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Abstract. Let G be a nonabelian group, A ⊂ G an abelian subgroup and

n > 2 an integer. We say that G has an n-abelian partition with respect to

A, if there exists a partition of G into A and n disjoint commuting subsets

A1, A2, . . . , An of G, such that |Ai| > 1 for each i = 1, 2, . . . , n. We classify

all nonabelian groups, up to isomorphism, which have an n-abelian partition,

for n = 2 and 3.
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1. Introduction and preliminaries

Let Γ be a simple graph and m,n two non-negative integers. We say that Γ

is (m,n)-partitionable if its vertex set can be partitioned into m independent sets

I1, . . . , Im and n cliques C1, . . . , Cn; that is

VΓ = I1 ] I2 ] · · · ] Im ] C1 ] C2 ] · · · ] Cn.

Such a partition of VΓ is called a (m,n)-partition of Γ (see [3]). We shall note some

special cases: (1, 1)-partitionable graphs are called split graphs (see [6]), (1, 0)-

partitionable graphs are called edgeless graphs, (0, 1)-partitionable graphs are called

complete graphs. In particular, in the case when m = 0 or n = 0, we essentially

split Γ into n cliques,

VΓ = C1 ] C2 ] · · · ] Cn,

or m independent sets,

VΓ = I1 ] I2 ] · · · ] Im,

respectively.

In the following all groups will be assumed finite. We now focus our attention on

a graph associated with a finite group – the so-called commuting graph. Let G be a

finite group and X a nonempty subset of G. The commuting graph C(G,X) = C(X),

has X as its vertex set with two distinct elements of X joined by an edge when

they commute in G. Commuting graphs have been investigated by many authors in
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various contexts, see for instance [4,5,8]. Clearly, C(G) is (0, n)-partitionable if and

only if G can be partitioned into n commuting subsets. This suggests the following

definition.

Definition 1.1. Let G be a nonabelian group and A ⊂ G a commuting subset

containing the identity element. We say that G has an n-abelian partition (with

respect to A), if there exists a partition of G into A and n disjoint commuting

subsets A1, A2, . . . , An of G, G = A ] A1 ] A2 ] · · · ] An, such that |Ai| > 1 for

each i = 1, 2, . . . , n.

Note that, if a group G has an n-abelian partition, then |G| > 2n + 1 and the

commuting graph C(G) is a (0, n+1)-partitionable graph. The following elementary

result shows that there does not exist a 1-abelian partition of a group with respect

to a commuting subset including the identity element.

Lemma 1.2. If a nonabelian group has an n-abelian partition with respect to a

commuting subset including the identity element, then n > 1.

Proof. Suppose the contrary. Let G = A ] A1 be a 1-abelian partition of G

with respect to a commuting subset A including the identity element. Then either

|A| > |G|/2 or |A1| > |G|/2. In the first case, 〈A〉 = G, and in the second case,

〈A1〉 = G. Thus, in both cases G is abelian, a contradiction. �

Clearly, if G has a commuting subset A (including the identity element) for

which every element outside of A has order larger than 2, then G has an n-abelian

partition for some integer n > 2. Actually, in this case, we can pair every element

outside of A with its inverse. Thus, for some integer n > 2, we have

G \A = {xi, x
−1
i |i = 1, 2, . . . , n},

and so

G = A ] {x1, x
−1
1 } ] {x2, x

−1
2 } ] · · · ] {xn, x

−1
n },

would be an n-abelian partition of G. In particular, this shows that every group of

odd order has an n-abelian partition with respect to A = 1, where n = (|G| − 1)/2.

Finally, our discussion in the previous paragraph and next lemma show that the

problem of finding an abelian partition of a group reduces to the case of centerless

groups of even order.

Lemma 1.3. If G is a nonabelian group with |Z(G)| > 1, then G has an n-abelian

partition with respect to Z(G), where n = |G : Z(G)| − 1.
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Proof. Let Z = Z(G), n = |G : Z|−1 and T = {x0, x1, . . . , xn} is a transversal for

Z in G, where x0 ∈ Z. Clearly, as the cosets of the centre are commuting subsets

of G, we have the following n-abelian partition for G with respect to Z:

G = Z ] Zx1 ] Zx2 ] · · · ] Zxn,

as required. �

For example, the dihedral groups

D2k = 〈a, b | ak = b2 = 1, b−1ab = a−1〉,

where k > 2 is an even integer, have a (k − 1)-abelian partition with respect to

Z(D2k) = {1, ak/2}. Nevertheless, the dihedral groups D2k, where k > 1 is an odd

integer, have no such a partition.

Lemma 1.4. For any integer n > 2, there exists a group G which has an n-abelian

partition with respect to an abelian subgroup.

Proof. It follows by considering the dihedral group D2k, where k = 2n. Take

A = 〈a〉 and Ai = Zaib, i = 1, 2, . . . , n, where Z = Z(D2k) = {1, an}. �

We are particularly interested in groups that have an abelian partition with

respect to an abelian subgroup. In fact, in all the examples we know of groups

with abelian partitions, they have a partition with respect to an abelian subgroup.

Therefore, we present the following conjecture for future work.

Conjecture 1.5. If G is a group with an abelian partition (with respect to a com-

muting subset containing the identity element), then G has an abelian partition with

respect to an abelian subgroup.

In the next section, the structure of groups G which have an n-abelian partition

with respect to an abelian subgroup, for n = 2 and 3, is obtained (Theorems 2.4

and 2.5).

All notation and terminology for groups are standard, however, we introduce

some more notation. Following S. M. Belcastro and G. J. Sherman [1], we denote

by #Cent(G) the number of distinct centralizers in a group G. We shall say that a

group G is n-centralizer if #Cent(G) = n. A noncommuting set of a group G (i.e.,

an independent set in commuting graph C(G)) has the property that no two of its

elements commute under the group operation. We denote by nc(G) the maximum

cardinality of any noncommuting set of G (the independence number of C(G)).

Finally, the number of distinct conjugacy classes of G is denoted by k(G). We use

An and Sn to denote an alternating and a symmetric group of degree n, respectively.
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2. Main results

If G has an n-abelian partition, then the pigeon-hole principle gives nc(G) 6

n + 1. Thus, by Corollary 2.2 (a) in [2], we obtain

|G| 6 nc(G) · k(G) 6 (n + 1)k(G),

which immediately implies that

n >

⌊
|G|

k(G)

⌋
− 1. (1)

Therefore, we have found a lower bound for n, when k(G) is known.

Example 2.1. Let G = L2(q), where q > 4 is a power of 2. We know that

|G| = q(q2 − 1) and k(L2(q)) = q + 1. Thus, if G has an n-abelian partition, then

by Eq. (1), we get n > q2 − q − 1. In particular, since A5
∼= L2(4), if A5 has an

n-abelian partition, then n > 11. In fact, A5 has a 20-abelian partition, as follows:

A5 = A ]A#
1 ]A#

2 ] · · · ]A#
20,

where A#
i = Ai \ {1}, for every i, and

A,A1, . . . , A5 are Sylow 5-subgroups of order 5,

A6, A7, . . . , A15 are Sylow 3-subgroups of order 3,

A16, A17, . . . , A20 are Sylow 2-subgroups of order 4.

Example 2.2. Similarly, if G1 = GL(2, q) and G2 = GL(3, q), q a prime power,

then we have

|G1| = (q2 − 1)(q2 − q) and k(G1) = q2 − 1, while

|G2| = (q3 − 1)(q3 − q)(q3 − q2) and k(G2) = q3 − q.

Again, if Gi has an ni-abelian partition, for i = 1, 2, by Eq. (1), we obtain n1 >

q(q − 1)− 1 and n2 > q2(q3 − 1)(q − 1)− 1.

Lemma 2.3. [9, Lemma 4.1] Let {g1, . . . , gm} be a largest noncommuting subset of

G. Then ∩mi=1CG(gi) is an abelian subgroup of G.

Proof. Assume the contrary and choose a, b ∈ ∩mi=1CG(gi) such that ab 6= ba.

Then it is easy to see that {a, bg1, bg2, . . . , bgm} is a noncommuting subset of G, a

contradiction. �

Before stating our main results we introduce another notation. Given a finite

group G, we denote by cs(G) the set of conjugacy class sizes of G. Itô proved that

[7, Theorem 1] if cs(G) = {1,m}, then G is a direct product of a Sylow p-group of

G with an abelian group. In particular, then m is a power of p.
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Theorem 2.4. The following conditions on a nonabelian group G are equivalent:

(1) G has a 2-abelian partition with respect to an abelian subgroup A.

(2) G = P ×Q, where P ∈ Syl2(G) with P/Z(P ) ∼= Z2 × Z2 and Q is abelian,

and A = 〈Z(G), t〉, where t ∈ G \ Z(G) and t2 ∈ Z(G).

Proof. (1) ⇒ (2) Suppose that G is a nonabelian group, which has a 2-abelian

partition G = A ]A1 ]A2. First of all, we notice that every noncommuting set of

G can have at most three elements. Now fix a noncentral element x of G. Since

CG(x) < G, we can choose y ∈ G, such that x and y do not commute. It is well

known that a group cannot be written as the union of two proper subgroups, thus

CG(x) ∪ CG(y) < G, and so we can choose z in G, such that B = {x, y, z} is a

noncommuting set of G. Now, we have

G = Cx ∪ Cy ∪ Cz,

where Cx = CG(x), Cy = CG(y) and Cz = CG(z). Put K = Cx ∩ Cy ∩ Cz, which

is an abelian subgroup of G, by Lemma 2.3. Indeed, by a result of Scorza [10], we

have

(a) [G : Cx] = [G : Cy] = [G : Cz] = 2,

(b) K = Cx ∩ Cy = Cx ∩ Cz = Cy ∩ Cz, and

(c) K is a normal subgroup of G and the factor group G/K is isomorphic to

the Klein Four Group.

Thus |xG| = 2, and since x ∈ G\Z(G) was arbitrary, it follows that cs(G) = {1, 2}.
By Itô’s result [7, Theorem 1], G = P × Q, where P ∈ Syl2(G) is nonabelian and

Q 6 Z(G).

On the other hand, B is a maximal noncommuting set of G, which forces Ct \K
to be a commuting set of G for each t ∈ B, and so the centralizer Ct is abelian,

because Ct = 〈Ct \K〉. This implies that K = Z(G), and so

P

Z(P )
∼=

P ×Q

Z(P )×Q
=

G

Z(G)
∼= Z2 × Z2,

and the proof is complete.

(2) ⇒ (1) Let {t1, t2, t3, t4} be a transversal for Z(G) in G, with t1 ∈ Z(G).

Then, G is a disjoint union:

G = Z(G) ∪ Z(G)t2 ∪ Z(G)t3 ∪ Z(G)t4.

Put A = Z(G) ∪ Z(G)t2, A1 = Z(G)t3 and A2 = Z(G)t4. Then A is an abelian

group (since t22 ∈ Z(G)), A1 and A2 are commuting sets, and G = A ] A1 ] A2 is

a 2-abelian partition of G. �
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We now work to determine which groups have a 3-abelian partition with respect

to an abelian subgroup.

Theorem 2.5. The following conditions on a nonabelian group G are equivalent:

(1) G has a 3-abelian partition with respect to an abelian subgroup A.

(2) |Z(G)| > 2 and G/Z(G) is isomorphic to one of the following groups:

Z2 × Z2, Z3 × Z3, S3.

In the first case, A = Z(G), and in two other cases A = 〈Z(G), x〉, where

x is an element of order 3 outside of Z(G).

Proof. (1) ⇒ (2) Suppose that G is a nonabelian group, which has a 3-abelian

partition G = A ] A1 ] A2 ] A3. First of all, we notice that nc(G) = 3 or 4.

It is now easy to see that G is either 3-centralizer or 4-centralizer, respectively.

Therefore, by Theorems 2 and 4 in [1], we conclude that G modulo its center is

isomorphic to one of the groups: Z2×Z2, Z3×Z3, or S3, as required. Finally, since

G is a nonabelian group with at least 7 elements, |Z(G)| > 2.

(2)⇒ (1) Let Z = Z(G). We treat separately the different cases:

(a) G/Z ∼= Z2 × Z2. In this case, there are noncentral elements x1, x2, and x3

of G such that G = Z ]Zx1 ]Zx2 ]Zx3, which is a 3-abelian partition of

G.

(b) G/Z(G) ∼= Z3 × Z3. In this case, we have

G/Z ∼= 〈Zx,Zy | x3, y3, [x, y] ∈ Z〉,

which implies that

G = Z ∪ Zx ∪ Zx2 ∪ Zy ∪ Zy2 ∪ Zxy ∪ Zx2y2 ∪ Zxy2 ∪ Zx2y.

We put

A := Z ∪ Zx ∪ Zx2 = 〈Z, x〉,
A1 := Zy ∪ Zy2 = 〈Z, y〉 \ Z,

A2 := Zxy ∪ Zx2y2 = 〈Z, xy〉 \ Z,

A3 := Zxy2 ∪ Zx2y = 〈Z, xy2〉 \ Z.

Then G = A ]A1 ]A2 ]A3 is a 3-abelian partition of G.

(c) G/Z ∼= S3. In this case, we have G/Z ∼= 〈Zx,Zy | x3, y2, (xy)2 ∈ Z〉, which

implies that

G = Z ∪ Zx ∪ Zx2 ∪ Zy ∪ Zyx ∪ Zyx2.
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Put A := Z ∪ Zx ∪ Zx2 = 〈Z, x〉. Then, G = A ] Zy ] Zyx ] Zyx2 is a

3-abelian partition of G.

The proof is complete. �
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[3] A. Brandstädt, Partitions of graphs into one or two independent sets and

cliques, Discrete Math., 152(1-3) (1996), 47-54.

[4] J. R. Britnell and N. Gill, Perfect commuting graphs, J. Group Theory, 20(1)

(2017), 71-102.

[5] A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite

non-abelian groups, Int. Electron. J. Algebra, 19 (2016), 91-109.
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