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ABSTRACT. Let M be a lattice module over a C-lattice L. A proper element
P of M is said to be classical prime if for a,b € L and X € M,abX < P
implies that aX < P or bX < P. The set of all classical prime elements of M,
SpecP (M) is called as classical prime spectrum. In this article, we introduce
and study a topology on SpecP (M), called as Zariski-like topology of M. We
investigate this topological space from the point of view of spectral spaces.
We show that if M has ascending chain condition on classical prime radical

elements, then Spec®? (M) with the Zariski-like topology is a spectral space.
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1. Introduction

Zariski-like topology on the classical prime spectrum of a module is being in-
troduce and studied by M. Behboodi and M. J. Noori in [7]. There are many
generalizations of the Zariski topology over the set of all prime submodules of a R-
module M (see [5], [6], [14]). As a generalization of most of the results in [7], we
introduce and study the Zariski-like topology on the classical prime spectrum of a
lattice module M over a C-lattice L.

A lattice L is said to be complete, if for any subset S of L, we have V.S, AS € L.
A complete lattice L with least element 07, and greatest element 17, is said to be a

(A3

multiplicative lattice, if there is defined a binary operation called multiplication
on L satisfying the following conditions:

(1) a.b=b.a, for all a,b € L;

(2) a.(b.c) = (a.b).c, for all a,b,c € L;

(3) a.(Vaba) = Val(a.by), for all a, b, € L;

(4) a.ly =a, for all a € L.

Henceforth, a.b will be simply denoted by ab.



ON THE CLASSICAL PRIME SPECTRUM OF LATTICE MODULES 187

An element a in L is called compact if a < V,erbs (I is an indexed set) implies
a < byy Vo, V- Vb,, for some subset {ay,as, -+ ,a,} of I. By a C-lattice,
we mean a multiplicative lattice L, with least element 07 and greatest element 1,
which is compact as well as multiplicative identity, that is generated under joins by
a multiplicatively closed subset C of compact elements of L. An element a € L is
said to be proper, if a < 1p.

A proper element p of a multiplicative lattice L is said to be prime if ab < p
implies a < p or b < p for a,b € L. The collection of all prime elements of L is
denoted by Spec(L).

The Zariski topology on the set Spec(L) of all prime elements in multiplica-
tive lattices is being studied in [21], by Thakare, Manjarekar and Maeda and in
[20], by Thakare and Manjarekar as a generalization of the Zariski topology of a
commutative ring with unity.

A proper element m of a multiplicative lattice L is said to be mazimal if for
every x € L with m < x <1 implies x = 1.

A complete lattice M with smallest element 0, and greatest element 1, is said
to be a lattice module over the multiplicative lattice L or L-module if there is a
multiplication between elements of M and L, denoted by alN € M, for a € L and
N € M, which satisfies the following properties:

(4) 0LN = 0yy; for all a,b,a, € L, and for all N, Ng € M.

Let M be a lattice module over a C-lattice L. For N € M,b € L, denote (N : b) =
V{K € M|bK < N}. If a,b € L, we write (a: b) =V{z € Ljbx <a}. If A, B e M,
then (A : B) = V{z € L|Bx < A}. An element N € M is said to be compact if
N < VaerAq (I is an indexed set) implies N < A,, V Ay, V -+ V A, for some
subset {a1, a9, -+ ,a,} of T.

An element N € M is said to be meet principal (respectively join principal) if
it satisfies the identity A A alN = (a A (A : N))N (respectively ((aN V A) : N) =
(aV(A:N))) foralla € L and for all A € M. Also N is said to be principal if it
is both join as well as meet principal. If each element of M is the join of principal
(compact) elements of M, then M is called the principally generated (compactly
generated) lattice module.

An element N € M is said to be proper, if N < 1;;. A proper element N of a
lattice module M is said to be prime if aX < N implies X < N or alp; < N, i.e.,
a < (N :1y) for every a € L and X € M. The prime spectrum of a lattice module
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M is the set of all prime elements of M and it is denoted by Spec(M). In [4], S.
Ballal and V. Kharat studied the Zariski topology over Spec(M) as a generalization
of the results carried out in [20], [21]. Also in [10], F. Callialp et al. studied the
Zariski topology over Spec(M) over multiplicative lattice L.

A non-zero element N € M is said to be second, if for a € L, either aN = N
or aN = 0j;. The Zariski topology on the second spectrum of a lattice module
is studied by N. Phadatare et al. in [17]. In [18], N. Phadatare and V. Kharat
introduced and studied the concept of second radical elements of a lattice module
M over a C-lattice L as a generalization of second socle of a submodule of R-module
M. An element N < 157 of M is said to be maximal if N < B implies either N = B
or B=1y,B € M. A non-zero element K # 1,; of M is said to be minimal if
Op < N < K implies N =0y, N € M.

Further all these concepts and for more information on multiplicative lattices,

lattice modules and topology, the reader may refer ([1], [2], [13], [16], [19]).

2. Zariski-like topology on Spec®? (M)

Let M be a lattice module over a C-lattice L. A proper element P € M is said
to be classical prime if for a,b € L and X € M,abX < P implies that aX < P or
bX < P ([15]). The classical prime spectrum Spec® (M) is defined to be the set of
all classical prime elements of M, i.e., Spec®?(M) = {P € M | P is a classical prime
element of M}. Let N be any element of M. Let F°(N) be the set of all classical
prime elements of M which contains N, i.e., F¢(N) = {P € Spec?(M)|N < P}.
Note that, F°(0pr) = Spec® (M) and F°(1,) is an empty set.

Proposition 2.1. Let M be a lattice module over a C-lattice L and N, N;, K € M
(i € I). Then the following statements holds.

(1) NierFe(N;) = F(VierN;) for any index set I.
(2) FE(N)UF¢(K) C F°(N ANK).

Proof. (1) Since for each i € I, N; < VN, therefore for P € F°(V;c1N;), we
have V;erN; < P and hence N; < P and P € F¢(N;). Therefore F¢(V;erN;) C
Nic1 FE(N,).

Conversely, suppose that P € N;erF°(N;), then P € F¢(N;) for each i € I,
therefore N; < P for each i € I. Hence V;e;N; < P and so P € F¢(VicrN;).
Consequently, N;er F¢(N;) C F¢(VierN;). Thus Nier FC(N;) = FC(Vier N;).

(2) Since N A K < N,K, we have F¢(N),F¢(K) C F¢(N A K) and therefore
Fe(N)UF¢(K) C F¢(N AK). O
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Let £¢(M) = {F¢(N)|N € M}, then £°(M) contains empty set and Spec® (M).
By Proposition 2.1, (M) is closed under arbitrary intersections. In general £°(M)
is not closed under finite union. A lattice module M over a C-lattice L is called top
lattice module if £¢(M) is closed under finite union. In this case, £°(M) induces a
topology 7¢ on Spec® (M), we call it the Zariski topology.

Let M be a lattice module over a C-lattice L. For each element N of M, let
G¢(N) = Spec?(M) — F¢(N) and G°(N) = {G°(N)|N € M}. Let (M) be the
collection of all unions of finite intersections of elements of G¢(N), then ¢°(M) is
a topology on Spec® (M) by the sub-basis G°(N). We call the topology (M), a
Zariski-like topology.

Note that, the set {G°(N1) N G(N2)N---NG(Ny)|N; € M,1 <i<kkeN}
is a basis for the Zariski-like topology of M.

Let M be a lattice module over a C-lattice L and let Spec® (M) be equipped
with the Zariski-like topology. Let Y C Spec®?(M). The closure of Y in Spec® (M)
is denoted by CI(Y) and meet of all elements of Y by Z(Y). Note that, if Y = (),
then Z(Y) = 1.

Lemma 2.2. Let M be a lattice module over a C-lattice L and let Y be a non-empty
subset of Spec®(M). Then ClL(Y) = Upey F¢(P).

Proof. Suppose that Y is a non-empty subset of Spec®?(M). Clearly Y C Upcy F¢(P).
Suppose D is any closed subset of Spec?(M) such that Y C D. Thus D =
Nkes (Ur F¢(Ny)), for some Ny, € M, k € J and n, € N. Let P, € Upey F°(P),
then there exists Py € Y such that P, € F¢(FPy) and so Py < P;. Since Py € Y C D,
therefore for each k € J there exists [ € {1,2,---,ng} such that Ny, < Py
and hence Ny, < Py < P;. Therefore Py € F¢(Ny;) for each k € J and hence
Py € Npes(UE F¢(Ny)) = D. Tt follows that Upcy F¢(P) C D. Thus Upecy F¢(P)
is the smallest closed set in Spec® (M) which contains Y. Consequently, CI(Y) =
Upecy F(P). O

Corollary 2.3. Let M be a lattice module over a C-lattice L. Then
(1) CI({P}) = Fe(P), for each P € Spec?(M).
(2) Py € CI({P}) if and only if P < Py if and only if F¢(Py) C F°(P), for
Py € Spec?(M).
(3) The set {P} is closed in Spec®® (M) if and only if P is a mazimal classical

prime element of M.
Proof. (1) By Lemma 2.2, for Y C Spec®?(M), Cl(Y) = Upey F¢(P). Assume
that Y = {P}, then Upey F°(P) = F°(P). Hence CI({P}) = F°(P).
(2) Suppose that Py € CI({P}). Then Py € CI({P}) = F°(P), by part (1) and
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therefore P < Py which implies that F¢(Py) C F¢(P). Conversely, suppose that
F¢(Py) C FE(P). Since Py € F¢(Py) C F¢(P), P < Py and hence Py € F¢(P) =
CI({P}).

(3) Suppose that the set {P} is closed in Spec®?(M) and P is not maximal, then
there exists @) such that P < @, which implies that @ € CI({P}) by part (2). But
{P} is closed, therefore @Q € {P} and so P = Q. Consequently, P is a maximal
classical prime element. Conversely, suppose that P is a maximal classical prime
element of M. Let Q € CI({P}). Then by part (1), Q € F°(P), therefore P < Q.
But P is maximal, hence P = @ and therefore CI({P}) = {P}. Consequently, {P}
is closed in Spec®(M). O

Lemma 2.4. Let M be a lattice module over a C-lattice L and letY be a non-empty
closed subset of Spec(M), then Y = Upecy F°(P).

Proof. Let Y be a non-empty closed subset of Spec?(M). It is clear that, ¥ C
Upey F¢(P). By Corollary 2.3(1), for each P € Y, CI({P}) = F°(P), therefore
Fe(P) = CI{P}) C Cl(Y) =Y. Hence Upcy F°(P) C Y. Consequently, Y =
Upcy F¢(P). O

A topological space X is called irreducible if X # @ and every finite intersection
of non-empty open sets of X is non-empty. A non-empty subset Y of a topological
space X is called an irreducible set if the subspace Y of X is irreducible, equivalently,
for any two closed sets Y7 and Y5 of X, Y C Y7 UY5 implies either Y C Yy orY C Ys

([8))-

Lemma 2.5. Let M be a lattice module over a C-lattice L. Then for each P €
Spec? (M), F¢(P) is irreducible.

Proof. Suppose that X; and X5 are two closed subsets of Spec®? (M) and F'¢(P) C
X1 UXs. Since P € F¢(P), therefore P € X; U X5 which implies either P € X; or
P € X5. Suppose that P € X;. Since X; is closed in Spec®? (M), we have X; =
Nkes (Ur F¢(Ny)), for some Ny € M, k € Jyn, € N. Thus P € U™ F°(Ny),
for each k € J. It follows that F°(P) C U} F°(Ny,), for each k € J. Therefore
F¢(P) C Nges (Ut F¢(Ny;)) = Xq. Consequently, F¢(P) is irreducible. O

Theorem 2.6. Let M be a lattice module over a C-lattice L and Y C Spec®(M).
Then

(1) If Y is irreducible, then Z(Y) is a classical prime element.
(2) If Z(Y) is a classical prime element and Z(Y) € CU(Y), then Y is irre-
ducible.
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Proof. (1) Suppose that Y is an irreducible subset of Spec®?(M). Clearly, Z(Y) =
ApeyP <1y and Y C Fe(Z(Y)). Let abX < Z(Y), for a,b € L and X € M. Now
for PeY, Pe F(Z(Y)), hence Z(Y') < P and therefore abX < Z(Y) < P. Since
P is classical prime, either aX < P or bX < P, which implies that P € F(aX) or
P € F°(bX) and hence P € F°(aX) U F¢(bX). Therefore Y C F¢(aX) U F°(bX).
Since Y is irreducible, Y C F¢(aX) or Y C F°(bX). f Y C F°(aX), then aX < P,
for all P € Y and hence aX < Z(Y). f Y C F°(bX), then bX < P, for all P €Y,
hence bX < Z(Y'). Consequently, Z(Y) is a classical prime element of M.

(2) Suppose that Z(Y) is a classical prime element and Z(Y) € CI(Y). We have
Z(Y) < P, for each P € Y, therefore F¢(P) C F°(Z(Y)), for each P € Y by
Corollary 2.3(2). Thus CI(Y) = Upey F¢(P) C F°(Z(Y)), by Lemma 2.2. On the
other hand, since Z(Y") is a classical prime element and Z(Y) € CI(Y), F(Z(Y)) C
Cl(Y). Consequently, CI(Y) = F¢(Z(Y)). Now suppose that Y C Y; U Y3, where
Y7 and Y are closed subsets of Spec(M), then CI(Y) C Y; UY5 and hence
Fe(Z(Y)) C Y1 UY,. Since Z(Y) is a classical prime element, F°(Z(Y)) is irre-
ducible by Lemma 2.5. Therefore we have F°(Z(Y)) C Yy or F¢(Z(Y)) C Ya. It
follows that Y C Y7 or Y C Y5. Consequently, Y is irreducible. O

Definition 2.7. Let M be a lattice module over a C-lattice L. Let N be an element
of M. Then the classical prime radical ¥/N of N is the meet of all classical prime
elements of M containing N, i.e., ¥/N = A{P € Spec®?(M)|N < P}.

/N = 1, if there is no classical prime element which contains N. An element
N is said to be classical prime radical element if N = %/N. Note that, N < /N
and F¢(N) = F¢( ¢/N).

Corollary 2.8. Let M be a lattice module over a C-lattice L and let N be any

element of M. Then the following are equivalent:

(1) The subset F¢(N) of Spec®?(M) is irreducible.
(2) N is a classical prime element.

Proof. (1)=(2) Suppose that F°(N) is an irreducible subset of Spec® (M), then
Z(F¢(N)) is classical prime element of M, by Theorem 2.6(1). Now, ¥/N = A{P ¢
Spec?(M)|N < P} = A{P € F¢(N)} = Z(F¢(N)). Consequently, ¥/N is a classi-
cal prime element.

(2)=(1) Suppose that /N is a classical prime element, then F¢( ¥/N) is irre-
ducible by Lemma 2.5. Since, for each N € M, F¢(N) = F°( ¥/N), therefore
F¢(N) is an irreducible subset of Spec®(M). O
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Let Y be a closed subset of a topological space. An element y € Y is called
a generic point of Y if Y = CI({y}) (see [3]). Note that, a generic point of the
irreducible closed subset Y of a topological space is unique if the topological space

is a Ty—space.

Theorem 2.9. Let M be a lattice module over a C-lattice L. Then
(1) Spec®(M) is always a To—space.
(2) Every P € Spec?(M) is a generic point of the irreducible closed subset
Fe(P).
(3) Ewery finite irreducible closed subset of Spec®?(M) has a generic point.

Proof. (1) Suppose that Py, P, € Spec®(M). Then by Corollary 2.3(1), CI({P1}) =
Fe(P),Cl({P2}) = F°(P2) and therefore CI({P1}) = CI({P2}) if and only if
Fe(P)) = F°(Py) if and only if P, = P, by Corollary 2.3(2). Now, by the fact
that a topological space is a Top—space if the closures of distinct points are distinct,
we conclude that, Spec®? (M) is a To—space.

(2) For each P € Spec?(M), F°(P) = Cl({P}) by Corollary 2.3(1). Hence P is a
generic point of the irreducible closed subset F¢(P).

(3) Suppose that Y is an irreducible closed subset of Spec®(M) and
Y = {P,P, - ,P}, where P, € Spec?(M), k € N. By Lemma 24, Y =
Cl(Y)=F¢(P)UF¢(Py)U---UF°(Pg). Since Y is irreducible, Y = F¢(F;), for
some (1 < i < k). By part(2), P; is a generic point of F'¢(P;) =Y. O

Theorem 2.10. Let M be a lattice module over a C-lattice L such that M has
ascending chain condition on classical prime radical elements. Then Spec® (M)

with the Zariski-like topology is a quasi-compact space.

Proof. Let M be a lattice module over a C-lattice L and suppose that M has
ascending chain condition on classical prime radical elements. Let B be a family
of open sets covering Spec®? (M) and suppose that no finite subfamily of B covers
Spec?(M). Since F¢(¢/0p) = F¢(0p) = Spec®? (M), we may use the ascending
chain condition on classical prime radical elements to choose an element N maximal
with respect to the property that no finite subfamily of B covers F¢(N)(we may
assume N = /N, because F¢(N) = F¢( ¥/N)).

Suppose that N is not classical prime element of M. Then there exists X € M
and a,b € L, such that abX < N, aX f N and bX ﬁ N. Thus N < NVaX <
YUNVaX and N < NVbX < N VbX. Hence, without loss of generality, there
must exists a finite subfamily B of B that covers both F¢(NVaX) and F¢(NVbX).
Let P € F¢(N). Since abX < N, therefore abX < P and since P is classical prime,
we have aX < P or bX < P. Thus P € F¢(N VaX) or P € F°(N Vv bX) and
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therefore F°(N) C F¢(N VaX)U F¢(N V bX). Thus F°(N) is covered with the
finite subfamily B', which is contradiction. Therefore N is a classical prime element
of M.

Now choose U € B such that N € U. Thus N must have a neighborhood
N, G°(Kj;), for some K; € M and n € N, such that N, G°(K;) C U. Suppose
that for each i(1 <i <n), P € G°(K; VN)NF(N), then K; VN « P and N < P.
Thus K; ¢ P and P € G°(K;). Consequently, N € [G°(K;VN)NF*(N)] C G°(K;)
and hence for each (1 <i <n), N € N7, [G(K;VN)NF¢(N)] C N, G°(K;) CU.
Thus [N, G°(K;V N)|NF¢(N), where N < K; V N is a neighborhood of N, with
[N, G(K; VN)]NF¢(N)CU.

Since for each i(1 < i <n), N < K;VN, F¢(K;VN) can be covered by some finite
subfamily B, of B. Now F¢(N)— [U, F¢(K;VN)] = F¢(N) — [, G¢(K; VN)] =
N, G(K; VN)N F¢(N) C U(here ' denotes complement). Therefore F¢(N) can
be covered by B; U By U---U B, U{U}, which is contradiction to our choice of N.
Thus there must exists a finite subfamily of B which covers Spec® (M ). Therefore,

Spec? (M) is a quasi-compact space. |

A topological space X is a spectral space if X is homeomorphic to Spec(S), with
Zariski topology, for some commutative ring .S. Spectral spaces have been charac-
terized by Hochster ([12]) as the topological spaces X which satisfy the following
conditions.

(1) X is a Tp—space.

(2) X is a quasi-compact.

(3) The quasi-compact open subsets of X are closed under finite intersection
and form an open basis.

(4) Each irreducible closed subset of X has a generic point.

Theorem 2.11. Let M be a lattice module over a C-lattice L with finite spectrum.
Then Spec® (M) is a spectral space.

Proof. Since Spec®?(M) is finite, by Theorem 2.9, Spec®?(M) is a To—space and
every irreducible closed subset of Spec?(M) has a generic point. Also, since
SpecP(M) is finite, it is quasi-compact and the quasi-compact open subsets of
Spec (M) are closed under finite intersections and form an open basis ([9]). Hence,

by Hochster’s characterization, Spec®? (M) is a spectral space. ([l

3. Patch-like topology on Spec® (M)

Let X be a topological space. By the patch topology on X we mean the topology

which has as a sub-basis for its closed sets the closed sets and compact open sets
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of the original space. By a patch we mean set closed in the patch topology ([11],
[12]).

Definition 3.1. Let M be a lattice module over a C-lattice L. Let E(M) be the
family of all subsets of Spec®?(M) of the form F¢(N)N G¢(K), where N, K € M.
Clearly E(M) contains both Spec®?(M) = F¢(0p;) N G¢(1p7) and empty set ) =
Fe(1a)NG®(0ar). Let T,(M) be the collection U of all unions of finite intersections
of elements of E(M). Then T,(M) is a topology on Spec®” (M) and is called the
patch-like topology of M. In fact E(M) is a sub-basis for the patch-like topology
of M.

Note that, the patch-like topology on Spec?(M) is finer than the Zariski-like
topology on Spec®(M).

Theorem 3.2. Let M be a lattice module over a C-lattice L. Then Spec® (M)
with the patch-like topology is a Hausdorff space.

Proof. Suppose that Py, Py € Spec®?(M) and P; # P,. Since Py # Ps, so either
Py £ P or P, £ Py. Suppose that P; £ P». By Definition 3.1, Uy = G°(1x) N
Fe¢(Py) is a patch-like-neighborhood of P; and Uy = G¢(Py) N F¢(P,) is a patch-
like-neighborhood of P,. Clearly, G¢(P;) N F¢(P;) = § and hence U; N Uz = 0.
Therefore, Spec® (M) is a Hausdorft space. O

Theorem 3.3. Let M be a lattice module over a C-lattice L such that M has
ascending chain condition on classical prime radical elements. Then Spec® (M)

with the patch-like topology is a compact space.

Proof. Let M be a lattice module over a C-lattice L and suppose that M has
ascending chain condition on classical prime radical elements. Let A be a family
of open sets covering Spec®? (M) and suppose that no finite subfamily of A covers
Spec?(M). Since F¢( /0y) = F¢(0pr) = Spec®? (M), we may use the ascending
chain condition on classical prime radical elements to choose an element N maximal
with respect to the property that no finite subfamily of A covers F¢(NN) (we may
assume N = %/N, because F¢(N) = F¢( ¥/N)).

Suppose that N is not classical prime element of M. Then there exists X € M
and a,b € L, such that abX < N, aX £ N and bX £ N. Thus N < NV aX <
YNVaX and N < NVbX < %N VbX. Hence, without loss of generality,
there must exists a finite subfamily A" of A that covers both F¢(N V aX) and
F¢(N VbX). Let P € F¢(N). Since abX < N and N < P, we have abX < P.
Since P is classical prime, we have either aX < P or bX < P. Thus N VaX < P
or NV bX < P. Therefore, either P € F¢(N VaX) or P € F¢(N V bX) and
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hence F¢(N) C F¢(NVaX)UF°(N Vv bX). Thus F¢(N) is covered with the finite
subfamily A’, which is contradiction. Therefore N is a classical prime element of
M.

Now choose U € A such that N € U. Thus N must have a patch-like-neighborhood
N, [GE(K;) N Fe(N;)] for some K;,N; € M,n € N such that N, [G°(K;) N
F¢(N;)] € U. Suppose that for each i(1 < i < n), P € [G°(K; V N)N F¢(N)].
Then P € G°(K; VN) and P € F¢(N) and so that K; VN « P and N < P.
Thus K; ¢ P, ie., P € G°(K;). On the other hand, N € F¢(N;), therefore
N; < N and N; < N,N < P implies N; < P, hence P € F¢(N;). Consequently,
N € [GS(K;VN)NF¢(N)] C [G(K;) N F¢(N;)] and hence N € N, [G°(K; VN)N
Fe(N)] C N, [G(K;) N F¢(N;)] € U. Thus [N,G°(K; V N)| N F¢(N), where
N < K; V N, is a neighborhood of N, with [N"_,G°(K; V N)]NF¢(N)CU.

Since for each i(1 < i < n), N < K; VN, F¢(K; V N) is covered by some finite
subfamily A; of A. Now F°(N)—[Ur, F¢(K;VN)] = F¢(N) =[N, G¢(K;VN)] =
[N, G(K; V N)|N F¢(N) C U(here ' denotes complement). Hence F¢(N) can be
covered by Ay} U Ay U---U A, U{U}, which is contradiction to our choice of N.
Thus there must exists a finite subfamily of A which covers Spec® (M ). Therefore,

SpecP (M) is compact in the patch-like topology of M. a
We require the following evident Lemma.

Lemma 3.4. Let 71 and 7 be two topologies on X such that 71 C 7. If X is
quasi-compact (i.e. any open cover of it has a finite subcover) in T2, then X is also

quasi-compact in T .

Theorem 3.5. Let M be a lattice module over a C-lattice L such that M has
ascending chain condition on classical prime radical elements. Then for eachn € N
and elements N; (1 < i <n) of M, G°(N1)NG®(N2)N- - -NG°(N,,) is a quasi-compact
subset of Spec®?(M) with the Zariski-like topology. Consequently, Spec®® (M) has

a basis of quasi-compact open subsets.

Proof. By Definition 3.1, for each element N of M, F°(N) = F¢(N)NG°(1)s) is an
open subset of Spec®? (M) with the patch-like topology and G¢(N) is a complement
of F¢(N). Therefore for each N € M, G°(N) is a closed subset in Spec® (M ). Thus
for each n € N and elements N;(1 < i < n) of M, G°(N1)NG*(N2)N---NG(N,,) is
also a closed subset in Spec® (M) with the patch-like topology. Since every closed
subset of a compact space is compact, therefore G°(N1) NG°(N2)N---NG°(N,,) is
compact in Spec®? (M) with the patch-like topology and by Lemma 3.4, it is quasi-
compact in Spec?(M) with the Zariski-like topology. Now, Spec®?(M) = G(1xr)
and B = {G°(N1)NG*(N2)N---NG°(N,) | N; € M,1 <i<mn,n e N} is a basis
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for the Zariski-like topology of M. Consequently, Spec® (M) is quasi-compact and

has a basis of quasi-compact open subsets. ([l

Corollary 3.6. Let M be a lattice module over a C-lattice L such that M has
ascending chain condition on classical prime radical elements. Then quasi-compact
open sets of Spec? (M) (with the Zariski-like topology) are closed under finite in-

tersections.

Proof. Let U; and Us be two quasi-compact open sets of Spec?(M) and let U =
U1 NUs,. Each of Uy and Us is a finite union of members of B = {G¢(N1) NG¢(N2) N
< NGY(Np) | N; € M,1 < i <n,n € N} and hence U = UL (N}2,GY(Ny)).
Let II be any open cover of U. Then II also covers each N7, G(N;) which is
quasi-compact by Theorem 3.5. Hence each ﬂ?;'ch(Nj) has a finite subcover of
IT and therefore U has also a finite subcover of II. Thus U is quasi-compact, as

required. ([l

Lemma 3.7. Let M be a lattice module over a C-lattice L such that M has as-
cending chain condition on classical prime radical elements. Then every irreducible

closed subset of Spec®?(M) (with the Zariski-like topology) has a generic point.

Proof. Suppose that Y is an irreducible closed subset of Spec®? (M) with the
Zariski-like topology. By Lemma 2.4, we have Y = Upcy F¢(P). By Definition
3.1, for each P € Y, F¢(P) is an open subset of Spec®?(M) with the patch-like
topology. Now, since Y C Spec®? (M) is closed with the Zariski-like topology, the
complement of Y is open by this topology and therefore the complement of Y
is open with the patch-like topology. Hence Y C Spec® (M) is closed with the
patch-like topology. By Theorem 3.3, Spec®? (M) is compact with the patch-like
topology and since Y C Spec®?(M) is closed, therefore Y is also compact. Now,
since Y = Upey F°(P) and each F°(P) is patch-like open, therefore there exists a
finite subset X of Y such that Y = Upecx F¢(P). Since Y is irreducible, Y = F°(P)
for some P € X. Therefore, we have Y = F¢(P) = CI({P}) for some P € Y.
Consequently, P is a generic point for Y. O

We conclude this section by proving the main theorem .

Theorem 3.8. Let M be a lattice module over a C-lattice L such that M has
ascending chain condition on classical prime radical elements. Then Spec (M)

with the Zariski-like topology is a spectral space.

Proof. By Theorem 2.9, Spec®?(M) is a Ty—space. Since M satisfies ascending

chain condition on classical prime radical elements, therefore by Theorem 2.10,
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Spec? (M) is quasi-compact. By Theorem 3.5, Spec® (M) has a basis of quasi-

compact open subsets and by Corollary 3.6, the family of quasi-compact open sub-

sets of Spec®? (M) are closed under finite intersections. Finally, by Lemma 3.7, each

irreducible closed subset of Spec®?(M) has a generic point. Thus, by Hochster’s

characterization, Spec® (M) is a spectral space. O
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