such r-tuple (mq,...,m,), one associates the unique full-
rank A-sublattice L(my,...,m,) of L such that, for ¢ € {1,...,r}, the simple A-

module D; occurs with multiplicity m; as a composition factor of L/L(my,...,m,).

(d) Now suppose that A = KG and T' = RG, for a finite group G. Then
kI’ 22 kG. Consider the simple A-module V*, that is, the K-linear dual of V, let &*
be the block idempotent of A with ¢*V* = V* and let T' C V* be an R-form of V*.
Then V* and T also satisfy the hypotheses of Theorem 2.5. The composition factors
of the kG-module T/mT are isomorphic to the simple kG-modules D5, ..., D} If
V is a self-dual KG-module, and if Dq,..., D, are self-dual kG-modules, then we
may take T'= L and, by [14, Satz (III.1)] and [15, Proposition (IV.1)], we obtain

Mg + Mk + MEs = My + Mgj + Mg (6)

for i,5 € {1,...,r}. It should be mentioned that, at the beginning of [14, Chapter
ITI], L is assumed to be projective, when viewed as e RGe-module. In our appli-
cations, we shall usually work with lattices that do not have this property. The

assertion of [14, Satz(II1.1)(i)] is, however, valid without any restrictions on L.



136 SUSANNE DANZ AND TOMMY HOFMANN

3. On simple KG-modules with three modular composition factors

Throughout this section, let R be a principal ideal domain with maximal ideal
m = (), residue field k of characteristic p > 0, and field of fractions K of charac-

teristic 0. Moreover, let G be a finite group.

3.1. Submodule lattices. In this subsection, we shall investigate R-forms of
particular absolutely simple K G-modules with three modular composition factors.
Theorem 3.2 below will subsequently be applied to two examples on finite symmet-
ric and projective special linear groups, respectively. Throughout this subsection

suppose that R is local.

Hypotheses 3.1. Let V be an absolutely simple KG-module, and let Sy :=L CV
be an R-form of V satisfying the following properties:

(a) there are pairwise non-isomorphic simple kG-modules Dy, D2 and D3 with
k-dimensions d,ds and d3, respectively, such that dy # d; # d3 and d; #
da + d3, and such that the kG-module S; /757 has radical isomorphic to D
and head isomorphic to Dy & Ds;

(b) D1 = Dj and (Ds @ D3)* = Dy @ Ds;

(¢) Soc(S1/mS1) = Rad(S1/mS1);

(d) Sz and S3 are the maximal sublattices of S with S1/S2 & Dy and S7/S3 =
D3 as kG-modules;

(e) there is some ¢t € N and, for each ¢ € {1,...,t}, there is some sublattice
S3;41 of S7 such that

(i) for each i€ {0,...,t =1}, 75341 C S3(41)4+1 € S3i+1 and the dimen-
sion satisfies dimy,(S3(i41)+1/753i41) = di;

(ii) Vi e {1,...,t — 1}: S3;41/7S3i41 = D1 ® Dy ® Ds;
(iii) Ssep1 = ST

Theorem 3.2. Suppose that Hypotheses 3.1 hold. Then one has the following:

(a) Sy is the unique common mazimal sublattice of So and S3; moreover, Sa /Sy =
D3 and S5/S4 = Do;

(b) fori e {1,...,t — 1}, the lattice S3;+1 has precisely three mazimal sublat-
tices Szit2, S3i4+3 and wS3(;—1)+1, where Szi11/S3i42 = D, S3i41/S3i43 = D3 and
S3iv1/mS33-1)41 = D1

(c) fori e {1,...,t — 1}, the lattice Sz, 12 has at least two mazimal sublattices

S3(i+1)+1 and TS3(;_1)42; moreover, Szito/S3(i+1)+1 = D3 and Szi12/pSsi—1)+2 =
Dl;
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(d) fori e {1,...,t— 1}, the lattice Ssi+3 has at least two mazximal sublattices
S3(i+1)+1 and wS3(;_1)43; moreover, S3i13/S3(i+1)4+1 = Do and S3i13/7S3(i—1)43 =
Dl;

(e) mS3(t—1)41 is the unique mazximal sublattice of Szty1, and Sz¢y1/mSs4—1)41 =
Dl 5

(f) the RG-lattices S1,...,Sst+1 are pairwise non-isomorphic R-forms of V. If
Sy is the unique mazximal sublattice of So as well as the unique maximal sublattice
of S3, then S1,...,S3t41 are representatives of the isomorphism classes of R-forms
of V, and S1 has the following full-rank sublattices:

S3(t-1)+2 i S3(t-1)+3

T

TS3(t—2)+2 S3t+1 TS3(t-2)+3

7T53(t—1)+1

(g) if D1, Dy and D3 are absolutely simple, let € be the block idempotent of KG
corresponding to V. Then A := eRGe is a graduated R-order in A := eKGe. One
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has A = A(dy,ds,ds; M1), where
0 0 O
Mr=1t 0 al,
t b 0
for some a,b € N. One has a = 1 = b if and only if Sy is the unique mazimal

sublattice of Sy and the unique maximal sublattice of Ss.

Proof. Assertion (a) is clear from our hypotheses. To prove assertions (b)—(d) we
argue by induction on i.

Suppose first that ¢ = 1. The lattice S; has three maximal sublattices, since
Sy/mSy = Dy @ Dy @ D3 as kG-module. By our hypotheses, 757 C S4 C S
and dimy(Sy/mS1) = di. By Hypotheses 3.1(a), this forces Sy/mS1 = Dj; in
particular, 757 is maximal in S;. Now let S5 and Sg be the maximal sublattices
of Sy such that S4/S5 = Dy and Sy/Sg =2 D3. Then we have S5/7Sy = Dy & Ds
and Sg/mSy = Dy & Dy. Moreover, from 75y C Sy C Sy and dimy (S7/7S7) = dy
we deduce that S7/7S4 = Dy, so that S;/7Sy4 is the unique submodule of Sy /7Sy
isomorphic to D;. In particular, S7/7nS4y C S5/7S4 and S7/7wSy C Sg/mSy. This
implies S; C S5, S7 C S, S5/S7 = D3, and Sg/S7 = Dy. Hence S7 is maximal in
both S5 and Sg.

Next we show that 7S5 is maximal in S5, 753 is maximal in Sg and S5/7wSy =
Dy = Sg/71Ss3. First assume that w55 € S5. Since 752 C w51 C Sy and since S5 is
maximal in Sy, this gives Sy = S5 + 152 = S5 + 757 and

54/71'54 = (55/7754) + (ﬂ'Sg/ﬂ'S4) = (Dl @Dg,) + Ds.

So either 7Sy/mSy C S5/mSy or Sy/wSy = S5/mSy @ wS/mSy. Since we are
assuming w52 € S5, the first case cannot occur, implying Sy /7Sy = D1 @ D3 @ D3,

a contradiction, since Dy 2% D3. Consequently, 7Sy C S5 and
55/71'52 = (55/71'54)/(7'('52/7'('54) = (Dl @D3)/D3 = Dl;

in particular, 7S5 is maximal in S5 and 759 # S7.

Analogously, we deduce that 753 # S7 is maximal in Sg with Sg/7S3 = Ds.

So suppose now that i > 1. As above, we deduce that Ss;;; has precisely three
maximal sublattices mS3(;_1)4+1, S3i42 and Ssiy3, where S3;41/mS3(;-1)41 = D1,
S3i41/S3i42 = Do and Ssi41/S3:43 = Ds. Moreover, S3; 1o has at least two
maximal sublattices mS5;;_1)12 and Ssy1y41, With Ssi40/mS5;_1)42 = D1 and
S3iv2/S3(i+1)+1 = D3. To see this, note that Ss(;41)4+1/m 5341 is the unique sub-

module of Ss;41/7mS5;+1 isomorphic to D;. Since Ssi+1/S5i+2 = Da, we have
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S3i+2/TS3i41 = D1 @ D3, implying Ss(;41)41/7S3i+1 € S3i42/7S3i41, S3iir1)+1 C
S3iy2 and Szit2/93(3i41)41 = D3. Assuming that mS5;_1)42 € Ssit2 and using

that S3(;_1)42/S3:41 = D3 by induction, we again obtain the contradiction
D1®Dy®D3 = S3i11/mS3i11 = S3i12/mS3i11BTS3(i—1)42/TS3i+1 = D1®D3® D3 .
Hence 753(;—1)42 € S3i12 and

Szit2/TS3(i-1)+2 = (S3i42/mS3i+1)/(TS3(i-2)+1/7S3i41) = (D1 & D3)/D3 = D; .

This proves assertion (c¢), and assertion (d) concerning the maximal sublattices

of S3;43 is proved analogously.

To show (e), recall that Soc(S1/7S1) = Dy and Dy = D5, by our hypotheses.
Since S3i+1 = ST, we also have Ssy1/mS341 = (S1/751)*, so that Ssgpp1/mS3641
has head isomorphic to Dy; in particular, Ss;41 has a unique maximal sublattice.
By our hypotheses, we further know that 7S3;_1)11 € S3i41 © S31—1)4+1 and
dimy, (S3¢41/m934—1)41) = dimg(D1). Hence Sz;11/7S3:—1)+1 = D1, by Hypothe-

ses 3.1(a), and mS3(;_1)41 is indeed the unique maximal sublattice of Sz¢1.

To complete the proof of the theorem, it remains to settle (f) and (g). To do
so we shall apply [13, Proposition 2.3]. We first note that neither of the lattices
S1,y..., 5341 is contained in 7.57. Namely, by Hypotheses 3.1(d) and assertions (a)-
(d) above, for j € {1,...,3t+ 1}, every composition factor of S;/S; is isomorphic
to Dy or D3, while S;/7S5; has a composition factor isomorphic to D;. Hence,
by [13, Proposition 2.3], the R-forms Si,...,S3:1 are pairwise non-isomorphic
RG-lattices. By construction, (7) is part of the submodule lattice of Sj.

Now suppose that both S5 and S3 have a unique maximal sublattice, which then
has to be equal to S;. We again argue by induction on ¢ to show that each of
S3i42 and Ss;43 has precisely two maximal sublattices, for all ¢ € {1,...,¢ — 1}.
So let ¢ = 1, and assume that Sy has a maximal sublattice T" with S; # T #
mS. Then we must have S5/7mS5s = Dy @ Dy @ D3, and S5/T = Ds. Since
7Sa /7S5 =2 (1S2/m2S2) /(7S5 /72S2) and 7S5 /725y =2 S5/mSe = Dy, we conclude
that w5y /7S5 = Dy @ Ds is isomorphic to a factor module of 755 /7%Sy =2 Sy /7Ss.
But S3/mS2 has a simple head isomorphic to D3, hence does not have a factor
module isomorphic to Dy @ D3.

This proves the assertions concerning S5, and the lattice Sg is treated analo-

gously.

Now let ¢ > 1. Assume that we have a maximal sublattice T of Ss; o with

1S33i—1)+2 7 T # S3(i+1)+1- Then, asin the case where i = 1, we get S3;12/7S3i42 =
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D1 ® Dy & D3 and Sgi+2/T =~ Dy. We have 7T'S3i+2 - 7T53,‘+1 - 7TS3(1‘,1)+2, thus

7TS3(i—1)+2/7TS3¢+2 = (53(i—1)+2/7253(i—1)+2)/(7753i+2/7T253(i—1)+2)

and
(S3i42/mS3i42)/(mS3(i—1)42/TS3i12) = S3i42/mS33i—1)42 = D1 .

Note that since we are assuming Sz;12/7S5;4+2 to be semisimple, this implies that
T833i—1)4+2/TS3i12 = Dy @ D3. But we have just seen that mS3(;_1)42/mS3i42 is
isomorphic to a factor module of 7r5’3(1-,1)+2/7r253(i,1)+2 = S3(i—1)4+2/TS33i—1)425
which, by induction, has a head isomorphic to Dy & Dj3. Since Dy 2 Dy 22 D3, we
obtain a contradiction.

This proves the assertions concerning Ss;y2, and the lattice Ss;y3 is treated
analogously. Consequently, we have now verified that (7) is the lattice of full-
rank sublattices of S7. Moreover, S, ..., S3:11 are precisely those sublattices of Sy
of full rank that are not contained in 757, which are then representatives of the

isomorphism classes of R-forms of V', by [13, Proposition 2.3|. This settles (f).

Lastly suppose that D;, Dy and D3 are absolutely simple. Then A is a gradu-
ated R-order in A, by Theorem 2.5. By (e), the lattice Ss;4+1 must be the unique
sublattice of S not contained in 757 that is a projective cover of Dy, when viewed
as simple A-module as in 2.6(b). Consequently, S; is an injective A-lattice, and [14,
Satz (1.23)(ii)], [15, Remark (IL.4)] forces m1; = 0, for j € {1,2,3}.

Hence, by 2.6(b), with respect to the chosen ordering on D;, Dy, D3, we must

have

ML :M51 =

+~ + O
>~ O O
o 8 O

for some a,b € N.

Consider the uniquely determined sublattices P, and P5 of S; not contained in
S such that Po/ Rad(P,) & Dy and P3/ Rad(Ps;) & Ds. That is, P, is a projective
cover of Dy and Pj is a projective cover of D3, when viewed as A-modules. Then, by
2.6(b), we deduce that S;/P» has only composition factors isomorphic to D3, and
the number of these is b. Similarly, S;1/Ps has only composition factors isomorphic
to Do, and the number of these is a. Since S; and S3 are the only maximal
sublattices of Sy, this forces P, C S3 and P3 C S5. Therefore, we have a = b =1 if
and only if P, = S3 and P3 = S5. This in turn is equivalent to Se and S3 having a

unique maximal sublattice, which then has to be the common sublattice Sy. ]
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Remark 3.3. Keep the notation of Theorem 3.2. Suppose that the simple kG-
modules D1, Do, D3 are absolutely simple and suppose also that a = b =1 in part
(9). Then the RG-lattices Si,...,Ssi41 are representatives of the R-forms of V,
and A = eRGe is a graduated R-order of eKGe. Recall from 2.6(c) that the lattices
S1,.., 83011 bijectively correspond to the triples (mq, ma, m3) € N3 satisfying the

following conditions:

t+my 2 mge 2 my
t+my =2 mg=m
1+m3 2= mo
1+mo > mg3.

Since at least one of my, ma, m3 has to be 0, this gives m; =0 and
(m17m27m3) € {(07]33)3(07] + 17])7(05jaj + 1)7(Oatat) ] € {03"'7t7 1}}

Moreover, by 2.6(c) and (7), the concrete correspondence between S; and the triple

(my, ma, ms) is given as follows:

’ J ‘ (mq, ma, m3) ‘
3j+1 (0,4,7)
3i+2| (0,574+1,9)
37+3| (0,4,7+1)
3t+1 (O,t,t)

where j € {0,...,t —1}.

3.2. Application I: symmetric groups. Our first application of Theorem 3.2
will be concerned with the symmetric group &,, of degree n > 0. We begin by
setting up some notation that will be chosen in accordance with [5]. For details
on the representations of symmetric groups and the well-known properties of these

used below, we refer the reader to [9].

Notation 3.4. Suppose that R is a principal ideal domain with field of fractions K
of characteristic 0. Moreover, let () be a maximal ideal in R such that the residue
field k := R/(w) has characteristic p > 0. The isomorphism classes of (absolutely)
simple K &,,-modules are labelled by the partitions of n: for every partition A of n,
there is a simple K&,,-module Sj}, called the Specht K&,,-module labelled by A,
which carries a distinguished R-form S3, called the Specht R&,,-lattice labelled by
A. The k&,-module S%/7Sp shall be denoted by Sj. It is well known and easily



142 SUSANNE DANZ AND TOMMY HOFMANN

deduced from the explicit construction of Specht modules in [8, Sections 4 and 8]
that S = R ®7 S3, for every partition A of n.

The isomorphism classes of (absolutely) simple k&,,-modules are labelled by the
p-regular partitions of n, that is, partitions A of n each of whose parts occurs with
multiplicity at most p—1. The simple £&,,-module labelled by a p-regular partition
p is usually denoted by D}'. Recall also that D}’ is isomorphic to the head of Sj..

Every simple KS,,-module as well as every simple £&,,-module is self-dual.

In [5], we considered the case where K € {Q,Q,}, R € {Z,Z,} and k = F,,
for some prime number p. We studied the R-forms of the Specht K&,,-modules
labelled by hook partitions (n—r,1"), for r € {0,...,n—1}. In [5, Theorem 6.1] we
determined a set of representatives of the isomorphism classes of Z,-forms of the
Specht Q,&,,-module Sg;_r’ﬂ), for p>2and r € {0,...,n — 1}; see also [14, Satz
(II1.8)]. The main ingredient in the proof of our result were the results of Plesken
[13] and Craig [3] on the case r = 1. The case where p = 2 turned out to be much
more difficult. In [5, Theorem 7.10, Theorem 7.16] we settled the case p =2 =r,
for n # 0 (mod 4). In Theorem 3.7 below we shall now treat the case p =2 =r
and n = 0 (mod 4), thereby verifying [5, Conjecture 7.18(a)]. For a summary of
the known relationship between Specht modules labelled by hook partitions and
exterior powers, we refer to [5, Section 4; 5.5].

In what follows, for every prime number p and every n € N, we denote by v,(n)

the p-adic valuation of n, that is, v,(n) = max{l € Ny : p' | n}.

3.5. Specht modules labelled by hook partitions. (a) Suppose now that
p=2andn > 4. Let t := vo(n). For R € {Z2,Q2,F5}, one has RS,,-isomorphisms
S}({n—z,ﬁ) = /\2(51(%"_1’1)); see [5, 5.5]. As in [5], we shall often view these isomor-
phisms as equalities, for convenience.

(b) Suppose that p | n. For j € {0,...,v2(n)}, let My; be the ZyS,,-sublattice
of Sg;fl’l) in [5, Theorem 8.1]. Then

Sé’r;—l,l) _ Ml :_) M2 :_) ]\4’4 :_) L :_) Mgt ~ (Séz—Ll))*’

and M,..., Myt are representatives of the isomorphism classes of Zs-forms of
S&_l’l). Moreover, for j € {1,...,t}, one has 2My;—1 C My; C Myj—1, [Mo;—1 :
My;] = 2772 and My -1 /My; = D]%Z’_l’l) as Fo&,-modules. If j € {1,...,¢t — 1},
then My, /2My; = DI Y @ Fy.

By [5, Theorem 4.5], the Zo&,,-lattices /\Q(Ml), e /\2 (My¢) are pairwise non-
isomorphic Za-forms of 5&_2’12). Lastly, recall that 52_1’1) has rank n — 1, and

DI(FZ_LU has dimension n — 2.
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Lemma 3.6. Let n > 4 be such that n = 0 (mod 4), and let t := vo(n). Let V
be the absolutely simple Q2&,,-module S(” 217 ). Moreover, let Dy := D]gf;_l’l),
Dy = D(") = Fy, and D3 := D[(Fn 22 With the notation as in 3.5(b), one has the
following:
() A2(May:) € 20 N2(My) = 208571 fori € {0, 1)
(b) fori € {0,...,t}, let Saiy1 := N*(Mai)/2". Then Sy, Sy, S7,. .., Sa41 are
Zo-forms of V' satisfying Hypotheses 3.1.

Proof. As in the proof of [5, Proposition 6.5, we have 4 \*(Ma:) C A*(Mai+1) C
2/\2(M2i)7 for i € {0,...,t — 1}. Thus, by induction on i, we deduce that the
modules S1, 54, ..., S3¢41 are Zz-forms of V such that 253,11 C S3(i41)+1 € S3i41,
fori € {0,...,t —1}.

Let d; := dimg,(D;), for i € {1,2,3}. We have S1/pS; = Sn 2,17 ) and it
follows from [11, Theorem 1.1] that Rad(Sé-Z 21 )) = SOC(S];Z 2% ) ~ Dy and
Hd(Sé:fQ’lz)) ~ Dy @ Ds3. Furthermore, di = n — 2 and do = 1. Thus d3 =
dimp, (S]%Z_Q’lz)) —dy —dy = (”;1) —1—(n—2). From this one immediately
deduces that Hypotheses 3.1(a) and (c) are satisfied. In particular, there is a unique
maximal sublattice So of Sy with S1/S2 & Dy, and a unique maximal sublattice S5
of S; with S1/S3 = D3. So Hypothesis 3.1(d) is satisfied.

Since every simple Fo&,,-module is self-dual, also Hypothesis 3.1(b) is satisfied.
It remains to verify that Hypotheses 3.1(e) are satisfied. To this end, let i €
{0,...,t£—1}. Then

[S3i41 ¢ Sai1)41] = /\(M21>/2":/\<M2i+1>/2”1] = [/\ Myi) = \(Mpisr)/2
N (M) N (Myin)] o(n=2)("72)~("3")

2
2("2")
—9("2") = o("2")—(n=2) _ gda+ds

by [5, Lemma 4.4, Proposition 2.5] and 3.5(b). Thus S3i;1/93(;+1)+1 has Fo-
dimension dy + d3, and S3(j11)41/253i11 has Fa-dimension (";1) —dy —d3 =d;.
Next suppose that ¢ € {1,...,t — 1}. We need to show that Ss;;1/2S55;41 is
semisimple as Fo&,-module. By 3.5, we know that My:i/2My = D; & Da, as
Fsy-modules. Moreover, using [5, 4.1(d)] and [4, (12.2)], we also know that
2 2 2
S3i11/283i41 = /\ Myi)/2 \(Mai) = \(Mai /2My:)

2 2

/\ D1®D2) /\(Dl)ng@/\(Dl)

1



144 SUSANNE DANZ AND TOMMY HOFMANN

as F2&,-modules. Consequently, A?(D;) must have composition factors Dy and
Dj3. On the other hand, recall that D; is isomorphic to the head of S]k(-z_l’l). The

N D, gives rise to an F2&,,-epimorphism

resulting Fo&,,-epimorphism S]P(‘Z_l’l
(n—2,1%) ~, A2/ a(n—1,1) 2

Sk, = A"(Sg, ) = A“(D1). But we have already seen above that the

only factor module of S]k(-z_z’ﬁ) with composition factors D, and D3 has to be

semisimple. Hence \*(D;) & Dy @ D3, and we have verified Hypothesis 3.1(e)(i).

Lastly, we have My: =2 (ngl’l))*, and thus, by [5, 4.1(c)], also

2 2 *
Sarpr = \(Mar) = (/\(Sé’i‘l’”>> = (§5721))r = 5

as Zo G, -lattices.
Therefore, S, Sy, ..., 5341 indeed satisfy Hypotheses 3.1, and the proof of the

lemma is complete. U
In consequence of Lemma 3.6 we can now apply Theorem 3.2 to obtain

Theorem 3.7. Let n > 4 be such that n = 0 (mod 4), let t := va(n), and keep
the notation from Lemma 3.6. Then the lattice of full-rank sublattices of the Zo&,,-
lattice S’E(‘Z_Q’lz) is given by (7). The lattices S1,Sa,...,S3:41 are representatives

of the isomorphism classes of Zy-forms of the simple Qo&,,-module 5&_2’12).

Proof. By Lemma 3.6 and Theorem 3.2, we conclude that (7) is part of the lattice
of full-rank sublattices of S; = 522_2’12) and that Sp,S5,...,S53.41 are pairwise
non-isomorphic Zy-forms of 5&_2’12). Let € be the block idempotent of Q2&,, cor-
responding to 5&_2’12), and let A the the graduated Zs-order €ZoS,c in eQo6,,¢.
By Theorem 3.2, we also know that the exponent matrix of A with respect to Sy
equals

0 0 O

M:=(m)=1|t 0 al,

t b 0
for some a,b € N. In order to complete the proof of the theorem, it suffices to
show that a = b = 1 or, equivalently, that each of the lattices So and S3 has
a unique maximal sublattice, namely the common maximal sublattice S;. We
examine S;. By construction, Sy is the unique maximal sublattice of S; such that
S1/S9 =2 Dy = Fy. Therefore, Sy has to be the Zy&,,-sublattice of S; constructed
in [5, Lemma 7.5]; in particular, So does not have a maximal sublattice T such that
Sa2/T = Dy, by [5, Lemma 7.7(a)]. Let L C Sy be the unique sublattice of S such

that L Z 25, and L/ Rad(L) = Ds. Then, due to the structure of M, we must have



LATTICES AND SOLOMON ZETA FUNCTIONS 145

S1# L € S3. Hence L C Sy, since Sy and S3 are the only maximal sublattices of
S1. If L # S5, then a > 1 and so there would be a maximal sublattice T of Sy such
that So/T = D, a contradiction. Therefore, L = Sy and a = 1.

Since 5&72’12) is a self-dual Q2&,,-module and D1, Dy, D3 are self-dual Fo&,,-

modules, (6) gives
O+a+t=mi2+me3z+m3 =mor +m32+miz3==t+0+0,

that is, b = a = 1 as well. So, by Theorem 3.2(f), Sy is also the unique maximal

sublattice of S3, and the assertion of the theorem follows. O

Remark 3.8. For completeness, we also comment on the simple Q2G4 -module
5(22’12). It is well known that, for every r € {0,...,n — 1} and every prime p, one
has S(gjl’lnqil) ~ 522—7-,1") ® sgng, , where sgng =~ denotes the one-dimensional
sign module of Q,&,; see |9, Theorem 6.7].

Thus, in particular, if My, Ms, M3 denote the ZoG4-sublattices of 52’1) men-
tioned in 3.5, then My @ sgny, , Mo @ sgny, and M3 @ sgny, —are representatives of

2
the isomorphism classes of Zo-forms of S&’l ).

Together with [5, Theorem 1.1, Corollary 3.4] we now also have the following

immediate corollary:

Corollary 3.9. Let n > 4, and let V € {S5") 58V Let h(V) be the
number of isomorphism classes of Z-forms of V, and let d(n) be the number of

divisors of n in N. Then one has

3d(n) if2tn,
2d(n ifn=2 (mod4),
h(V) = (n) f ( )
3 ifn=4,
W ifn=0 (mod4),n>4.

3.3. Application II: projective special linear groups. Our second application
of Theorem 3.2 will involve the Steinberg module of the projective special linear
group PSLs(q) over suitable local fields of characteristic 0. We begin by setting up

the necessary notation.

3.10. Two-fold transitive permutation lattices. (a) Let R be a principal
ideal domain with field of fractions K of characteristic 0. Moreover, let » € N with
r > 2 and let G be a finite group acting two-transitively on a set Q := {w1,...,w,}.

Let further Mg be the corresponding permutation RG-lattice with R-basis €2, and
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let
LR = R(w2 — Wiy, Wy 7w1>,

which is an RG-sublattice of Mg of rank 7 — 1. Then the KG-module Vi := KLg
is absolutely simple, and KMp = Vi & K see [7, Satz V.20.2]. Since K My and K
are a self-dual K G-modules, so is V. Note that we also have Mr = R ®z My and
Lr =2 R®y Ly.

(b) Now suppose that K is a finite extension of the field Q, of p-adic num-
bers. Let R be the valuation ring of K with respect to the extension of the p-adic
valuation, and let m = (7) be the maximal ideal in R.

Suppose that p | r, and let t € N be such that (r) = m! = (7). For j € {0,...,t},
the map ¢; : Lr/m’Lr — Mp/m" Mg,z + ™ Lr — x + m/ Mpg is easily checked
to be an injective homomorphism of RG-modules and R/(77)[G]-modules. Since
7 | r, the element Y ;| w; + 7/ Mp spans a trivial submodule of Mp/7I Mg, and
s0 Y i _o(w; —wi) + 7 Lk spans a trivial submodule of Lr /7 Lr. The preimage of

the latter under the canonical surjective RG-homomorphism Lr — Lp/m Ly is

T

My = (D _(wi—w1)) + 7 Lg C Lg; (8)

i=2
in particular, M o, M, ..., M+ are RG-sublattices of L. As well, M, ; has R-
basis (3;_o(w; —w1), ™ (w3 —w1), ..., ™ (W, —w1)), for j € {0,...,t}. In particular,
Mo, My, ..., M+ are R-forms of the K G-module Vx not contained in mLgr. Thus,

by [13, Proposition 2.3], they are pairwise non-isomorphic as RG-lattices.

Now suppose, in addition, that the factor module D of Lr/mLr modulo the
trivial submodule D; mentioned above is a non-trivial, simple kG-module. By
Lemma 3.11 below, the kG-module L /7Ly then has to be indecomposable. Hence,
by [15, Theorem (VI.1)] and [13, Proposition 2.3], one deduces that there are pre-
cisely ¢ + 1 isomorphism classes of R-forms of Vi, and hence M, o,..., M+ are
representatives of these.

In fact, in this case, the kG-modules M /7M., for j € {1,...,t — 1} are all
semisimple, hence isomorphic to D @ D;. Moreover, for j € {0,...,¢t — 1}, one has
M, /My i+ = D as kG-modules. This can, for instance, be deduced from Plesken’s
results in [13, Theorem 3.22] and [12, Satz (I1.6)], which we shall also recall in 4.7.

Note that, in this case, the permutation kG-module kQ = Mp/7mMpg has com-
position factors D (with multiplicity 1) and & (with multiplicity 2). Since £ and

k are self-dual, so is D.
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The following properties of the RG-lattices introduced above are certainly well
known. They will be important in the proofs of Lemma 3.17 and Proposition 3.18

below, so we include their proofs here.

Lemma 3.11. In the notation of 3.10(a), let R be a principal ideal domain with
field of fractions K, let m := (7) be a mazimal ideal in R, let k := R/(m) be the
corresponding residue field. Then the kG-module Lr/mLg does not have a trivial

factor module.

Proof. For « € nLg, let T := ¢+ nLr € Lr/mLk. Assume that Lr/mLg has a
trivial factor module, and let ¢ : Lr/mLr — k be a non-trivial kG-homomorphism.
Since the elements w; — wq, for ¢ € {2,...,r}, form a k-basis of Lg/mLpg, there is

some j € {2,...,r} with ¢(w; —wi) # 0. For g € G, we have ¢(g(w; —w1)) =

gp(wj —w1) = p(w; —wi). Since r > 2, there is some i € {2,...,r} such that
i # j. Since G acts two-transitively on €2, there exist g, h € G such that g(w;,w1) =

(wj,w;) and h(wj,wi) = (Wi, w1). We get

0 # gp(wj —wi) = p(wj —w;) = p(wj —wi) — p(w; —wr)

= p(wj —wi1) — hp(w; —w1) =0,
a contradiction. O

Lemma 3.12. In the notation of 8.10(b), one has an RG-isomorphism M+ = M;.

Proof. The permutation K G-module M = K My carries its natural non-degenerate
symmetric G-invariant bilinear form £ such that §(w;, w;) = 6,5, for4,5 € {1,...,r}.
Via restriction, 8 induces a symmetric G-invariant bilinear form on Vi, and one
easily checks that this is still non-degenerate. Let N C Vi be any R-form of Vi,
let (by,...,b.—1) be an R-basis of N, and consider N# := {v € Vi : B(v, N) C R}.
Then N# is also an R-form of V. Moreover, N C N# and, since R is local with

finite residue field k, one has
[N# 2 N] = |R/ det((B(bi, b)) <ij<r—1l 5

see [5, Proposition 2.5]. Also note that the map N# — N* ,z — (y — B(z,y))

defines an RG-isomorphism.

Next observe that we have 7'M« C M+ C M; C thﬁ, by the choice of ¢.
So, in order to complete the proof of the lemma, it suffices to show that [M; :
Tt M) = [M:ff : My:]. For then we get [My : w'M,.] = [TrtMﬁ : m' M), and
hence M; = WtMﬁ = Mﬁ = M*, as RG-lattices.
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So consider the R-basis (b1,...,b.—1) := (we — w1,...,w, —wi) of My and the
R-basis (¢1...,¢0—1) = (XCi_o(wi —wi), 7 (ws — wi), ..., 7 (wy — wi)) of T M.

Then one has
det((B(ci, ei)1<ijar—1) = ()22 - det((B(bs, bj)r<ijer—1) = (71)2072

hence [Mﬁ : My = |R/((7%)?"=2) .1)| = |R/r*"~3R|. On the other hand, using [5,
Proposition 2.5, we also see that [M; : 7t M| = |R/((x*)?"=2).7")| = |R/r*"~3R)|.

This completes the proof of the lemma. O

3.13. (Projective) general linear and (projective) special linear groups.

Keep the notation as in 3.10.

(a) Let n € N with n > 1, let p be a prime, and let ¢ be a power of a prime.
The general linear group GL,,(q) acts two-transitively on the set of one-dimensional
subspaces of IF'; as above, we simply denote this set by {2 = {wi,...,wr}, where r =
14+q+---+¢" 1. Suppose that p{q. In the notation of 3.10 above, the k[GL,(q)]-
module Lgr/mLg is absolutely simple if p 1 r; see [10, p.16, p.47, Theorem 20.3]
So, in this case L is up to isomorphism the unique R-form of Vi ; this follows
from [4, Proposition (16.16)], see also [5, Proposition 2.12]. If p | r, then Lr/pLg
has precisely two absolutely simple composition factors D and D; satisfying the
properties of 3.10(b); see, for instance, [10, (11.12)(iii), Theorem 16.3, Theorem
20.7]. The same is true when replacing GL,(g) by the projective general linear
group PGL,,(q). So, in these cases, Plesken’s result [15, Theorem (VI.1)] determines
the R-forms of Vi listed in (8).

(b) One has SL,(¢) < GL,(q), and one can also regard PSL,(¢q) as a normal
subgroup of PGL,,(¢) in the obvious way. Via restriction, the K[GL,(q)]-module
Vi in (a) becomes a K[SL,(¢)]-module (and also a K[PSL, (¢)]-module), which is

still absolutely simple, since also SL, (q) acts two-transitively on 2.

(¢) In the following, we shall focus on the case n = 2. Then Vi is the Steinberg
module of the (projective) general and (projective) special linear groups under
consideration; see [1, Chapter 9]. Moreover, we shall from now on suppose that K
is a finite unramified extension of Q, and R is the valuation ring in K with respect
to the extension of the p-adic valuation. In this case we may take m := p. The
»s» where f is the degree of K over Q,. We shall
use the results of Plesken in [15, Theorem (VI.1); Chapter VII] and Theorem 3.2

to obtain representatives of the isomorphism classes of R-forms of Resggfj((qq))(VK).

residue field k is isomorphic to FF
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Remark 3.14. (a) Keep the notation from 3.13(c). Suppose first that p is odd and
that q is power of a prime different from p. Let G := PGLa(q) and H := PSLo(q). If
p does not divide the order of H, then the kH-module Res$ (Lr/pLg) is absolutely
simple. Thus, in this case, Resg(LR) s up to isomorphism the unique R-form of
Res (Vi); see [4, Proposition (16.16)], [5, Proposition 2.12].

Hence, we may suppose that p | |H|. Recall that |H| is a divisor of (¢+1)q(q¢—1).
Ifp | (g—1), then, by [1, Section 9.4.2|, the kH-module Res$ (Lr/pLR) is absolutely
simple. So, also in this case, Resg (LR) is up to isomorphism the unique R-form of
Res$ (V). If p | (g+1), then it follows from [1, Section 9.4.3] that the kH -module
Res$ (Lr/pLg) has a trivial submodule with (absolutely) simple quotient. So, we
are in the situation of 3.10(b), and representatives of the isomorphism classes of
R-forms of Vi are given by the RH-lattices in (8), fort =v,(q+1).

(b) Now let p = 2, and let q be odd. If ¢ = £3 (mod 8) and if the degree of K
over Qg is odd, then the kH-module Res$(Lr/2LRg) has two composition factors;
see [15, p. 110]. In consequence of 3.13(a) and Lemma 3.11, we are then again in
the situation of 3.10(b), and representatives of the isomorphism classes of R-forms
of Res (Vi) are given by the lattices in (8), for t = va(q+1).

If g =41 (mod 8), or if ¢ = £3 (mod 8) and the degree of K over Qo is even,
then Res$ (Lr/2Lg) has three (absolutely) simple composition factors; see [15, p.
110], [1, Section 9.4.4]. These cases will be dealt with in the following.

Remark 3.15. As for the case of equal characteristic, that is, in the case where
p | g, note that the kH-module Res$ (Lr/pLg) is projective and absolutely simple;
see [1, Lemma 10.2.4]. So, also in this case, Resg(LR) is up to isomorphism the
unique R-form of Res$ (V).

Hypotheses 3.16. For the remainder of this subsection, we suppose that ¢ is an
odd prime power and p = 2. We set G := PGLa(q), and let H := PSLy(q). Let
(K, R, k) be as in 3.13(c). If ¢ = £1 (mod 8), then we may take K to be any finite
unramified extension of Qq. If ¢ = £3 (mod 8), then let K be a finite unramified
extension of Q2 of even degree; in particular, k& then contains the field with four
elements. Lastly, let Vi be the absolutely simple K G-module with R-form Lg as
defined in 3.13(a).

Lemma 3.17. Let q be an odd prime power, and let t := vo(q+1). With Hypothe-
ses 3.16 one has the following:
(a) The kH-module Res$(L/2L) has precisely three composition factors Dy, Dy

and D3, all of which are absolutely simple and pairwise non-isomorphic.
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More precisely, D1 = k, and Res$ (D) = Dy@ Ds; in particular dimy (Dy) =
(g —1)/2 = dimg(D3).

(b) Forie€{0,...,t}, let Myi C Ly be the RG-lattice in (8), and let S3;yq1 :=
ReSg(Mgi). Then S1,S54,...,S53:41 are R-forms of Resg(VK) satisfying
Hypotheses 3.1.

Proof. Assertion (a) is well known; see, for instance, [1, Section 9.4.4] and [15,
p.110]. Note that Dy is G-conjugate to Ds. As for assertion (b), note first that
Sy, 84, ..., S3:41 are of course R-forms of Res% (Vi) satisfying Hypothesis 3.1(e)(i).
Recall from 3.10(b) and 3.13(a) that Myi /2My: = D1@® D, fori € {1,...,t—1}, and
that Myi /Myi+1 = D, fori € {0,...,t—1}, as kG-modules. Hence Sy, Sy, ..., S3t41
satisfy Hypothesis 3.1(e)(ii). By Lemma 3.12, also Hypothesis 3.1(e)(iii) is satisfied.

Since the simple kG-module D is self-dual and since Res$ (D) = Dy @ Ds,
Hypotheses 3.1(b) are satisfied. Setting d; := dimg(D;), for i € {1,2,3}, we have
do=d3s=(qg—1)/2# 1=d; and dy # da + ds.

It remains to verify the assertion on the submodule structure of the kH-module
Res% (L) := Res$(Lp/2Lr). We know that L has a trivial submodule U with
factor module isomorphic to Res% (D) & Dy @ Ds; in particular, Rad(Res% (L)) C
U. By Lemma 3.11, we also know that Resg(f/) does not have a trivial factor
module; in particular, Res$ (L) cannot be semisimple, implying Rad(Res% (L)) =
U. Therefore, Resf, (L) has precisely two maximal submodules, Us and Us, where Us
has composition factors Dy and D1, and Us has composition factors D; and Ds. So
U, has to be G-conjugate to Us. Since Resg(f/) is not semisimple, both U, and Us
are indecomposable, and the common trivial submodule of Us and Us is the unique
simple submodule of Res%(L). Thus Soc(Res% (L)) = Rad(Res% (L)) = k = D;.
This completes the proof of the lemma. O

Proposition 3.18. Let ¢ be an odd prime power, and let t := vo(q+ 1). In the
notation of Lemma 3.17, the RH-lattice Lr has submodule lattice (7). The lattices
S1,89,...,53¢+1 are representatives of the isomorphism classes of R-forms of the
absolutely simple K H-module Res$ (V).

Proof. Let ¢ be the block idempotent of K H corresponding to the absolutely
simple module Resg(VK). Consider the graduated R-order A := ¢RHe in e K He.
By Lemma 3.17 and Theorem 3.2, we know that (7) is part of the lattice of full-rank
sublattices of Lr = S;. Moreover, S1, 59, ...,S55:41 are pairwise non-isomorphic
R-forms of the K H-module Vi . On the other hand, by [15, Chapter VII|, there is
a K H-lattice L' C Vi that is an R-form of Vi and the exponent matrix of A with
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respect to L’ is

0 t t
Mp =10 0 1
01 0

From this and 2.6(c) one easily deduces that the isomorphism classes of R-forms of
the K H-module Vi are in bijection with the set

{(0,0,0),(4,0,0),(5,0,1),(4,1,0) : j € {1,...,}},

which has cardinality 3t + 1. Hence, (7) has to be the complete lattice of full-rank
sublattices of Lr = S7, and S1, 59, ..., S3:41 are representatives of the isomorphism
classes of R-forms of the K H-module V. O

Question 3.19. To conclude this section, suppose again that G is any finite group
acting two-transitively on a finite set Q = {ws,...,w,} with > 2. In the notation
of 3.10, we know that the absolutely simple K G-module Vi admits at least ¢ + 1
pairwise non-isomorphic R-forms, representatives of which are given by the RG-
lattices Lr = Myo,..., Myt in (8). We also know, by Lemma 3.12, that M. is
isomorphic to the dual lattice M} = L},. Consider the kG-module Ly := Lp/7Lg
and its trivial submodule D; as in 3.10. Suppose that Ly/D; is the direct sum
of two non-trivial pairwise non-isomorphic simple kG-modules Dy and Dj3. For
1€{0,...,t}, set S3;11 := M.

Do these RG-lattices then satisfy Hypotheses 3.17 If so, is Sy the only maximal
RG-sublattice of each of the maximal sublattices Sy and S3 of S;? If this was the
case, then Theorem 3.2 would be applicable to determine representatives of the

isomorphism classes of R-forms of Vi, generalizing Proposition 3.18.

4. Zeta functions

In this section we briefly review the notion of zeta functions of modules. We
follow Solomon [16], who introduced these objects to study enumerative problems
in integral representation theory. After introducing the general zeta function, we
focus on the case over local principal ideal domains and determine zeta functions

of various types of lattices, including the ones from Section 3.
4.1. Local and global zeta functions.

Notation 4.1. Let R be a unitary ring, and let M be a left R-module such that,
for all n € N, the number a,, of R-sublattices of M with index n is finite. One
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defines the zeta function of M by
Cr(M,s):= Zann’s, where s € C.
n=1

We view this as a formal Dirichlet series and ignore questions of convergence. Note
that if M is a free Z-module of finite rank r, then, by comparing (r(M,s) with
Cz(M, s), one sees that (g(M,s) converges absolutely for Re(s) > r; see also [2].

4.2. Local zeta functions. (a) Let R be a local principal ideal domain with
maximal ideal m = (7), field of fractions K and finite residue field & = R/m of
cardinality g. Assume that A is an R-order and M a A-lattice. Since k is finite, the
number of A-sublattices of M with bounded index is finite. Moreover, as the indices
of such A-sublattices of M must be powers of ¢, there exists some Z(M) € Z[[X]]
such that Z(M)(g*) = (a(M, s). By defining (M : N) := X?, for i € Ny and every
R-submodule of N of M with [M : N] = ¢', this can be rewritten as

Z(M) = 3 (M:N),

NCM
where the sum is taken over all A-sublattices N of M such that [M : N] < co.

(b) Assume that, up to isomorphism, there are only finitely many A-sublattices
M = My, Ms, ..., M, of M with finite index, for some r € N. For j € {1,...,r},
one defines

Z(M,M;)= Y (M:N).
NCM
[M:N]<oo

N2M;
Analogously, one defines Z(M;, M;), for all 4,5 € {1,...,r}. Having fixed an or-
dering on My, ..., M,, the matrix (Z(M;, M;))1<i j<r € Z[[X]]"*" is uniquely de-
termined by M, and we shall from now on denote it by Bjs. Note that Z(M;) is
the sum of the entries of the ith row of By, for i € {1,...,r}.

(¢) We denote by max(M) the set of maximal A-sublattices of M, and by
Rad(M) = (yemax(ar IV again the Jacobson radical of M. Furthermore, we con-
sider the following sets of A-sublattices of M: ®(M) := {N : Rad(M) C N C M}
and ®(M,L) := {N € ®(M) : N = L}. Finally, for L € ®(M), let u(M, L) :=
>, (=111, where the sum runs over all subsets J C max(M) with (o, N = L.
The matrix (A4;j)1<ij<r € Z[X])™*" defined by

Ay = > u(M, L)(M;: L)
LED(M;,M;)



LATTICES AND SOLOMON ZETA FUNCTIONS 153

is uniquely determined by M, and we denote it by Ajps;. By [16, Lemma 3], the

matrix A s is the inverse of Bj,.

4.3. Global zeta functions. Assume that M is a Z-form of a QG-module V,
for which we want to determine the zeta function (zo(M,s). Then, for every
prime p, the p-adic completion M, := Z, ®z M is a Z,-form of the Q,G-module
Vp == Q, ®q V, giving rise to a local zeta function (z,q(M,,s). By 4.2, we know
that

Cz,c(Mp, s) = Z(Mp)(p~) .

Let P C N be the set of all prime numbers. By [16], one has

CZG(M’ S) = H CZPG(MZN 8) .

peP

In [16] it is also shown that there exists a complex function

Cvi(s) = H Cvp(s),
peP
depending only on V, such that (v, (s) = (z,a(M,, s), for all primes p not dividing
the group order |G|. In particular, if P is a finite set of prime numbers containing

all prime divisors of |G|, then

(z,G(Mp, s)

(M) = v(s) 1] =5

peP
Thus, when determining the global zeta function (z¢ (M, s), it is sufficient to de-
termine Cy (s) as well as the local zeta functions (z,(M,, s), for all prime divisors
of |G|. The task of determining (y (s) is straightforward, once the structure of the
blocks of QG containing the indecomposable direct summands of V' are known; see
[16, (1.2)]. If V is absolutely simple of dimension d, then (v (s) = {g(ds), where
(g is the Riemann zeta function. In particular, in this case, we have (y,(s) =
(1 —p=)~1 for all p € P.

Lastly, note that if V' is simple and if p € P is such that the F,G-module
M/pM = M,/pM, is also simple, then (z,c(Mp,s) = (v,(s). Namely, in this
case, pM,, is the unique maximal sublattice of M, and {p'M, : i € Ny} is the set
of all Z,G-sublattices of M,,. Hence

o0

Gauc (M) = (0 = Tz = Gvals).
=0
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4.2. Uniserial reductions. Throughout this subsection, let R be a local principal
ideal domain with maximal ideal m = (7), field of fractions K and finite residue
field K = R/m of cardinality ¢g. Assume further that G is a finite group and M
is an R-form of an absolutely simple K G-module V such that the lattice of RG-
sublattices of M of full R-rank is totally ordered. This happens, for instance, if
the reduction modulo m of every R-form of V is a uniserial kG-module; see [5,
Proposition 3.7].

Denote by 1M = M,11 € M, C --- C My = M a chain of R-forms of V,
such that, for ¢ € {1,...,r}, the module M;;; is a maximal RG-sublattice of M.
By [13, Proposition 2.3], we know that M, ..., M, form a set of representatives of
the R-forms of V.

Our next aim is to determine, for each i € {1,...,r}, the zeta function (e (M, ),
by determining Bj; and Z(M;) € Z[[X]]. For i € {1,...,r}, we denote by d; the
k-dimension of M;/M;.+1, and we set d:=d; + -+ d,.

Lemma 4.4. With the above notation, the matriz Ay = (Aij) € Z[X]|"™™" is given

by
1 if i =7,
A - X4 ifitr, j=i+1,
Y —Xdr ifi=rj=1,
0 otherwise.
Thus
1 —Xh 0 0 ... 0
0 1 —X% o0 ... 0
Ay = : : C :
0 0 0 0 1 —Xd—
— X 0 0 0 0 1

Proof. Since the lattice of full-rank RG-sublattices of M is totally ordered, we have
max(M;) = {M;41}, for i € {1,...,r— 1}, and max(M,.) = {wM;}. Thus ®(M;) =
{M;, Mi41}, for i € {1,...,r — 1}, and ®(M,) = {M,,7M;}. In particular,

(M} iti#rje{iit1),

®(M;, My) = § {M;} ifi=rje{l,r},

0 otherwise.
For i,5 € {1,...,r} and L € ®(M;, M;), we have u(M;,L) = 1 if L = M;, and
w(M;, L) = —1 otherwise. Thus the claim follows. O
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Proposition 4.5. The matric B = (B;;)1<i,j<r defined by

1 X dittdja if § > 1,

By= ——
L=X4] xdp: ! ifj<i

ij
satisfies B = B)y.

Proof. It is sufficient to show that BA ), is the identity matrix. To this end, let
Aj be the jth column of Aj; and B; the ith row of B. Then

(1-X%-B;- A

= Bj1 — X" B,
1—X%By, =1-X¢ if j =1,

= { X9B;! — X4 Bj, = XGttdr — xditotds ifl<j<r
Byy — X% B,y = X% — X% ifj=r

1— X4 if j=1

0 otherwise.
Now let ¢ > 1 and consider (1 — Xd)Bj CA = Bj,i—l . (—Xdi_l) + Bﬂ If] <i—1,
then

(1 — Xd)Bj . Az — XE)LC;? dk‘(iXdi—l) + XE;;IJ dp _ 0;
if j =i —1, then

(1-X"Bj-Aj=—-X%"14+B;_y;=-X%" 4 X% =0;
and if j > 4, then
(1 _ Xd)Bj . Ai — _qu‘,_1XdBi—71Lj + XdBrL_,Jl — O7

since B; j/B;i—1; = X%-1. Finally, if j = 4, then

(1—-XHB;- Ay = Bii 1 (-X% 1) +1=XBY, (-X%1)=1- X

1—1,2

By summing up the entries of B,; row-wise, we obtain:

Corollary 4.6. Forie {1,...,r}, one has

i—1

1 r
Z(Mz) = W Zdedjf...fdi_l + ZXdiJr"'erj—l

i=1 i=i
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4.3. Modular reductions with two non-isomorphic composition factors.
In this section, let R be a local principal ideal domain with maximal ideal m = (),
field of fractions K, and finite residue field K = R/m of cardinality ¢. Let V be an
absolutely simple K G-module of dimension d such that the reduction modulo m of
any R-form of V' has two non-isomorphic composition factors D; and Ds. Assume
further that the Jordan—Zassenhaus theorem holds for R-forms of V, that is, up to
isomorphism there are only finitely many R-forms of V. By [12, Satz (1.6)], there
exists an R-form M of V such that M/xM is indecomposable. We fix such an
R-form M of V, for the remainder of this subsection. We shall suppose that the
head of M /mM is isomorphic to D;. In fact, [12, Satz (1.6)] is stated in the case
where R = Z and m is any maximal ideal in Z. The proof, however, generalizes

literally to our situation. Alternatively, see also [13, Theorem 3.22].

4.7. The submodule lattice of M. Now let ¢+ 1 be the number of isomorphism
classes of R-forms of V. In [13, Theorem 3.22] (see also [12, Satz (1.6)] for the case
R = Z) Plesken has shown that there exist R-forms My = M, My, ..., M; of V such
that

(a) Mj is the unique maximal RG-sublattice of My,

(b) forie{l,...,t—1}, M;y1 # wM,;_; are the only maximal RG-sublattices
of M;,

(¢) mwM;_1 is the unique maximal RG-sublattice of M.

Moreover, My, ..., M; are representatives of the isomorphism classes of R-forms of
V. The lattice of full-rank RG-sublattices of M therefore looks as in diagram (9)

below.

Dy Mo

" Dl/ M \DZM

My mMy

el . ? /D1 (9)
- M4 Dy ) My .
e - .
M, TM; 2o
N “> sl
My

We set, dlmk(Mo/Ml) = dlmk(Dl) = d1 and dlmk(Ml/WMo) = dlmk(Dg) =: dQ,
so that d = dy + ds.
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Lemma 4.8. The matriz Ay = (A;;) € Z[X]EHDXEFD satisfies

1 ifi=j=1lori=j=t+1,
1+ X4 ifi=j, i¢{1,t+1},
Ajj =4 —X% ifj =141,
— X ifj=i—1,
0 otherwise.
Thus
1 —X4h 0 0 0
—X4 14 X4 XD 0 0
0 0 0 —X%® 14+Xx% X%
0 0 0 0 —Xd 1

Proof. From 4.7 and diagram (9) we can read off the following properties. First of
all we have max(My) = {M; }, max(M;) = {wM;_1 }, and max(M;) = {M;, 7M;_1},
for i € {1,...,t — 1}. In particular, ®(My) = {Mo, M1}, ®(M;) = {M, 7 M;_1}
and ®(M;) = {M;, M1, 7M;_1,7M;}, for ¢ € {1,...,t — 1}. Since My,..., M;
are representatives of the isomorphism classes of R-forms of V', we conclude that
O (Mo, M;) = {M;}, for j € {0,1}, and ®(Mo, M;) = O otherwise. Moreover, for
i€ {l,...,t}, we have

{Miaﬂ-Mi} 1f2:]7 7’75-&

M; ifi=j, 1=t,
B(M;, M;) = (M) J
{7TMZ‘_1} lfj:Z—l
From this the assertion of the lemma follows. O

Proposition 4.9. The matric B = (B;;)1<i,j<t+1 defined by

1) xU=Ih ifj =1,

Bii— —
YOI XT | xl-dd s
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satisfies Byy = B. Thus

1 xdi x2d1 X3d  xdd . xtdi
X2 1 X X2 x3d ... x(t-Dd
X 2d> X 1 xd x2d ... x(t-2)d
By = ﬁ : : : : : : :
X (t=2)d>  x(t-3)ds . X 1 X X2d1
X @t-Dda  x(t—2)ds x(t—=3)d2 ... X 1 X
xtde  x(-Dd2  x(t-2d2 ... x2d2 xda 1

Proof. As usual we prove the assertion by showing that the matrix B is the inverse
of A, which is a straightforward calculation. Let A; be the ith row of Ay, and
B, the jth column of B. We need to show that A;B; = ;;, for ¢,j € {1,...,t+1}.
For instance, for 4,5 € {2,...,t — 1}, we have
Ai - Bj=Aii-1Bji-1+ AiiBji + Aiiv1Bjita
=-X“Bj; 1+ (1+X4"2)B,, — XN B, ..

Now A;B; = §;; follows by observing that

(XU—itDdr x(G=Dd) x(—i=1)dr) if i < 7,
(Bji-1,Bji, Bjit1) = (X%, 1, X%) ifi=j,
(X (=i=1dz x(i=j)dz x(i=j+1)d2) if i > 7.
The remaining cases are treated analogously. O

We have now established the following;:

Corollary 4.10. With the notation as in 4.7, fori € {0,...,t}, one has

% t—i
1 . .
Z(M;) = xid2 X Jdi

4.4. Modular reductions with three non-isomorphic composition factors.
Throughout this subsection, let R be a local principal ideal domain with maximal
ideal m = (m), field of fractions K, and finite residue field &k = R/m of cardinality
q. Assume further that G is a finite group and S = S; is an R-form of an ab-
solutely simple KG-module V satisfying Hypotheses 3.1. Let S1, 5%, ..., S3:11 be
RG-lattices as in Theorem 3.2, and suppose that Si, 5%, ..., S3:+1 are representa-
tives of the isomorphism classes of R-forms of V.

Our next aim in this subsection is to determine Z(S).
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Lemma 4.11. With the above notation, let

1 —Xd _xds xdotds
Ai=10 1 0 —Xd | € Z[X]PP.
0 0 1 — X

Then

Ag = [ A, ‘ 0353(1—1) ] .

*

Proof. From Theorem 3.2 and diagram (7) we know that max(S;) = {S2,Ss3},
max(Sy) = max(S3) = {S4}, and Rad(S;) = S4, for i € {1,2,3}. Thus ®(5;) =
{51,52,53,54} and ®(S;) = {S;, 54}, for i € {2,3}. As Sy,...,S3:41 are repre-
sentatives of the isomorphism classes of R-forms of V', we obtain ®(S1,.5;) = {S;}
for j € {1,2,3,4}, and ®(51,5;) = 0 otherwise. As well, for i € {2,3}, we have
®(S;,S;) ={S;} for j € {i,4}, and ®(S;, S;) = 0 otherwise. From this the assertion

of the lemma follows. O

Lemma 4.12. Leti € {1, ce ,t— 1}, and let A’ = (Alj)3i+1<l<3i+3,1§j<3t+1 be the
submatriz of Ag consisting of rows 3i + 1,31+ 2,3i + 3. Then

A/ — |: 03><3(’L'71) ‘ A2 ‘ 03><3(t7i)73 :|a
where

X4 xditda xditds 1 _ xd _xda _xds xdatds
A, =] 0 —Xh 0 Xditds 0 —Xds | € Z[X]P*T.
0 0 —Xd  Xditds 0 1 —Xd2

Proof. Let i € {1,...,t—1}. We use again Theorem 3.2 and diagram (7) to con-

clude that max(Ss; 1) = {S3i+2, 93i+3, TS3(i—1)41}, Max(Szit2) = {S3(i4+1)+1, TS3(i—1)42}
and max(S3;43) = {S3(i+1)+1, TS3(i—1)4+3}- In particular, we obtain Rad(S3;41) =
Rad(S3;4+2) = Rad(S5i4+3) = 753,41 and

D(S3i41) = {S3i+1,93i12, 93i 435 S3(i41)+15
7TS3(1'71)+177TS3(¢71)+2,7TS3(1‘71)+3>77531‘+1}7

O(S3i42) = {SS(i+1)+1,71'53(1'71)+277753i+1}7

D(S3i43) = {S3(i41)+1, TS3(i—1)+3, TS3i+1}
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Thus

{S;} if j € {3i +2,3i + 3},

{rS;} if je{3G—1)+1,3(i—1)+2,3(i—1)+3},
{Sgi+17TSSi+1} lf] =3+ 1,

O(S3i41,5;) =

0 otherwise,

@(S3i+2,5j) = ‘I)(Sgi_i_g,Sj) = {S]} for ] = 3(Z + 1) + 1, (I)(Sgi+2,5j) = {ﬂ'Sj} for
J € {3(i—1)+2,3i+1} and ®(S5;42, S;) = 0 otherwise. Analogously, ®(Ss;+3,.5;) =
{mS;} for j € {3(t —1) + 3,3t + 1}, and ®(S3;43,.5;) = 0 otherwise. O

We have now determined all the rows of Ag, except for the last one.
Lemma 4.13. The last row of Ag is equal to [ 01 (3t—6) ‘ As }, where
As=(0 0 0 —x% 0 0 1)ezx]".

Proof. We have max(S3¢41) = {7S3¢-1)+1} and Rad(S3¢41) = mS3(4—1)41. Hence
©(53t+1) = {Sgt+1,7TS3(t_1)+1}, and it follows that @(Sgt+1,5j) = {S]} fOI'j =
3t+1, ®(Ss¢41,5;) = {mS;} for j = 3(t—1)+1, and ®(S3¢41,5;) = 0 otherwise. O

To summarize, we have now established

Proposition 4.14. The matriz Ag is given as follows:

A, | 035 (3t—3)
A, | 03 (3t—6)
033 | Ay | 03 (3¢t—9)
0346 | A, | 03 (3t—12)
O3x3t—9 A, 03x3
03x3t—6 A,
O1x3t—6 As

4.15. The matrix B. We shall now define a matrix B = (B;;) € Q(X)®tH+1x(3t+1)
and shall successively prove that this is precisely the matrix Bg. For 4,5 €

{1,...,3t + 1}, we write B;; = b;; - ﬁ, where b;; is given as follows:

(a) If m = 1 (mod 3), then, for i > 0, we set by gip1m = XTDA+ds

i+1)d1+d 2 1)d
bnazivom = XDt and b, (305, = X0TDd,
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(b) If m = 2 (mod 3), then, for i > 0, we set byt3i41,m = X (i+1)di+2dz
bt sitam = XTDNTE and by, 44 = X 0TS,

(c) If m = 0 (mod 3), then, for i > 0, we set by i3ip1,m = XTDh+ds

+2)d1+2d i+ 1)d
b zivom = XFDA+2ds and b giis,, = XOFDA

(d) If m = 1 (mod 3), then, for i > 0, we set by, igip1 = X(HDdzetids,

— Xid2+(i+1)d3, a/nd bmm+31+3 — X(i+1)(d2+d3)'

b, m+3i+2

(e) If m =2 (mod 3), then we set by, i1 = XD+ b oya; ) = X - Ddat (i 1)ds
for i > 1, bymizive = X 2T for § > 0, and by, ynigips = X HD(Fds) for
1> 0.

(f) If m = 0 (mod 3), then, for i > 0, we set by mizip1 = X(H1dztids,
b aips = XOHDdatids anq g o (1) (dads),

Moreover, we set b;; := 1, for ¢ > 1.

We aim to show that B is the inverse of A. To do this, we partition (1 — X9)-B
into blocks: First we define By = (b;;)1<i,j<7 € Z[X]™7, that is,

1 X d2 Xds Xdotds  x2d2tds  xdat+2d3 Y 2da+2d3
X ditds 1 X d1+2d3 Xds X da+ds X 2d3 X d2+2d3
X ditdz X d1+2ds 1 X d2 X 2d2 X da+ds X 2d2+d3
B, = Xd1 Xd1+d2 X ditds 1 X4z Xds X datds
X 2d2+d3 Xd X2di+2ds xdit+ds 1 X d1+2ds Xds
X2ditde  x2di+2dy s Yditde  xdit2ds 1 xd
X 2d1 X 2d1+d X 2d1+ds X X dit+dz X ditds 1

Next we set B3 = (bij)(3t+1)77<i<3t+1,1<j<3t+1 S Z[X]7X(3t+1_7) and BQ =

(bij)1<i§7,8§j<3t+1 € Z[X]7X(3t+1_7). Thus we have

B, | B,
ST *
B; |B
Let D = (1 — X%),

Lemma 4.16. With the above notation, the following holds:

(a) Forle{1,...,t—2}, one has By = (bij)s14+1<i<3i+7, -
31+1<j<3I47
(b) Forle{l,...,t —2}, there exists some c¢; € Q(X) such that

i )3l+1<i<3l+7, = C ° 3)ij)1<i<7, -
(bij) 1+ ((Ba)iy)
1<5<3L 1<j<3l
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c) Forle{l,...,t —2}, there exists some ¢ € Q(X) such that
1

/!
(bij)ziri<i<sier, = ¢ - (B2)ij)  1<i<7,
314 8< <341 3148< <341

Proof. Letl € {1,...,t—2}, and let i,j € {1,...,7}. Then 4.15 immediately gives
biy31,j+31 = bij, proving (a).

Next let m € {1,...,3t — 2} and r € {1,...,m}. Then, by 4.15(a)-(c), we have
b = X% - by, 13, This, in particular, implies (b).

Ifre{m+4,...,3t—1} and r > m+4 in the case where m =2 (mod 3), then
4.15(d)—(f) gives by, = X%+ . p, 3. which implies (c). O

Lemma 4.17. With the above notation, one has the following:

(a) Ay -By =[03x3 | D-13 | 031 |,
(

b) A2-By =0,

(c) A2-B3 =0,

(d) [Al|03><3]'B1:[D~13|03X4]!

(€) [O1xst—6) | Az ]-B=[01x3 | D-11 ],
(f) [A1]03x3]-B2=0.

Proof. To prove (a) and (d), we compute

(M).BF[D.WM

A,
Next we show (b) and (f): We claim that every column of By is of the form
a- (1 X—d2 X—d3 X—dg—d;} X_2d2_d3 X—d2—2d3 X—2d2—2d3)t (10)

for some a € Q(X). Once we have this, we immediately get

l A; | 0343

A,

By =0.

Obviously, (10) is true for the first three columns of By. So suppose that m €
{1,...,7} and r € {8,...,3t — 2}. Then 4.15(d)-(f) shows that b, .43 = X92+ds .
by, whence (10).

To prove (c), we first claim that, for ¢ € {1,...,3t — 6}, the ith column of Bj

has the form
ai( X720 xds—di xda=di y=di xds xda 1)t if i =1 (mod 3),
ai( X720 x—d2m2d ydamdy xmdi x—damdi xda 1yEf 5 =9 (mod 3),
ai( X720 x—ditds x—2di=ds x—di xds x—di=ds )t if i =0 (mod 3),
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for suitable a; € Q(X). Once we have this, we immediately get Ao - B3 = 0. The
claim is easily verified for the first three columns of Bs. If m € {3t —5,...,3t+ 1}
and r € {1,...,3t — 9}, then 4.15(a)—(c) gives by, = X% - by, 3. Thus the claim

follows by induction.

It remains to prove (e). To do so, it is sufficient to compute
As-[ By | B |.
Denoting by Bs; the ith column of Bj3, we have
A3 -B;, =(1-X%a; —a;))=0.
On the other hand, a quick calculation shows
AsBi=(0 0000 0 1-X%),

which finishes the proof. ([l

We now obtain

Theorem 4.18. The matriz B defined in 4.15 is the inverse of Ag, that is, B =
Bgs.

Proof. We show that Ag-B = 13;41. To this end, we multiply B with the rows

of A successively from the left. First note that, by Lemma 4.17, we have

A; | 0343

A,

A ‘ 03x3 ‘ 03x3t—6

B =
A, ‘ 03x3t—6

'[B1|B2]:[16|06><3t—5}~

Next consider
[03x3 | A2 | 034_9x3t—9 | - B = Ay - (Bjj)agi<10,1<<3t+1 -

Let us write (Bjj)a<i<10,1<j<3t+1 = [ B’ | B1 |B” | with B’ = (B;;)a<i<10,1<;<3 and
B” = (Bi;)a<i<10,11<j<3t+1- By Lemma 4.16, we know B’ = ¢/((B3):;)1<i<7,1<j<3
and B” = ¢’((B2)ij)1<i<r11<i<st+1, for some ¢/, ¢” € Q(X). Together with
Lemma 4.17 this shows that

[03x3 | A2 | O3x3—9 |- B=Ay-[B' |B; | B" ]| =[A,-B'| Ay -B; | A,-B"]

=[03x6 | 13 | O3x31—5 |-
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We now do the previous step for an arbitrary slice of Ag. Let 1 <1 <¢—1 and

consider
(Aij)si+1<i<s+1), - B = [ Osx30-1) | A2 | Osx34—1-1) |- B
1<) <341
= Az - (Bij)3(1-1)+1<i<3(1-1)47,-
1<j<3t+1
We write

!
B’ = (Bij)3(1-1)+1<i<3(-1)+7,1<5<3(1— 1)
"
B = (Bij)3(1-1)+1<i<3(1—1)+7,3(1—1)+8<j <3t+1>

and note that B1 = (Bij)3(l71)+1<i§3(l71)+7,3(l71)+1<j<3(l71)+7' By Lemma 416,
we know B" = C’((B3)ij)1<i<7,1gj<3(z—1) and B” = C”((BQ)U)1§i<7,3(l—1)+8<j§3t+17
for some ¢/, ¢” € Q(X). Thus, using Lemma 4.17,
(Aij)aivi<i<satn), B=[A2-B' | Ay By | A,-B" |- B
1< <Bt+1
=[03x30-1) | 13 | O3x3:-30-1)—3 -
Finally note that [ O1xst—6 | As ] B =[01xs: | D-1; | by Lemma 4.17 O

As an immediate consequence of Theorem 4.18 and 4.2, we have

Corollary 4.19. With the above notation, one has

t
1 o , A o
VA _ 1 XZderng X(zfl)ngrzdg de2+(7,71)d3 )
(5) = 1T—q ( +; + +
Remark 4.20. Of course, given Bg, we can also read off Z(S2),...,Z(Ss5t41).
Since the formulae become more complicated and we shall not need them for our

applications below, we do, however, not write them down explicitly here.

4.5. Application I: Specht lattices labelled by hook partitions. We want
to use the previous results to determine the zeta functions of certain lattices over
p-adic group algebras, the first of which will come from the symmetric group &,, of
degree n > 4. In the language of 3.4, our aim is to determine the zeta functions of
the Specht lattices associated to the hook partitions (n—r,17), for r € {0,...,n—1}.
For r = 1, the zeta functions of Sg’ln_Q) and SZ’IH_Q), where p is any prime, have

been determined by the second author in [6]. Here we shall investigate S%:fr’lr),

for all r € {1,...,n — 2} and odd primes p, as well as 5272712) and Sénill?). We
begin with the local zeta functions at the odd primes p. Recall from 3.4 and 3.5

n—r,1") ~ n—r,1" n—r,1" n—r,1" n—
that Sy "' 2 7, ©, S5 ") and that kg, (S5" ") = kg (SYT) = (")),
forr € {0,...,n—1}.
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Proposition 4.21. Let p > 3 be a prime number, let r € {1,...,n — 2}, and let
d:= ("_1).

T

(a) Ifptn, then
1

(n—r,17) o
€2,6.,(5, ,5) = T

(b) If p| n, then

vp(n)
n—r,1" 1 —sia
e 57 = e
=0

where a = (";2)
Proof. (a) Since p > 3 is not dividing n, by [8, Theorem 23.7|, the reduction of
S%Zﬁr’lr) modulo p is absolutely simple. So the assertion follows from 4.3.

(b) By [5, Section 6] we know that there are v,(n) + 1 isomorphism classes of
Z,-forms in S&_r’lr). Moreover the reduction of SZ_MT) modulo p has precisely
two non-isomorphic composition factors, and is indecomposable. By [8, Theorem
24.1], the head of Sg;fr’lT)/pSézfr’lr) has F,-dimension d — (::12) = (";2) =: q.
Thus, by Corollary 4.10, it follows that

( ") 1 vp(n) ‘
Z(SZP ’ ): 1_Xd ;Xla'
Now the assertion follows from 4.2. O

Remark 4.22. For r = 2, the next proposition yields the local zeta functions for
p = 2. This will involve the dimension of the simple F2&,,-module Dg*z’z), for
n > 4, which is well known, by [8, Theorem 24.15]. For n > 4, one has

in?—5n+4) ifn=0 (mod4),
dimFQ(DI(FZ—zg)) _ %(n2 —3n—2) z:fn =1 (mod 4),
5(n?=5n+2) ifn=2 (mod4),
3(n* = 3n) ifn=3 (mod4).

This can also be read off from [5, Proposition 7.2], recalling that dimp, (Dl(szl’l)) =

n—11i2¢tn, and dimFQ(D]%Z_l’l)) =n—2142]|n.

Proposition 4.23. Let d := ("gl), and let d3 := dimgp, (Dg_2’2)) if n > 4. Then
the following hold:
(a) Ifn=1 (mod 4), then

(n—2,1%) y _ 1 —s | o—s(ds+1)
szGn(SZQ 73)—m(1+2 + 278\
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(b) If n =2 (mod 4), then

o 1
G (ST721) 5) = T (127t 2D gt

(¢) If n =3 (mod 4), then

_ 1
T 1—9-sd

(d) If n=0 (mod 4) and n > 4, then

2
Ce, (S5, 8) (L4277 +27%).

n—2.12
(zae, (ST 5) =
1 alm) , , o
e 14+ Z 9—is—isdg +2—s(z—1)—szd3 +2—sz—s(z—1)d3
N i=1
(e) If n =4, then
2,12 1 —s . o-2s
CZZG4(SéQ ),S):m(1+2 +2 2 )

Proof. We set M; = 522—2,12). We shall determine Z (M), and then apply 4.2.
(a) Recall that, by [5, Section 7], the (partial) submodule lattice of M; is given
by
2My C€ M3 C My C My,

with My /My = Fy, Msy/Ms = D[(de,z) and M3/2M; = F,. Here Fy denotes the
trivial 3 S,,-module. Moreover, My, My, M3 are representatives of the isomorphism
classes of Zs-forms of 5&_1’12). By [5, proof of Theorem 7.10], the reduction modulo
2 of every Zo-form of 5&_2’12) is a uniserial F2&,,-module. So, by [5, Proposition

3.7], we can apply Corollary 4.6, which shows that

Z(M,) = (14 X + Xty

1-—Xd
(b) By [5, Section 7], the (partial) submodule lattice of M; is give by
2My © My © M3 C My C My,

with My /M = My /My = Fy, My /M3 = DY >% and My/2M; = DIV, More-
over, My,..., M, are representatives of the isomorphism classes of Zs-forms of

5&_1’12) In [5, proof of Theorem 7.16] it is also shown that the reduction modulo 2

)

of every Zs-form of 5&_2’12 is a uniserial F3&,,-module. Thus, by [5, Proposition

3.7] and Corollary 4.6, we have

Z(My) = (14X + X B xdet2),

1
1—Xd
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(¢) By [5, Proposition 7.9, Theorem 7.10], there are precisely three isomorphism
classes of Zy-forms of 5&_2’12). There are representatives My, Ms, M3 of these
isomorphism classes with the following properties: M; = Séz_z’ﬁ), Ms and M3 are
maximal in My, My N Mz = 2My, My /My = M3 /2M; = Fy, My /M3 = My /2M; =
DI(F272’2). Both Ms/2Msy and M3/2Mj3 are indecomposable, with head isomorphic
to DI(FZ_Q’Q) and Fo, respectively, Thus, we can apply Corollary 4.10 to M, and the
chain of sublattices 2M3 C 2M; C M,. With respect to this ordering, the second
row of the matrix By, gives

Z(M,) = ﬁa + X + X)),
(d) This follows from Corollary 4.19 together with Lemma 3.6.

(¢) Lastly, let n = 4 and let M := S'). Then, by [8, Theorem 8.15], M/2M =
(S[(F‘Z’l))* is indecomposable, with two composition factors, socle isomorphic to D]g-i’l)

and trivial head. So the assertion follows from Corollary 4.10. O

Theorem 4.24. Letn > 4, and let S = Sgl_z’l?) be the Specht 7.6, -lattice labelled
by the hook partition (n—2,12). Setd = (n—1)(n—2)/2, and d3 = dimg, (DI(FZQ’Q))
if n > 4. Then one has

(z6,(S,5) = Co(ds) [T (™),

pln

where (g is the Riemann zeta function, p,(X) = Ziyigl) X' e Z|X] ifp >3, and

1+ X + XdsHl ifn=1 (mod 4),
1+ X + Xdatl 4 xdat2 ifn=2 (mod 4),
Po(X) =14+ X + X% ifn=3 (mod 4),
v2(n) yritids (i—1)+ids i+(i-1)ds  fn =0 (mod 4),
T+ X +X +X and n > 4,
14+ X + X2 ifn=4.

Proof. Since V = 5(8%2’12) is an absolutely simple QG-module of dimension d,
we have (v (s) = (g(ds), as mentioned in 4.3. The claim now follows from 4.3,

Proposition 4.21 and Proposition 4.23. (]

4.6. Application II: projective special linear groups. For the rest of this
subsection, let ¢ be a prime power, and let H = PSLy(q). If R is a principal ideal
domain, we denote by Mg the permutation RH-lattice associated to the action of
H on the one-dimensional subspaces of IFg, as defined in 3.13. Let Lr C Mg be the

RH-lattice investigated in 3.10 and 3.13. Our aim is to determine the zeta function
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Czr(Lz,s). To this end we first compute the local zeta functions (z,#z(Lz,,s), for
all primes p.

If R=Zand K =Q, or R =7, and K = Q,, for some prime p, then we denote
by Vi the absolutely simple K H-module with R-form Lp as defined in 3.13(b).

Lemma 4.25. Let p be a prime.
(a) Ifplq, orifpis odd withpt|H| orp| (¢ —1), then

Cz,u(Lz,,s) = %p—qs'
(b) Ifp is odd and p | (g + 1), then
1 vpletl)
Cz,1(Lz,,s) = = ; pila=D)s,

Proof. (a) We have already seen in Remark 3.14 that in all three cases Lz, is up

to isomorphism the unique Z,-form of Vg, . Thus the claim follows from 4.2.

(b) By Remark 3.14, we know that Lz, /pLz, has two non-isomorphic compo-
sition factors, is indecomposable and has a trivial submodule. Thus, by 3.10 and
Corollary 4.10, it follows that

1 vp(g+1)
— i(g—1)
Z(Lz,) = T4 1; X .
Now the assertion follows from 4.2. O

Lemma 4.26. (a) If ¢ = £3 mod 8, then

1 va(q+1) ,
CZQH(LZQ,S) = m ZO 2—51((1_1).
i=
va(q+1)

1 . )
Czom(Lz,, S) ST E 14+ Z 9—si(a—1) 4 9—s(2i—1)(g—1)/2+1

i=1
Proof. (a) This follows from Remark 3.14 (b) and Corollary 4.10.

(b) Lemma 3.17 and Proposition 3.18 show that Lz, /2Lz, has three composition
factors of dimensions d; = 1 and dy = d3 = (¢ — 1)/2, respectively. Moreover,
Corollary 4.19 applies, with ¢t = v5(q + 1). So we get

v2(q+1)
1+ Z Xila—1) 4 9 x (2i-1)(¢-1)/2

i=1

1

“he) = 17xq

The assertion of the lemma now follows from 4.2. O
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Theorem 4.27. The zeta function of the ZH -lattice Ly is given as

Gz (Lz, 8) = Calgs)pala™®) T enla™),
p=3
plg+1
where (g 1is the Riemann zeta function, ¢,(X) = Z;’igﬁl) XU 4f p > 3 and
plg+1, and
x) Zii(o'”l) Xila=1) if g= 43 (mod 8),
P2 = _
14 S22l (xa-1 4 ox@i-1)(a-1)/2) ifg=+1 (mod 8).
Proof. First note that, since Vg is an absolutely simple Q/H-module of dimension
¢, we have (v (s) = (p(¢s), as mentioned in 4.3. The assertion of the theorem
follows from Lemma 4.25 and Lemma 4.26 together with 4.2 and 4.3. (]
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