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Abstract. Let M be a lattice module over a C-lattice L. A proper element

P of M is said to be classical prime if for a, b ∈ L and X ∈ M,abX ≤ P

implies that aX ≤ P or bX ≤ P . The set of all classical prime elements of M ,

Speccp(M) is called as classical prime spectrum. In this article, we introduce

and study a topology on Speccp(M), called as Zariski-like topology of M . We

investigate this topological space from the point of view of spectral spaces.

We show that if M has ascending chain condition on classical prime radical

elements, then Speccp(M) with the Zariski-like topology is a spectral space.
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1. Introduction

Zariski-like topology on the classical prime spectrum of a module is being in-

troduce and studied by M. Behboodi and M. J. Noori in [7]. There are many

generalizations of the Zariski topology over the set of all prime submodules of a R-

module M (see [5], [6], [14]). As a generalization of most of the results in [7], we

introduce and study the Zariski-like topology on the classical prime spectrum of a

lattice module M over a C-lattice L.

A lattice L is said to be complete, if for any subset S of L, we have ∨S,∧S ∈ L.

A complete lattice L with least element 0L and greatest element 1L is said to be a

multiplicative lattice, if there is defined a binary operation “.” called multiplication

on L satisfying the following conditions:

(1) a.b = b.a, for all a, b ∈ L;

(2) a.(b.c) = (a.b).c, for all a, b, c ∈ L;

(3) a.(∨αbα) = ∨α(a.bα), for all a, bα ∈ L;

(4) a.1L = a, for all a ∈ L.

Henceforth, a.b will be simply denoted by ab.
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An element a in L is called compact if a ≤ ∨α∈Ibα (I is an indexed set) implies

a ≤ bα1
∨ bα2

∨ · · · ∨ bαn
for some subset {α1, α2, · · · , αn} of I. By a C-lattice,

we mean a multiplicative lattice L, with least element 0L and greatest element 1L

which is compact as well as multiplicative identity, that is generated under joins by

a multiplicatively closed subset C of compact elements of L. An element a ∈ L is

said to be proper, if a < 1L.

A proper element p of a multiplicative lattice L is said to be prime if ab ≤ p

implies a ≤ p or b ≤ p for a, b ∈ L. The collection of all prime elements of L is

denoted by Spec(L).

The Zariski topology on the set Spec(L) of all prime elements in multiplica-

tive lattices is being studied in [21], by Thakare, Manjarekar and Maeda and in

[20], by Thakare and Manjarekar as a generalization of the Zariski topology of a

commutative ring with unity.

A proper element m of a multiplicative lattice L is said to be maximal if for

every x ∈ L with m < x ≤ 1L implies x = 1L.

A complete lattice M with smallest element 0M and greatest element 1M is said

to be a lattice module over the multiplicative lattice L or L-module if there is a

multiplication between elements of M and L, denoted by aN ∈ M , for a ∈ L and

N ∈M , which satisfies the following properties:

(1) (ab)N = a(bN);

(2) (∨αaα)(∨βNβ) = (∨αβaαNβ);

(3) 1LN = N ;

(4) 0LN = 0M ; for all a, b, aα ∈ L, and for all N,Nβ ∈M .

Let M be a lattice module over a C-lattice L. For N ∈M, b ∈ L, denote (N : b) =

∨{K ∈M |bK ≤ N}. If a, b ∈ L, we write (a : b) = ∨{x ∈ L|bx ≤ a}. If A,B ∈M ,

then (A : B) = ∨{x ∈ L|Bx ≤ A}. An element N ∈ M is said to be compact if

N ≤ ∨α∈IAα (I is an indexed set) implies N ≤ Aα1
∨ Aα2

∨ · · · ∨ Aαn
for some

subset {α1, α2, · · · , αn} of I.

An element N ∈ M is said to be meet principal (respectively join principal) if

it satisfies the identity A ∧ aN = (a ∧ (A : N))N (respectively ((aN ∨ A) : N) =

(a ∨ (A : N))) for all a ∈ L and for all A ∈ M . Also N is said to be principal if it

is both join as well as meet principal. If each element of M is the join of principal

(compact) elements of M , then M is called the principally generated (compactly

generated) lattice module.

An element N ∈ M is said to be proper, if N < 1M . A proper element N of a

lattice module M is said to be prime if aX ≤ N implies X ≤ N or a1M ≤ N , i.e.,

a ≤ (N : 1M ) for every a ∈ L and X ∈M . The prime spectrum of a lattice module
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M is the set of all prime elements of M and it is denoted by Spec(M). In [4], S.

Ballal and V. Kharat studied the Zariski topology over Spec(M) as a generalization

of the results carried out in [20], [21]. Also in [10], F. Callialp et al. studied the

Zariski topology over Spec(M) over multiplicative lattice L.

A non-zero element N ∈ M is said to be second, if for a ∈ L, either aN = N

or aN = 0M . The Zariski topology on the second spectrum of a lattice module

is studied by N. Phadatare et al. in [17]. In [18], N. Phadatare and V. Kharat

introduced and studied the concept of second radical elements of a lattice module

M over a C-lattice L as a generalization of second socle of a submodule of R-module

M . An element N < 1M of M is said to be maximal if N ≤ B implies either N = B

or B = 1M , B ∈ M . A non-zero element K 6= 1M of M is said to be minimal if

0M ≤ N < K implies N = 0M , N ∈M .

Further all these concepts and for more information on multiplicative lattices,

lattice modules and topology, the reader may refer ([1], [2], [13], [16], [19]).

2. Zariski-like topology on Speccp(M)

Let M be a lattice module over a C-lattice L. A proper element P ∈M is said

to be classical prime if for a, b ∈ L and X ∈ M,abX ≤ P implies that aX ≤ P or

bX ≤ P ([15]). The classical prime spectrum Speccp(M) is defined to be the set of

all classical prime elements of M , i.e., Speccp(M) = {P ∈M | P is a classical prime

element of M}. Let N be any element of M . Let F c(N) be the set of all classical

prime elements of M which contains N, i.e., F c(N) = {P ∈ Speccp(M)|N ≤ P}.
Note that, F c(0M ) = Speccp(M) and F c(1M ) is an empty set.

Proposition 2.1. Let M be a lattice module over a C-lattice L and N,Ni,K ∈M
(i ∈ I). Then the following statements holds.

(1) ∩i∈IF c(Ni) = F c(∨i∈INi) for any index set I.

(2) F c(N) ∪ F c(K) ⊆ F c(N ∧K).

Proof. (1) Since for each i ∈ I, Ni ≤ ∨Ni, therefore for P ∈ F c(∨i∈INi), we

have ∨i∈INi ≤ P and hence Ni ≤ P and P ∈ F c(Ni). Therefore F c(∨i∈INi) ⊆
∩i∈IF c(Ni).

Conversely, suppose that P ∈ ∩i∈IF c(Ni), then P ∈ F c(Ni) for each i ∈ I,

therefore Ni ≤ P for each i ∈ I. Hence ∨i∈INi ≤ P and so P ∈ F c(∨i∈INi).
Consequently, ∩i∈IF c(Ni) ⊆ F c(∨i∈INi). Thus ∩i∈IF c(Ni) = F c(∨i∈INi).
(2) Since N ∧ K ≤ N,K, we have F c(N), F c(K) ⊆ F c(N ∧ K) and therefore

F c(N) ∪ F c(K) ⊆ F c(N ∧K). �
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Let ξc(M) = {F c(N)|N ∈M}, then ξc(M) contains empty set and Speccp(M).

By Proposition 2.1, ξc(M) is closed under arbitrary intersections. In general ξc(M)

is not closed under finite union. A lattice module M over a C-lattice L is called top

lattice module if ξc(M) is closed under finite union. In this case, ξc(M) induces a

topology τ c on Speccp(M), we call it the Zariski topology.

Let M be a lattice module over a C-lattice L. For each element N of M , let

Gc(N) = Speccp(M) − F c(N) and Gc(N) = {Gc(N)|N ∈ M}. Let ψc(M) be the

collection of all unions of finite intersections of elements of Gc(N), then ψc(M) is

a topology on Speccp(M) by the sub-basis Gc(N). We call the topology ψc(M), a

Zariski-like topology.

Note that, the set {Gc(N1) ∩Gc(N2) ∩ · · · ∩Gc(Nk)|Ni ∈ M, 1 ≤ i ≤ k, k ∈ N}
is a basis for the Zariski-like topology of M .

Let M be a lattice module over a C-lattice L and let Speccp(M) be equipped

with the Zariski-like topology. Let Y ⊆ Speccp(M). The closure of Y in Speccp(M)

is denoted by Cl(Y ) and meet of all elements of Y by Z(Y ). Note that, if Y = ∅,
then Z(Y ) = 1M .

Lemma 2.2. Let M be a lattice module over a C-lattice L and let Y be a non-empty

subset of Speccp(M). Then Cl(Y ) = ∪P∈Y F
c(P ).

Proof. Suppose that Y is a non-empty subset of Speccp(M). Clearly Y ⊆ ∪P∈Y F
c(P ).

Suppose D is any closed subset of Speccp(M) such that Y ⊆ D. Thus D =

∩k∈J(∪nk

l=1F
c(Nkl)), for some Nkl ∈ M , k ∈ J and nk ∈ N. Let P1 ∈ ∪P∈Y F

c(P ),

then there exists P0 ∈ Y such that P1 ∈ F c(P0) and so P0 ≤ P1. Since P0 ∈ Y ⊆ D,

therefore for each k ∈ J there exists l ∈ {1, 2, · · · , nk} such that Nkl ≤ P0

and hence Nkl ≤ P0 ≤ P1. Therefore P1 ∈ F c(Nkl) for each k ∈ J and hence

P1 ∈ ∩k∈J(∪nk

l=1F
c(Nkl)) = D. It follows that ∪P∈Y F

c(P ) ⊆ D. Thus ∪P∈Y F
c(P )

is the smallest closed set in Speccp(M) which contains Y . Consequently, Cl(Y ) =

∪P∈Y F
c(P ). �

Corollary 2.3. Let M be a lattice module over a C-lattice L. Then

(1) Cl({P}) = F c(P ), for each P ∈ Speccp(M).

(2) P0 ∈ Cl({P}) if and only if P ≤ P0 if and only if F c(P0) ⊆ F c(P ), for

P0 ∈ Speccp(M).

(3) The set {P} is closed in Speccp(M) if and only if P is a maximal classical

prime element of M .

Proof. (1) By Lemma 2.2, for Y ⊆ Speccp(M), Cl(Y ) = ∪P∈Y F
c(P ). Assume

that Y = {P}, then ∪P∈Y F
c(P ) = F c(P ). Hence Cl({P}) = F c(P ).

(2) Suppose that P0 ∈ Cl({P}). Then P0 ∈ Cl({P}) = F c(P ), by part (1) and
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therefore P ≤ P0 which implies that F c(P0) ⊆ F c(P ). Conversely, suppose that

F c(P0) ⊆ F c(P ). Since P0 ∈ F c(P0) ⊆ F c(P ), P ≤ P0 and hence P0 ∈ F c(P ) =

Cl({P}).
(3) Suppose that the set {P} is closed in Speccp(M) and P is not maximal, then

there exists Q such that P ≤ Q, which implies that Q ∈ Cl({P}) by part (2). But

{P} is closed, therefore Q ∈ {P} and so P = Q. Consequently, P is a maximal

classical prime element. Conversely, suppose that P is a maximal classical prime

element of M . Let Q ∈ Cl({P}). Then by part (1), Q ∈ F c(P ), therefore P ≤ Q.

But P is maximal, hence P = Q and therefore Cl({P}) = {P}. Consequently, {P}
is closed in Speccp(M). �

Lemma 2.4. Let M be a lattice module over a C-lattice L and let Y be a non-empty

closed subset of Speccp(M), then Y = ∪P∈Y F
c(P ).

Proof. Let Y be a non-empty closed subset of Speccp(M). It is clear that, Y ⊆
∪P∈Y F

c(P ). By Corollary 2.3(1), for each P ∈ Y, Cl({P}) = F c(P ), therefore

F c(P ) = Cl({P}) ⊆ Cl(Y ) = Y . Hence ∪P∈Y F
c(P ) ⊆ Y . Consequently, Y =

∪P∈Y F
c(P ). �

A topological space X is called irreducible if X 6= ∅ and every finite intersection

of non-empty open sets of X is non-empty. A non-empty subset Y of a topological

spaceX is called an irreducible set if the subspace Y ofX is irreducible, equivalently,

for any two closed sets Y1 and Y2 of X, Y ⊆ Y1∪Y2 implies either Y ⊆ Y1 or Y ⊆ Y2
([8]).

Lemma 2.5. Let M be a lattice module over a C-lattice L. Then for each P ∈
Speccp(M), F c(P ) is irreducible.

Proof. Suppose that X1 and X2 are two closed subsets of Speccp(M) and F c(P ) ⊆
X1 ∪X2. Since P ∈ F c(P ), therefore P ∈ X1 ∪X2 which implies either P ∈ X1 or

P ∈ X2. Suppose that P ∈ X1. Since X1 is closed in Speccp(M), we have X1 =

∩k∈J(∪nk

l=1F
c(Nkl)), for some Nkl ∈ M , k ∈ J, nk ∈ N. Thus P ∈ ∪nk

l=1F
c(Nkl),

for each k ∈ J . It follows that F c(P ) ⊆ ∪nk

l=1F
c(Nkl), for each k ∈ J . Therefore

F c(P ) ⊆ ∩k∈J(∪nk

l=1F
c(Nkl)) = X1. Consequently, F c(P ) is irreducible. �

Theorem 2.6. Let M be a lattice module over a C-lattice L and Y ⊆ Speccp(M).

Then

(1) If Y is irreducible, then Z(Y ) is a classical prime element.

(2) If Z(Y ) is a classical prime element and Z(Y ) ∈ Cl(Y ), then Y is irre-

ducible.
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Proof. (1) Suppose that Y is an irreducible subset of Speccp(M). Clearly, Z(Y ) =

∧P∈Y P < 1M and Y ⊆ F c(Z(Y )). Let abX ≤ Z(Y ), for a, b ∈ L and X ∈M . Now

for P ∈ Y, P ∈ F c(Z(Y )), hence Z(Y ) ≤ P and therefore abX ≤ Z(Y ) ≤ P . Since

P is classical prime, either aX ≤ P or bX ≤ P , which implies that P ∈ F c(aX) or

P ∈ F c(bX) and hence P ∈ F c(aX) ∪ F c(bX). Therefore Y ⊆ F c(aX) ∪ F c(bX).

Since Y is irreducible, Y ⊆ F c(aX) or Y ⊆ F c(bX). If Y ⊆ F c(aX), then aX ≤ P,
for all P ∈ Y and hence aX ≤ Z(Y ). If Y ⊆ F c(bX), then bX ≤ P, for all P ∈ Y,
hence bX ≤ Z(Y ). Consequently, Z(Y) is a classical prime element of M .

(2) Suppose that Z(Y ) is a classical prime element and Z(Y ) ∈ Cl(Y ). We have

Z(Y ) ≤ P , for each P ∈ Y , therefore F c(P ) ⊆ F c(Z(Y )), for each P ∈ Y by

Corollary 2.3(2). Thus Cl(Y ) = ∪P∈Y F
c(P ) ⊆ F c(Z(Y )), by Lemma 2.2. On the

other hand, since Z(Y ) is a classical prime element and Z(Y ) ∈ Cl(Y ), F c(Z(Y )) ⊆
Cl(Y ). Consequently, Cl(Y ) = F c(Z(Y )). Now suppose that Y ⊆ Y1 ∪ Y2, where

Y1 and Y2 are closed subsets of Speccp(M), then Cl(Y ) ⊆ Y1 ∪ Y2 and hence

F c(Z(Y )) ⊆ Y1 ∪ Y2. Since Z(Y ) is a classical prime element, F c(Z(Y )) is irre-

ducible by Lemma 2.5. Therefore we have F c(Z(Y )) ⊆ Y1 or F c(Z(Y )) ⊆ Y2. It

follows that Y ⊆ Y1 or Y ⊆ Y2. Consequently, Y is irreducible. �

Definition 2.7. Let M be a lattice module over a C-lattice L. Let N be an element

of M . Then the classical prime radical cp
√
N of N is the meet of all classical prime

elements of M containing N , i.e., cp
√
N = ∧{P ∈ Speccp(M)|N ≤ P}.

cp
√
N = 1M , if there is no classical prime element which contains N . An element

N is said to be classical prime radical element if N = cp
√
N . Note that, N ≤ cp

√
N

and F c(N) = F c( cp
√
N).

Corollary 2.8. Let M be a lattice module over a C-lattice L and let N be any

element of M . Then the following are equivalent:

(1) The subset F c(N) of Speccp(M) is irreducible.

(2) cp
√
N is a classical prime element.

Proof. (1)⇒(2) Suppose that F c(N) is an irreducible subset of Speccp(M), then

Z(F c(N)) is classical prime element of M , by Theorem 2.6(1). Now, cp
√
N = ∧{P ∈

Speccp(M)|N ≤ P} = ∧{P ∈ F c(N)} = Z(F c(N)). Consequently, cp
√
N is a classi-

cal prime element.

(2)⇒(1) Suppose that cp
√
N is a classical prime element, then F c( cp

√
N) is irre-

ducible by Lemma 2.5. Since, for each N ∈ M , F c(N) = F c( cp
√
N), therefore

F c(N) is an irreducible subset of Speccp(M). �
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Let Y be a closed subset of a topological space. An element y ∈ Y is called

a generic point of Y if Y = Cl({y}) (see [3]). Note that, a generic point of the

irreducible closed subset Y of a topological space is unique if the topological space

is a T0−space.

Theorem 2.9. Let M be a lattice module over a C-lattice L. Then

(1) Speccp(M) is always a T0−space.

(2) Every P ∈ Speccp(M) is a generic point of the irreducible closed subset

F c(P ).

(3) Every finite irreducible closed subset of Speccp(M) has a generic point.

Proof. (1) Suppose that P1, P2 ∈ Speccp(M). Then by Corollary 2.3(1), Cl({P1}) =

F c(P1), Cl({P2}) = F c(P2) and therefore Cl({P1}) = Cl({P2}) if and only if

F c(P1) = F c(P2) if and only if P1 = P2 by Corollary 2.3(2). Now, by the fact

that a topological space is a T0−space if the closures of distinct points are distinct,

we conclude that, Speccp(M) is a T0−space.

(2) For each P ∈ Speccp(M), F c(P ) = Cl({P}) by Corollary 2.3(1). Hence P is a

generic point of the irreducible closed subset F c(P ).

(3) Suppose that Y is an irreducible closed subset of Speccp(M) and

Y = {P1, P2, · · · , Pk}, where Pi ∈ Speccp(M), k ∈ N. By Lemma 2.4, Y =

Cl(Y ) = F c(P1) ∪ F c(P2) ∪ · · · ∪ F c(Pk). Since Y is irreducible, Y = F c(Pi), for

some i(1 ≤ i ≤ k). By part(2), Pi is a generic point of F c(Pi) = Y . �

Theorem 2.10. Let M be a lattice module over a C-lattice L such that M has

ascending chain condition on classical prime radical elements. Then Speccp(M)

with the Zariski-like topology is a quasi-compact space.

Proof. Let M be a lattice module over a C-lattice L and suppose that M has

ascending chain condition on classical prime radical elements. Let B be a family

of open sets covering Speccp(M) and suppose that no finite subfamily of B covers

Speccp(M). Since F c( cp
√

0M ) = F c(0M ) = Speccp(M), we may use the ascending

chain condition on classical prime radical elements to choose an element N maximal

with respect to the property that no finite subfamily of B covers F c(N)(we may

assume N = cp
√
N , because F c(N) = F c( cp

√
N)).

Suppose that N is not classical prime element of M . Then there exists X ∈ M
and a, b ∈ L, such that abX ≤ N , aX � N and bX � N . Thus N < N ∨ aX ≤
cp
√
N ∨ aX and N < N ∨ bX ≤ cp

√
N ∨ bX. Hence, without loss of generality, there

must exists a finite subfamily B′
of B that covers both F c(N∨aX) and F c(N∨bX).

Let P ∈ F c(N). Since abX ≤ N , therefore abX ≤ P and since P is classical prime,

we have aX ≤ P or bX ≤ P. Thus P ∈ F c(N ∨ aX) or P ∈ F c(N ∨ bX) and
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therefore F c(N) ⊆ F c(N ∨ aX) ∪ F c(N ∨ bX). Thus F c(N) is covered with the

finite subfamily B′
, which is contradiction. Therefore N is a classical prime element

of M .

Now choose U ∈ B such that N ∈ U . Thus N must have a neighborhood

∩ni=1G
c(Ki), for some Ki ∈ M and n ∈ N, such that ∩ni=1G

c(Ki) ⊆ U . Suppose

that for each i(1 ≤ i ≤ n), P ∈ Gc(Ki ∨N)∩F c(N), then Ki ∨N � P and N ≤ P.
Thus Ki � P and P ∈ Gc(Ki). Consequently, N ∈ [Gc(Ki∨N)∩F c(N)] ⊆ Gc(Ki)

and hence for each i(1 ≤ i ≤ n), N ∈ ∩ni=1[Gc(Ki∨N)∩F c(N)] ⊆ ∩ni=1G
c(Ki) ⊆ U.

Thus [∩ni=1G
c(Ki ∨N)]∩ F c(N), where N < Ki ∨N is a neighborhood of N , with

[∩ni=1G
c(Ki ∨N)] ∩ F c(N) ⊆ U .

Since for each i(1 ≤ i ≤ n), N < Ki∨N , F c(Ki∨N) can be covered by some finite

subfamily B′

i of B. Now F c(N)− [∪ni=1F
c(Ki∨N)] = F c(N)− [∩ni=1G

c(Ki∨N)]
′

=

∩ni=1G
c(Ki ∨N) ∩ F c(N) ⊆ U(here ′ denotes complement). Therefore F c(N) can

be covered by B′

1 ∪ B
′

2 ∪ · · · ∪ B
′

n ∪ {U}, which is contradiction to our choice of N .

Thus there must exists a finite subfamily of B which covers Speccp(M). Therefore,

Speccp(M) is a quasi-compact space. �

A topological space X is a spectral space if X is homeomorphic to Spec(S), with

Zariski topology, for some commutative ring S. Spectral spaces have been charac-

terized by Hochster ([12]) as the topological spaces X which satisfy the following

conditions.

(1) X is a T0−space.

(2) X is a quasi-compact.

(3) The quasi-compact open subsets of X are closed under finite intersection

and form an open basis.

(4) Each irreducible closed subset of X has a generic point.

Theorem 2.11. Let M be a lattice module over a C-lattice L with finite spectrum.

Then Speccp(M) is a spectral space.

Proof. Since Speccp(M) is finite, by Theorem 2.9, Speccp(M) is a T0−space and

every irreducible closed subset of Speccp(M) has a generic point. Also, since

Speccp(M) is finite, it is quasi-compact and the quasi-compact open subsets of

Speccp(M) are closed under finite intersections and form an open basis ([9]). Hence,

by Hochster’s characterization, Speccp(M) is a spectral space. �

3. Patch-like topology on Speccp(M)

Let X be a topological space. By the patch topology on X we mean the topology

which has as a sub-basis for its closed sets the closed sets and compact open sets
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of the original space. By a patch we mean set closed in the patch topology ([11],

[12]).

Definition 3.1. Let M be a lattice module over a C-lattice L. Let E(M) be the

family of all subsets of Speccp(M) of the form F c(N) ∩Gc(K), where N,K ∈ M .

Clearly E(M) contains both Speccp(M) = F c(0M ) ∩ Gc(1M ) and empty set ∅ =

F c(1M )∩Gc(0M ). Let Tp(M) be the collection U of all unions of finite intersections

of elements of E(M). Then Tp(M) is a topology on Speccp(M) and is called the

patch-like topology of M . In fact E(M) is a sub-basis for the patch-like topology

of M .

Note that, the patch-like topology on Speccp(M) is finer than the Zariski-like

topology on Speccp(M).

Theorem 3.2. Let M be a lattice module over a C-lattice L. Then Speccp(M)

with the patch-like topology is a Hausdorff space.

Proof. Suppose that P1, P2 ∈ Speccp(M) and P1 6= P2. Since P1 6= P2, so either

P1 � P2 or P2 � P1. Suppose that P1 � P2. By Definition 3.1, U1 = Gc(1M ) ∩
F c(P1) is a patch-like-neighborhood of P1 and U2 = Gc(P1) ∩ F c(P2) is a patch-

like-neighborhood of P2. Clearly, Gc(P1) ∩ F c(P1) = ∅ and hence U1 ∩ U2 = ∅.
Therefore, Speccp(M) is a Hausdorff space. �

Theorem 3.3. Let M be a lattice module over a C-lattice L such that M has

ascending chain condition on classical prime radical elements. Then Speccp(M)

with the patch-like topology is a compact space.

Proof. Let M be a lattice module over a C-lattice L and suppose that M has

ascending chain condition on classical prime radical elements. Let A be a family

of open sets covering Speccp(M) and suppose that no finite subfamily of A covers

Speccp(M). Since F c( cp
√

0M ) = F c(0M ) = Speccp(M), we may use the ascending

chain condition on classical prime radical elements to choose an element N maximal

with respect to the property that no finite subfamily of A covers F c(N) (we may

assume N = cp
√
N , because F c(N) = F c( cp

√
N)).

Suppose that N is not classical prime element of M . Then there exists X ∈ M
and a, b ∈ L, such that abX ≤ N , aX � N and bX � N . Thus N < N ∨ aX ≤
cp
√
N ∨ aX and N < N ∨ bX ≤ cp

√
N ∨ bX. Hence, without loss of generality,

there must exists a finite subfamily A′
of A that covers both F c(N ∨ aX) and

F c(N ∨ bX). Let P ∈ F c(N). Since abX ≤ N and N ≤ P , we have abX ≤ P .

Since P is classical prime, we have either aX ≤ P or bX ≤ P. Thus N ∨ aX ≤ P

or N ∨ bX ≤ P . Therefore, either P ∈ F c(N ∨ aX) or P ∈ F c(N ∨ bX) and
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hence F c(N) ⊆ F c(N ∨ aX) ∪ F c(N ∨ bX). Thus F c(N) is covered with the finite

subfamily A′
, which is contradiction. Therefore N is a classical prime element of

M .

Now choose U ∈ A such thatN ∈ U . ThusN must have a patch-like-neighborhood

∩ni=1[Gc(Ki) ∩ F c(Ni)] for some Ki, Ni ∈ M,n ∈ N such that ∩ni=1[Gc(Ki) ∩
F c(Ni)] ⊆ U . Suppose that for each i(1 ≤ i ≤ n), P ∈ [Gc(Ki ∨ N) ∩ F c(N)].

Then P ∈ Gc(Ki ∨ N) and P ∈ F c(N) and so that Ki ∨ N � P and N ≤ P .

Thus Ki � P , i.e., P ∈ Gc(Ki). On the other hand, N ∈ F c(Ni), therefore

Ni ≤ N and Ni ≤ N,N ≤ P implies Ni ≤ P , hence P ∈ F c(Ni). Consequently,

N ∈ [Gc(Ki ∨N)∩F c(N)] ⊆ [Gc(Ki)∩F c(Ni)] and hence N ∈ ∩ni=1[Gc(Ki ∨N)∩
F c(N)] ⊆ ∩ni=1[Gc(Ki) ∩ F c(Ni)] ⊆ U . Thus [∩ni=1G

c(Ki ∨ N)] ∩ F c(N), where

N < Ki ∨N , is a neighborhood of N , with [∩ni=1G
c(Ki ∨N)] ∩ F c(N) ⊆ U .

Since for each i(1 ≤ i ≤ n), N < Ki ∨ N , F c(Ki ∨ N) is covered by some finite

subfamily A′

i of A. Now F c(N)− [∪ni=1F
c(Ki∨N)] = F c(N)− [∩ni=1G

c(Ki∨N)]
′

=

[∩ni=1G
c(Ki ∨N)] ∩ F c(N) ⊆ U(here ′ denotes complement). Hence F c(N) can be

covered by A′

1 ∪ A
′

2 ∪ · · · ∪ A
′

n ∪ {U}, which is contradiction to our choice of N .

Thus there must exists a finite subfamily of A which covers Speccp(M). Therefore,

Speccp(M) is compact in the patch-like topology of M. �

We require the following evident Lemma.

Lemma 3.4. Let τ1 and τ2 be two topologies on X such that τ1 ⊆ τ2. If X is

quasi-compact (i.e. any open cover of it has a finite subcover) in τ2, then X is also

quasi-compact in τ1.

Theorem 3.5. Let M be a lattice module over a C-lattice L such that M has

ascending chain condition on classical prime radical elements. Then for each n ∈ N
and elements Ni(1 ≤ i ≤ n) of M , Gc(N1)∩Gc(N2)∩· · ·∩Gc(Nn) is a quasi-compact

subset of Speccp(M) with the Zariski-like topology. Consequently, Speccp(M) has

a basis of quasi-compact open subsets.

Proof. By Definition 3.1, for each element N of M, F c(N) = F c(N)∩Gc(1M ) is an

open subset of Speccp(M) with the patch-like topology and Gc(N) is a complement

of F c(N). Therefore for each N ∈M , Gc(N) is a closed subset in Speccp(M). Thus

for each n ∈ N and elements Ni(1 ≤ i ≤ n) of M , Gc(N1)∩Gc(N2)∩· · ·∩Gc(Nn) is

also a closed subset in Speccp(M) with the patch-like topology. Since every closed

subset of a compact space is compact, therefore Gc(N1)∩Gc(N2)∩ · · · ∩Gc(Nn) is

compact in Speccp(M) with the patch-like topology and by Lemma 3.4, it is quasi-

compact in Speccp(M) with the Zariski-like topology. Now, Speccp(M) = Gc(1M )

and B = {Gc(N1) ∩ Gc(N2) ∩ · · · ∩ Gc(Nn) | Ni ∈ M, 1 ≤ i ≤ n, n ∈ N} is a basis
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for the Zariski-like topology of M . Consequently, Speccp(M) is quasi-compact and

has a basis of quasi-compact open subsets. �

Corollary 3.6. Let M be a lattice module over a C-lattice L such that M has

ascending chain condition on classical prime radical elements. Then quasi-compact

open sets of Speccp(M) (with the Zariski-like topology) are closed under finite in-

tersections.

Proof. Let U1 and U2 be two quasi-compact open sets of Speccp(M) and let U =

U1∩U2. Each of U1 and U2 is a finite union of members of B = {Gc(N1)∩Gc(N2)∩
· · · ∩ Gc(Nn) | Ni ∈ M, 1 ≤ i ≤ n, n ∈ N} and hence U = ∪mi=1(∩ni

j=1G
c(Nj)).

Let Π be any open cover of U . Then Π also covers each ∩ni
j=1G

c(Nj) which is

quasi-compact by Theorem 3.5. Hence each ∩ni
j=1G

c(Nj) has a finite subcover of

Π and therefore U has also a finite subcover of Π. Thus U is quasi-compact, as

required. �

Lemma 3.7. Let M be a lattice module over a C-lattice L such that M has as-

cending chain condition on classical prime radical elements. Then every irreducible

closed subset of Speccp(M) (with the Zariski-like topology) has a generic point.

Proof. Suppose that Y is an irreducible closed subset of Speccp(M) with the

Zariski-like topology. By Lemma 2.4, we have Y = ∪P∈Y F
c(P ). By Definition

3.1, for each P ∈ Y, F c(P ) is an open subset of Speccp(M) with the patch-like

topology. Now, since Y ⊆ Speccp(M) is closed with the Zariski-like topology, the

complement of Y is open by this topology and therefore the complement of Y

is open with the patch-like topology. Hence Y ⊆ Speccp(M) is closed with the

patch-like topology. By Theorem 3.3, Speccp(M) is compact with the patch-like

topology and since Y ⊆ Speccp(M) is closed, therefore Y is also compact. Now,

since Y = ∪P∈Y F
c(P ) and each F c(P ) is patch-like open, therefore there exists a

finite subset X of Y such that Y = ∪P∈XF
c(P ). Since Y is irreducible, Y = F c(P )

for some P ∈ X. Therefore, we have Y = F c(P ) = Cl({P}) for some P ∈ Y .

Consequently, P is a generic point for Y . �

We conclude this section by proving the main theorem .

Theorem 3.8. Let M be a lattice module over a C-lattice L such that M has

ascending chain condition on classical prime radical elements. Then Speccp(M)

with the Zariski-like topology is a spectral space.

Proof. By Theorem 2.9, Speccp(M) is a T0−space. Since M satisfies ascending

chain condition on classical prime radical elements, therefore by Theorem 2.10,
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Speccp(M) is quasi-compact. By Theorem 3.5, Speccp(M) has a basis of quasi-

compact open subsets and by Corollary 3.6, the family of quasi-compact open sub-

sets of Speccp(M) are closed under finite intersections. Finally, by Lemma 3.7, each

irreducible closed subset of Speccp(M) has a generic point. Thus, by Hochster’s

characterization, Speccp(M) is a spectral space. �
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