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Abstract. We study perfect numbers which are repdigits in a given negative

base. It is shown that in each negative base there are at most finitely many

perfect repdigits, and that the set of all such numbers can effectively be com-

puted. As an illustration we explicitly determine these numbers in bases −2

and −10.
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1. Introduction and results

For a positive integer N we denote by σ(N) the sum-of-divisors function of N .

Already the ancient Greeks were interested in this function, in particular, they

studied so-called perfect numbers, i.e., solutions of the equation

σ(N) = 2N .

There are many open problems concerning the function σ (e.g., see [11]), and we

do not even know whether there exist infinitely many perfect numbers. Recently,

R. B. Nelsen [9] proved that every even perfect number ends in 6 or 28.

Let b be an integer different from −1, 0, 1. Every positive integer1 N can uniquely

be written in the form

N = dn−1b
n−1 + dn−2b

n−2 + · · ·+ d1b+ d0

with digits d0, d1, . . . , dn−1 ∈ {0, 1, . . . , |b| − 1} , dn−1 6= 0 (cf. [4, Section 3]), and

n is the length of the representation of N in base b. We call N a repdigit in base b

if all its digits are the same.

In this short note we are interested in those positive integers which are repdigits

in base b and perfect. P. Pollack [10] proved that in each integer base > 1 there

are at most finitely many perfect repdigits and that the set of all such numbers is

1For the sake of completeness it should be mentioned that in case b < −1 every non-zero integer

can uniquely be represented in the form above (e.g., see Grünwald [5]).
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effectively computable. Moreover, he showed that 6 is the only perfect repdigit in

base 10. He exploited results on exponential Diophantine equations and some of the

ideas implicit in F. Luca’s demonstration [7,8] that there are no perfect Fibonacci

or Lucas numbers. K. A. Broughan and Q. Zhou [2] computed perfect repdigits to

all positive bases up to 10. In most cases their method reduces to using modular

constraints or solving several particular exponential type Diophantine equations.

Recently, K. A. Broughan, S. G. Sanchez and F. Luca [1] presented an algorithm

to compute all perfect repdigits in positive base. Among others, they extended the

computations from [2] to all bases 2 ≤ b ≤ 333.

Adapting the arguments of P. Pollack we prove the following finiteness results

for repdigits in negative base.

Theorem 1.1. Let b < −1.

(i) There exist finitely many perfect repdigits in base b, and the set of all such

numbers is effectively computable.

(ii) If N is an even perfect repdigit in base b then there exists a prime p such

that 2p − 1 is prime and

6 ≤ N = 2p−1(2p − 1) ≤ |b| − 1 .

Theorem 1.2. (i) There is no perfect repdigit in base −2.

(ii) The only perfect repdigit in base −10 is 6.

2. Proofs

In this section we essentially prove analogues of results of [10] which are exploited

in the proof of our main results above. Similarly as in [10] we use the following

notions. The letters n,m, k denote positive integers, p, ` are reserved for primes,

and vp(n) is the exponent of the highest power of p dividing n. We denote by p+(n)

(p−(n), resp.) the largest (smallest, resp.) prime divisor of n. The symbol � stands

for a generic element in (Q×)2 . Thus, if x, y are nonzero rational numbers, then

x = y� means that the quotient x/y is a square of a rational number.

Our first main ingredient is a well-known fundamental result of Euler (e.g., see

[13, § 3.3]).

Lemma 2.1. [Euler] Let N be a perfect number.

(i) If N is even then there exists a prime p such that 2p − 1 is prime and

N = 2p−1(2p − 1) .
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(ii) If N is odd then there exist a natural number s and a prime p with p ≡ 1

(mod 4) such that

N = ps2 .

Our second main ingredient is the particular Lucas sequence

Un := Un(b) :=
bn − 1

b− 1
.

Here we always assume b ∈ Z\{−1, 0, 1}, and we denote by d a positive integer less

than |b|. In particular, we exploit the fact that the length of a repdigit in negative

base is odd.

Lemma 2.2. Let b < −1. The natural number N is a repdigit in base b if and only

if there is a digit d and an odd n such that

N = dUn(b) .

In this case the length of N in the representation in base b is n.

Proof. We observe that

N = d

n−1∑
j=0

bj = dUn

is positive if and only if n is odd (e.g., see [4, Proposition 3.1]). �

We now proceed as follows. First, we show the second part of Theorem 1.1. Then

we list several auxiliary lemmas; the proof of the last lemma is based on Theorem

1.1 (ii). These lemmas are applied in the final part where we complete the proof of

Theorem 1.1 and establish Theorem 1.2.

2.1. Proof of the second part of Theorem 1.1. We essentially proceed anal-

ogously as in [10, Lemma 7]. By Lemma 2.2 we have N = dUn with n odd, and

Euler’s Theorem (see Lemma 2.1) yields a prime p such that q := 2p − 1 is prime

and

N = dUn = 2p−1q .

If n = 1 then we have 6 ≤ N = d ≤ |b| − 1, since 6 is the smallest perfect number.

For the sake of contradiction we now assume n > 1. Then Un must be odd,

because otherwise

2 | bn−1 + · · ·+ b+ 1︸ ︷︷ ︸
n summands

which implies b odd and n even which is impossible. Thus we can write

Un = q ≥ 3 and d = 2p−1 .
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If n = 3 we have

b2 + b+ 1 = 2p − 1 = 2d− 1 < −2b− 1,

yielding

b2 + 3b+ 2 < 0,

which has no solution in Z.

Finally, the assumption n ≥ 5 implies

b2 < U5 ≤ Un < 2p ,

and therefore

|b| < 2p/2 ≤ 2p−1 = d

which is excluded. 2

2.2. Auxiliary results on the sequence Un(b). First we collect some divisibility

properties which will be needed in the sequel.

Lemma 2.3. If ` is a prime such that b ≡ 1 (mod `) then we have

v`(Un(b)) = v`(n) .

Proof. If v`(n) = 0 then our claim follows from

Un =

n−1∑
j=0

bj ≡ n (mod `) .

For v`(n) > 0 our assertion is clear by [13, Lemma 6.21]. �

Lemma 2.4. Let n ∈ N, p, ` be primes and e be the order of b modulo `.

(i) If ` divides bn − 1 then e divides n.

(ii) If e = p is a prime then p < ` and ` ≡ 1 (mod p) .

(iii) Suppose ` |Up(b). Then we have e ∈ {1, p} . Moreover, if e = 1 then

` = p ≤ |b|+ 1, and if p > |b|+ 1 then e = p .

Proof. (i) In view of

`t = bn − 1

with some integer t we have bn ≡ 1 (mod `) , which yields our claim.

(ii) We have ` > 2 and

p | # (Z/`Z)× = `− 1
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yielding p < ` and ` ≡ 1 (mod p) .

(iii) Our prerequisites and (i) yield e | p, hence e ∈ {1, p} . If e = 1 we have ` | b− 1.

We know from Lemma 2.3 that ` | p, hence

p = ` ≤ |b− 1| ≤ |b|+ 1 .

Finally, we observe that p > |b|+ 1 implies e 6= 1. �

Lemma 2.5. Let p = p+(n).

(i) If the prime ` divides

gcd
(
Up(b),

Un(b)

Up(b)

)
then we have b ≡ 1 (mod `) .

(ii) If b < −1 and p ≥ |b|+ 2 then we have

gcd
(
Up(b),

Un(b)

Up(b)

)
= 1 .

Proof. (i) Let e be the order of b modulo `, thus e ∈ {1, p} by Lemma 2.4. Assume

e = p, hence p < `. On the other hand, we have

Un
Up

=

n
p−1∑
j=0

(bp)j ≡ n

p
(mod `) ,

and since ` divides the quotient on the left hand side we conclude

` | n
p
| n ,

thus ` | n yielding ` ≤ p by our choice of p: Contradiction.

(ii) Suppose that there exists some prime ` which divides

gcd
(
Up,

Un
Up

)
.

Then b ≡ 1 (mod `) by (i), and ` | p by Lemma 2.3, hence

p = ` | b− 1 ,

which yields the absurdity

|b|+ 2 ≤ p ≤ |b− 1| ≤ |b|+ 1.

�
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Lemma 2.6. If k |n and

g := gcd
(bn/k − 1

b− 1
,

k−1∑
j=0

bjn/k
)
,

then g | k and

bn/k ≡ 1 (mod g) .

Proof. With m := n/k we have g | bm − 1, hence bm ≡ 1 (mod g) and further

gz =

k−1∑
j=0

(bm)j ≡ k (mod g) ,

with some integer z, which implies g | k. �

Similarly as in [10, Lemma 4] we consider the case that the product of two

members Un, Um of our Lucas sequence is a square. Luckily, for a negative base

this can only happen in the trivial case provided that both n and m are odd.

Lemma 2.7. Let b < −1. If n,m are odd and Un(b)Um(b) = � then n = m.

Proof. With k := gcd(n,m) we infer

gcd(Un(b), Um(b)) = Uk(b)

from [3, Lemma 1]. Thus there exist s, t ∈ N such that

(bk)n/k − 1

bk − 1
=
Un
Uk

=
UnUk
U2
k

= s2

and
(bk)m/k − 1

bk − 1
=
Um
Uk

= t2 . (2.1)

For the sake of contradiction we assume n < m.

First, suppose n/k ∈ {1, 2}. Since n is odd this implies n = k, hence n |m and

therefore m/k /∈ {1, 2}. But then (2.1) and [6] (see [10, Lemma 3]) yield

(bk,
m

k
, t) ∈ {(±3, 5, 11), (±7, 4, 20)} ,

which implies

(bk,
m

k
, t) ∈ {(±3, 5, 11)} ,

because m is odd. Therefore, we have b = −3, n = k = 1, m = 5 and t = 11

yielding the absurdity

61 =
(−3)5 − 1

−3− 1
=
b3 − 1

b− 1
= 112 .
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Second, suppose n/k /∈ {1, 2}. Again we deduce

(bk,
n

k
, s) ∈ {(±3, 5, 11), (±7, 4, 20)} ,

and the proof is completed similarly as above. The details are left to the reader. �

To complete the proof of Theorem 1.1 we need the following important conse-

quence of [14, Theorem 9.6]. Recall that for a given finite set S of primes the integer

z is an S-number if every prime which divides z is contained in S.

Lemma 2.8. Let S be a finite set of primes. Then the set

{n ∈ N : Un(b) = a� for some S-number a}

is finite, and all such n do not exceed an effectively computable constant which

depends only on S and b.

Based on Lemma 2.8 the proof of the next lemma follows the same lines as the

proof of its analogue [10, Lemma 8]. For the convenience of the reader we include

the details here.

Lemma 2.9. Let M ∈ N, b < −1, r a prime and N = dUn(b) = r� a repdigit

in base b such that p−(n) ≤ M . Then N is bounded by an effectively computable

constant which depends only on b and M .

Proof. Certainly, it suffices to show that n is effectively bounded. Observe that n

is odd, hence p := p−(n) > 2. Set m := n/p.

First, suppose r | d. Then we have Un = rd�. Since rd is supported on the

primes dividing |b| ! our assertion is clear by Lemma 2.8.

Second, suppose r - d. For some s ∈ N we have

rs2 = dUn = d · b
m − 1

b− 1
·
p−1∑
j=0

(bm)j ,

For

g := gcd
(bm − 1

b− 1
,

p−1∑
j=0

(bm)j
)
,

Lemma 2.6 yields

bm ≡ 1 (mod g) and g | p ,

and thus there exist square-free u, v ∈ N supported on the primes dividing dpr such

that

bm − 1

b− 1
= u� and

p−1∑
j=0

(bm)j = v� . (2.2)
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Thus we have duv = r�, and in particular vr(duv) is odd. Therefore r |uv since

r - d. Clearly, r |u or r | v, but not both because otherwise vr(duv) = 2.

Let S be the set of primes dividing |b| !M !, and assume r - u. Hence r | v, and

then u | dp by the above. In view of d < |b| and p ≤ M we conclude that u is

supported on S. Applying Lemma 2.8 to S and the first equality in (2.2) we see

that n/p is bounded by an effectively computable constant depending only on b

and M . Keeping in mind p ≤M also n is bounded.

Now, assume r |u. So r - v, and then v is supported on the set S of primes

introduced above. Writing w := bn/p the second equality in (2.2) yields

1 + w + w2 + · · ·+ wp−1 = vk2 (2.3)

with some integer k.

Consider the case p = 3 and write w = bδx2 with δ ∈ {0, 1} and x ∈ N. In both

cases an application of [10, Lemma 6] yields our assertion.

Finally, consider p > 3. Then the roots of the polynomial on the left hand side

of (2.3) are pairwise distinct, thus again by [10, Lemma 6] w is bounded by an

effectively computable constant depending only on p and v. Since p ≤ M and

v |
∏
`∈S ` we conclude that n is also bounded. �

We exploit this result to establish the analogue of [10, Lemma 9].

Lemma 2.10. Let b < −1, n ∈ N composite, r a prime and Un(b) = r�. Then n

is bounded by an effectively computable constant depending only on b.

Proof. Since Un(b) is positive n is odd. Set p := p+(n) and observe that in view

of Lemma 2.9 we may suppose

p+(n) ≥ max {7, |b|+ 2} .

Using Lemmas 2.5 and 2.7 the proof of [10, Lemma 9] can easily be adapted. �

The next inequality is extracted from the proof of [10, Lemma 10]. It will be

needed to establish Lemma 2.12 and Theorem 1.2.

Lemma 2.11. Let b < −1 and p > |b|+ 1. Then we have

σ(Up(b))

Up(b)
<
(

1 +
2

p

)(
1 +

2

p
· log

(3p

2
log(p− 2)

))
.

Proof. Settingm := Up and S := {` |m : ` ≡ 1 (mod p)} and applying Lemma 2.4

and well-known facts we have

σ(Up)

Up
=
∑
d|m

1

d
=
∏
` |m

∞∑
j=0

1

`j
=
∏
`∈S

∞∑
j=0

1

`j
.
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Exploiting some calculus we deduce

σ(m)

m
< exp

(∑
`∈S

1

`− 1

)
≤ exp

(ω(m)∑
j=1

1

jp

)
≤ exp

(1
p
(1+logω(m))

)
= exp

(1
p

)
exp
( logω(m)

p

)
,

where we denote by ω(m) the number of prime divisors of m. Clearly, we have

2ω(m) ≤ m < |b|p,

hence

ω(m) <
p

log 2
log |b| < 3p

2
log(p− 2),

and then our claim is easily verified. �

Now we show the analogue of [10, Lemma 10]. Observe that the result in par-

ticular applies to the case d = 1, i.e., to repunits.

Lemma 2.12. Let b < −1, d = � and dUn(b) be perfect. Then n is bounded by an

effectively computable constant depending only on b.

Proof. In view of Theorem 1.1 (ii) which we have proved above we may suppose

that dUn is odd, hence d is odd and Euler’s Theorem yields a prime r such that

dUn = r� .

Using Lemma 2.10 we may suppose that p := n is prime. Then [10, Lemma 2]

implies that d is not perfect which yields∣∣∣∣σ(d)

d
− 2

∣∣∣∣ ≥ 1

d
>

1

|b|
.

Further, we must have

σ(d) < 2d

because otherwise σ(d) > 2d yielding

2dUp = σ(dUp) ≥ σ(d)Up ≥ (1 + 2d)Up ≥ 1 + 2dUp

which is absurd. Therefore we have

2− σ(d)

d
=

∣∣∣∣σ(d)

d
− 2

∣∣∣∣ > 1

|b|

yielding
σ(d)

d
< 2− 1

|b|
.

Now it suffices to show

p < 482b2 .
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For the sake of contradiction we suppose the contrary and observe

6 log p

p
<

1

8|b|
.

From Lemma 2.11 we infer

σ(Up)

Up
<
(

1 +
2

p

)(
1 +

6 log p

p

)
≤
(

1 +
6 log p

p

)2
<
(

1 +
8

|b|

)2
< 1 +

1

2|b|
,

and this leads to the absurdity

2 =
σ(dUp)

dUp
≤ σ(d)

d
· σ(Up)

Up
<
(

2− 1

|b|

)(
1 +

1

2|b|

)
< 2 .

�

2.3. Completion of the proofs of Theorems 1.1 and 1.2. Now we are in a

position to complete the proof of our main results.

Proof of Theorem 1.1 (i). Let dUn be perfect. In view of Theorem 1.1 (ii) we

may assume that dUn is odd, thus by Euler’s Theorem

dUn = r�

with some prime r. In view of Lemma 2.12 we may suppose that d is not a square.

Thus there exists a prime ` with v`(d) odd, in particular ` ≤ d < |b|.
If ` = r then Un = d`�, and we are done by Lemma 2.8 where S is the set of

prime divisors of |b| !. Finally, let ` 6= r, hence ` |Un . Lemma 2.5 tells us that the

order e of b modulo ` divides n, and clearly we have e < `. Therefore, p−(n) < |b| :
Indeed, if e = 1 we have ` |n by Lemma 2.3, and if e > 1 then we know e |n and

e < ` < |b|. Thus our assertion drops out from Lemma 2.9. 2

Proof of Theorem 1.2. (i) In view of Theorem 1.1 it suffices to assume that

Un := Un(−2) is an odd perfect repdigit in base −2. Clearly, n is odd and at least

3. Euler’s Theorem yields a prime r with r ≡ 1 (mod 4) and an integer s such that

rs2 = Un = (−2)n−1 + · · ·+ (−2) + 1,

hence rs2 ≡ 3 (mod 4) which is impossible.

(ii) Let N be a perfect repdigit in base −10. If N is even we are done by Theo-

rem 1.1. Therefore, we suppose N = dUn(−10) is odd. Then both d and n are

odd, and we have n ≥ 3. From [10, Lemma 2] we infer that there exist a prime r

and a positive integer s such that r ≡ 1 (mod 4) and N = rs2. Therefore N ≡ 1

(mod 4) . Let p := p+(n), thus p > 2 and further d ∈ {3, 7}: Indeed, the assumption

d ∈ {1, 5, 9} implies d ≡ 1 (mod 4) and then the impossibility N ≡ 3 (mod 4) .
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Let us start with d = 3. Then we have

3 · 10p + 1

11
· 10n + 1

10p + 1
= 3Up

Un
Up

= 3Un = rs2 . (2.4)

From Lemma 2.5 we deduce that 3 is the only prime which can divide

gcd
(

3 · 10p + 1

11
,

10n + 1

10p + 1

)
.

Therefore (2.4) yields that one of

10p + 1

11
, 3 · 10p + 1

11
,

10n + 1

10p + 1
, 3 · 10n + 1

10p + 1

is a square. If the first is a square we have 2p+1 ≡ 3 (mod 4) yielding the absurdity

1 ≡ 3 (mod 4) .

If the second or the fourth is a square we have 3 ≡ k2 (mod 5) , which is impossible.

Thus we find
Un
Up

=
10n + 1

10p + 1
= � ,

hence UnUp = � , and then n = p by Lemma 2.7. Checking N = 3Up numerically

we see p ≥ 29. Now Lemma 2.11 shows

σ(Up)

Up
<

3

2

and then the contradiction

σ(N)

N
=
σ(3Up)

3Up
≤ 4

3

σ(Up)

Up
<

4

3
· 3

2
= 2 .

Finally, let d = 7. Then we have

7 · 10p + 1

11
· 10n + 1

10p + 1
= 7Up

Un
Up

= 7Un = N = rs2 (2.5)

with r 6= 7. Put

g := gcd
(10p + 1

11
,

10n + 1

10p + 1

)
First, suppose g = 1. From (2.5) we infer that one of

10p + 1

11
, 7 · 10p + 1

11
,

10n + 1

10p + 1
, 7 · 10n + 1

10p + 1

is a square, and we already know that the first cannot be a square. The second and

the fourth cannot be squares because then we would have the impossibility 2 ≡ k2

(mod 5). Similarly as above we then have

Un
Up

=
10n + 1

10p + 1
= 2 ,
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hence UnUp = 2 , and then n = p by Lemma 2.7. Checking N = 7Up numerically

we see p ≥ 23. Lemma 2.11 shows

σ(Up)

Up
< 1.52 ,

which implies the contradiction

σ(N)

N
=
σ(7Up)

7Up
≤ 8

7

σ(Up)

Up
< 2 .

Second, suppose g > 1. From Lemma 2.5 we deduce that 11 is the only prime

which can divide g. Since −10 ≡ 1 (mod 11) Lemma 2.4 yields p = ` = 11. Then

(2.5) reads

rs2 = 7Un = 7 · 1011 + 1

11
· k = 72 · 13 · 19m.

In view of 19 ≡ 3 (mod 4) we observe r 6= 19, and thus 192 |Un. We check that the

order of −10 modulo 192 equals 171 = 32 ·19, hence 19 |n yielding the contradiction

19 ≤ p+(n) = p = 11 .

This completes the proof. 2
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