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Abstract 

The potentials and the field strengths of the electromagnetic field, the energies of particles and of the field are 

calculated for the relativistic uniformly charged system with invariant charge density. The difference between the 

relativistic approach and the classical uniform model is shown. The conclusion is proved that in the absence of the general 

magnetic field the energy of particles, associated with the scalar field potential, is twice as large in the absolute value as 

the energy, determined with the help of the tensor invariant of the electromagnetic field, which is part of the system’s 

Hamiltonian.  
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Göreli Uniform Modelde Elektromanyetik Alan 
 

Öz 
Elektromanyetik alanın potansiyelleri ve alan kuvvetleri, parçacıkların ve alanın enerjileri, değişmez yük 

yoğunluğuna sahip göreceli olarak uniform yüklü sistem için hesaplanır. Rölativistik yaklaşım ile klasik uniform modeli 

arasındaki fark gösterilmektedir. Sonuç olarak, genel manyetik alanın yokluğunda, skaler alan potansiyeline bağlı 

parçacıkların enerjisinin, Hamiltonian sistemin bir parçası olan elektromanyetik alanın tensör değişmezinin yardımıyla 

belirlenen enerji kadar mutlak değerde iki kat daha fazla olduğu sonucuna varılmıştır. 
 

Anahtar Kelimeler: elektromanyetik alan, enerji, rölativistik uniform sistem 

   

INTRODUCTION 

In classical physics, the ideal uniform model of 

a body is widely used, in which the mass density is 

constant over the entire volume of the body or is 

given as the volume-averaged quantity. This model 

simplifies the solution of physical problems and 

allows us to quickly estimate various physical 

quantities. For example, the body mass is calculated 

simply by multiplying the mass density by the body 

volume, which is easier than integrating the density 

over the volume in case of the density’s dependence 

on the coordinates. The disadvantage of the classical 

model is that the majority of real physical systems 

are far from this ideal uniformity. 

The use of the relativistic uniform system’s 

concept is based on the special theory of relativity 

and it is the next step towards more precise 

description of physical systems. In the relativistic 

approach the invariant charge density (and the 

invariant mass density) of the particles that make up 

the system is used. Due to the motion of particles, the 

effective charge density and mass density in the 

system differ from the invariant values, which 

introduces additional corrections to the values of the 

field functions and the system’s energy. 

Previously, the properties of the relativistic 

uniform system were studied in (Fedosin, 2014a; 

Fedosin, 2015; Fedosin, 2016a). The purpose of this 

work is to obtain more precise results in respect of 

the electromagnetic field, to calculate the second 

order corrections, as well as to check the relationship 

between the contributions into the relativistic energy 

of the system from the energy of particles in the 

scalar electric potential and from the proper energy 

of the electric field. The obtained results can be used 

to assess the properties of such relativistic objects as 

the proton and the charged neutron star 

corresponding to it. These objects are uniform 

enough, as the central mass density in them is only 

1.5 times greater than the average density (Fedosin, 

2012a; Fedosin, 2016a). We assume that distribution 

of the effective density of the electric charge over the 

volume of these objects is similar to distribution of 

the effective mass density, which is confirmed for a 
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proton in (Kelly, 2001; Yakhshiev and Kim, 2013). 

In this case, we can assume that emerging of the 

radial dependence of the effective density is mainly 

associated with the radial dependence of the 

particles’ speed, with almost constant invariant 

density of mass and charge. As a result, the use of the 

relativistic uniform model is quite reasonable, at least 

as a first approximation. 

On the other hand, the theoretical approach we 

used would not be effective in respect of the objects, 

in which the electromagnetic forces between the 

charges were comparable in magnitude with the 

gravitational forces. In this case, due to the charges’ 

repulsion from each other we can expect the surface 

distribution of the charge rather than uniform 

distribution over the volume. However, in neutron 

stars and protons there are additional forces, besides 

gravitation, which hold their matter and prevent the 

charge transfer. In the case of neutron stars it is 

strong interaction between closely spaced nucleons, 

which significantly increases the binding energy.  

In the following sections, by solving equations 

of electromagnetic field inside and outside a 

stationary relativistic uniform system, the main field 

characteristics will be determined, including 

dependences of the electric potential and field 

strength on the current radius, as well as contribution 

to the system energy from the energy of charged 

particles in electric field and contribution from the 

integral tensor invariant. Then these energies will be 

compared with the electrostatic energy of the system 

and with the energy calculated using energy-

momentum tensor of the electromagnetic field. 

 

POTENTIALS AND FIELD STRENGTHS 

It is convenient to consider as a relativistic 

uniform system the spherical system consisting of 

charged particles. The system’s stability can be 

maintained by gravitation, the internal pressure field 

and the particles’ acceleration field (Fedosin, 2014b; 

Fedosin, 2016b). Moreover, the acceleration field 

tracks the motion of the particles kinematically rather 

than dynamically. It allows us to uniquely calculate 

the energy and the four-acceleration of the particles 

using the stress-energy tensor of the acceleration 

field, in contrast to many other variants of the stress-

energy tensors of matter. In (Fedosin, 2016c) it was 

shown that due to the acceleration field an additional 

acceleration emerges in the system, which 

counteracts the gravitation force and changes the 

ratio of energies in the virial theorem. The 

equilibrium condition of the system in question 

follows from the equation of motion, presented in 

(Fedosin, 2016b) in the general form and in (Fedosin, 

2016c) for typical particles, each of which occupies 

a representative volume element and determines the 

basic properties of the system. The wave equations 

hold true for the potentials of all the four fields, while 

at zero matter density in the solution for the pressure 

field and for the acceleration field the potentials of 

these fields vanish. For the field strengths and 

solenoidal vectors equations are used, the structure 

of which coincides with that of Maxwell equations. 

The field functions are calculated on the 

assumption that there is no common rotation of 

particles in the system and at each point they move 

randomly. This leads to the absence of the mass 

currents and electric currents inside the system and 

to vanishing of the global vector potentials and the 

solenoidal vectors of all the fields. Indeed, from the 

solution of wave equations for a single moving 

charged particle it follows that the vector potential of 

the electromagnetic field of the particle is directed 

along its velocity. If we take the volume of any part 

of the system, containing a sufficiently large number 

of particles, and sum up the vector potentials of these 

particles, then, due to multidirectionality of the 

particles’ velocities, the global vector potential in 

each of these volumes will tend to zero. The same 

can be said in respect of the magnetic field, which is 

calculated as the curl of the global vector potential. 

The magnetic field outside the system under 

consideration also turns out to be zero. Similarly, we 

can consider other fields that we use, including their 

global vector potentials and solenoidal vectors. 

In principle, we can arrive at the conclusion that 

the vector potential of a particle is directed along its 

velocity without solving field equations. To do this, 

it is sufficient to take into account the general 

definition of the four-potential of the vector field for 

solid uniform particle (Fedosin, 2014b). On the other 

hand, while solving the equations we use the Lorentz 

gauge, which relates the partial derivative of the 

scalar potential with respect to time and the 

divergence of the vector potential. Due to the field’s 

stationarity, the scalar potential does not depend on 

the time, and then the divergence of the vector 

potential must be zero, and the lines of the vector 

potential must be closed. Since the random motion of 

the particles does not allow these lines to be closed, 
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the vector potential, averaged with respect to a 

certain volume of the system, becomes equal to zero. 

The inhomogeneous electromagnetic wave 

equation for the scalar potential inside the sphere has 

the standard form: 

 

0

0

q

i

 





 = −                                             (1) 

 

In Equation (1) the Lorentz factor of typical 

particles is 
2 2

1

1 v c
  =

−
, v  is the root-mean-

square speed of motion of an arbitrary particle inside 

the sphere, c  is the speed of light, 0  is the vacuum 

permittivity, 
0q  is the particle’s charge density in 

the reference frame associated with the particle, the 

index i  distinguishes the internal potential i  from 

the external potential o , which is generated by the 

sphere outside its limits. The value 0q q   =  in 

Equation (1) represents the effective charge density. 

Both the potential i  and    are the functions of the 

current radius r  inside the sphere and they do not 

depend on the angular variables or the time due to the 

stationarity of all the fields. Therefore, in the 

spherical coordinates, in the Laplacian it is enough 

to take only the part which depends on the radius: 

 

02

2

0

1 i q
dd

r
r dr dr

  



 
= − 

 
 

 

If we make substitution of variables in the form 

i

Z

r
 = , then the equation can be rewritten as 

follows: 

 
2

0

2

0

1 qd Z

r dr

 




= −  

 

The dependence of    on the radius was 

calculated in (Fedosin, 2015): 

 
2

0
0 2

0

2
4

34

c c
c

c r r

c cr

    
    

  

 
 =  − 

 
sin    (2) 

 

where c  is Lorentz factor of the particles at the 

center of the sphere,   is the acceleration field 

coefficient, 0  is the invariant mass density of the 

particles. 

 

Substituting Equation (2) into the equation for 

Z , we have: 

 
2

0

02

0 0

sin 4
4

q ccd Z r

dr c

 
 

  

 
= −  

 
 

 

The general solution of this equation has the 

form: 

 
3

0

1 2 0

0 0 0

sin 4
4 4

q cc r
Z C C r

c

 
  

     

 
= + +  

 
 

 

Since 
i

Z

r
 = , and in the center at 0r =   the 

potential cannot be infinite, the coefficient 1C  must 

be equal to zero. Hence, the potential inside the 

sphere will equal: 

 
3

0

2 0

0 0 0

sin 4
4 4

q c

i

c r
C

cr

 
   

     

 
= +  

 
          (3) 

 

Let us now pass on to calculation of the external 

electric potential o  of the fixed sphere, filled with 

moving charged particles. First, we will find the 

strength of the external electric field of the sphere. 

The Maxwell equations of the electromagnetic field 

have the standard form: 

 

0

0

q 




  =E        

0

2 2

0

1 q

c t c

 



 
 = +



vE
B        

0 =B        
t


 = −



B
E                               (4) 

 

According to Equation (4), the particles moving 

inside the sphere at velocities v  generate around 

themselves the electromagnetic field with the 

strength E  and the magnetic field B . Let us 

surround the sphere with the shell of a spherical 

shape with an arbitrary radius r a  and integrate the 

first relation in Equation (4) over the volume of the 
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shell. We will also apply the Gauss theorem, 

replacing the integral of the divergence  E  with 

the integral of the vector E  over the surface S  of 

the shell. Due to the symmetry of the sphere at the 

constant density 
0q , for the vector E  outside the 

sphere we find the following: 

 

02

0

4
q

o o o sdV dS r E dV


 


  =  = =  E E n            (5) 

 

The vector n  in Equation (5) denotes the unit 

normal vector to the surface of the shell, directed 

outward. The integration over the volume V  of the 

shell is reduced to integration over the volume sV  of 

the sphere, since outside the sphere 0 0q = . 

Substituting here    from Equation (2) and 

integrating, we obtain the magnitude of the field 

strength outside the sphere and the field strength 

itself, directed radially: 

 
2

0

0 03

0 0 0

sin 4 cos 4
4 4

q c

o

c c a a
a

r c c

 
   

    

    
= −    

     

r
E                             (6) 

 

3 3 2

0 0

3
1

4 4 10

b c
o

q q m

r r ac

 

 

 
=  − 

 

r r
E  

 

The mass m  in Equation (6) is defined as the 

product of the mass density 0  by the volume of the 

sphere. The supplementary charge q  is equal to the 

product of the charge density 
0q   by the volume of 

the sphere: 

3

04

3

qa
q

 
= . However, actually the 

electric field outside the sphere is defined by the 

charge bq , which equals according to Equations (5-

6): 

 
2

0

0 0 0

0 0

2

sin 4 cos 4
4

3
1

10

q c

b q s

c

c c a a
q dV a

c c

m
q

ac

 
     

   




    
= = −     

     

 
 − 

 



 
 

The relationship between the vectors of the 

electromagnetic field and the four-potential is the 

following: 

 

0 0

1
j j jA A E

c
 −  =    i j j i kA A B − = −        (7) 

 

where the indices , , 1,2,3i j k =  do not coincide 

with each other. 

 

The space components jA  of the four-potential 

are the components of the vector potential A , which 

in this case is equal to zero. Consequently, in 

Equation (7) the components 
jE  of the vector E  

are associated only with the time component 
0A

c


=  

of the four-potential: j jE = − . This equality in 

vector notation is written as follows: = −E . 

Hence, in view of Equation (6), for oE  it follows 

that: 

 
2

0

0 0

0 0 0

sin 4 cos 4
4 4

q c

o o

c c a a
E dr a

r c c

 
    

    

    
= − = −    

     
  

 

2

0 0

3
1

4 4 10

b c
o

q q m

r r ac

 


 

 
=  − 

 
                                                        (8) 
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At infinity, this potential becomes equal to zero. 

At the surface of the sphere potential in Equation (8) 

must coincide with the internal potential in Equation 

(3). Let us assume that r a=  and equate the two 

potentials. This allows us to determine the 

coefficient 2C  and to specify the internal potential 

i : 

 
2

0

2 0

0 0

cos 4
4

q cc a
C

c

 
 

  

 
= −  

 
 

 
2 2 2

0 0

0 0

0 0 00

(3 )
sin 4 cos 4

4 64

q c q c

i

c a rc r a
r

r c c

   
    

    

  −   
= −     

     

               (9) 

 

Now we can calculate the electric field strength inside the sphere. Taking into account the equality of the 

vector potential A  to zero, we have the following: 

 
2

0

0 03

0 0 0

2
0 0

2

0

sin 4 cos 4
4 4

2
1

3 5

q c

i i

q c

c c r r
r

r c c

r

c

 
    

   

  



    
= − = −     

     

 
 − 

 

r
E

r
                   (10) 

 

In Equation (10) we added the following 

expansion term, which contained the squared speed 

of light in the denominator and showed the 

difference of the relativistic uniform system from the 

classical case. 

 

ENERGY OF PARTICLES AND FIELDS 

We will first calculate the contribution into the 

system’s relativistic energy from the energy of 

particles in the electric field, which was defined in 

(Fedosin, 2016b) as the integral over the volume 

taken with respect to the product of the effective 

charge density inside the sphere 0q q   =  by the 

internal scalar potential i . In view of Equations (2) 

and (9), we have: 

 

0

02 4 2

0 0

0 02 2

0 0 0

0

2 2

2

0

sin 4
4 2

cos 4 sin 4
4 2 4 4

cos 4

3 4
1

10 7

q i

q c

c

dV

c a

cc a a c a

c ca
a

c

q m

a ac

  

  
    

     
      

  

 

 

 =

   
−   

      = − − +            −       

 
 − 

 



  (11)

 

Note that the value of the energy obtained in 

Equation (11) is twice as large as the electrostatic 

energy of the charged particles inside the sphere. We 

will now calculate the integral over the volume of the 

tensor invariant of the electromagnetic field, 

separately for the field inside and outside the sphere. 

The integral of the tensor invariant is expressed in 

terms of the electric field strength and the magnetic 

field: 

 

2
2 2 20 0 ( )

4 2

c
F F dV E c B dV



 
= − − 

 
 

This integral is included in this form in the 

relativistic energy of the system, where it makes the 

contribution from the electromagnetic field (Fedosin, 

2016b). Substituting here Equations (10) and (6), and 

taking into account that 0=B , we find: 

 



  
  

 Int. J. Pure Appl. Sci. 4(2): 110-116 (2018)  
    

Research article/Araştırma makalesi 

DOI: 10.29132/ijpas.430614                    

  

115 

 

2
20 0

0 0

2 4 2 2
0 2

0 02 2

0 0 00

2 2

2

0

4 2

2
sin 4 sin 4

8 2 44 4

3
1

40 7

a a

i

r r

q c

c

c
F F dV E dV

c a c a c a

c a c

q m

a ac





 

 
   

     

 



= =

= − =

    
= − + −     

     

 
 − − 

 

 

 
 

2
20 0

2
2 4 2

0

0 02 2

0 0 0

2 2

2

0

4 2

sin 4 cos 4
8 4

3
1

8 5

o

r a r a

q c

c

c
F F dV E dV

c c a a
a

a c c

q m

a ac





 

 
   

    

 



 

= =

= − =

    
= − −     

     

 
 − − 

 

 

  (12) 

 

CONCLUSION 

In the framework of the covariant theory of 

gravitation, a conclusion was made for the 

gravitational field that the contribution into the 

relativistic energy of the system from the energy of 

the matter at rest in the gravitational scalar potential 

was twice as large in its absolute value as the integral 

of the tensor invariant of the gravitational field, and 

the same held true for the electromagnetic field 

(Fedosin, 2012b). Would it be different in case of the 

relativistic uniform system, where the particles of 

matter are not motionless, but are moving with the 

Lorentz factor as in Equation (2), which depends on 

the current radius? 

To answer this question, we can sum up the 

integrals in Equation (12) taken with respect to the 

tensor invariant both inside and outside the sphere, 

and compare the result with Equation (11). This 

gives the following: 

 
2 2

0 0

0

2

0
0

0

4 4

1

4 2

a

r r a

q i

r

c c
F F dV F F dV

c
F F dV dV

 

 





 


  



= =



=

+ =

= −

 

 

   (13) 

 

Thus, the relation for the energies does not 

depend on the type of system uniformity – both in the 

classical and relativistic cases, the relation remains 

the same. It should be noted that due to the random 

motion of particles the total magnetic field induction 

is zero everywhere, and therefore the sum of the 

integrals on the left side of Equation (13) is equal in 

its absolute value to the electric potential energy of 

the system. 

At first glance, such a coincidence may seem 

occasional. Indeed, the contribution into the 

relativistic energy of the system from the energy of 

the particles in the electric field from Equation (11) 

is twice as large as the electric potential energy, and 

at 0=B  it is up to a sign equal to the double value 

of the integral of the tensor invariant on the left-hand 

side of Equation (13). However, it is generally 

accepted that the electromagnetic field energy is 

positive and is calculated by volume integration of 

the temporary component 
00W  of the stress-energy 

tensor of the electromagnetic field. The field energy 

obtained this way differs by its sign from the integral 

of the tensor invariant, which is negative. Hence it 

follows that the terms in the relativistic energy of the 

system, which are responsible for the energy of the 

particles in the electromagnetic field and for the 

energy of the electromagnetic field itself, differ both 

from the electric potential energy and from the field 

energy, calculated with the help of the stress-energy 

tensor. 

Given that the effective charge density inside 

the sphere is 0q q   = , the two variants of 

estimating the electric potential energy used in 

electrostatics can be represented as follows: 
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2 2
E q iU dV E dV


   = =              (14) 

 

The electric potential energy EU  represents the 

total contribution into the relativistic energy of the 

system made due to the presence of the electric 

charges in the system. Thus, in (Feynman at al., 

1964) the energy EU  is calculated using the method 

of virtual work by transferring the charges from 

infinity to the sphere until the sphere achieves a 

certain radius. While this work is performed, the 

charges acquire energy in the electric potential of the 

sphere, and the energy of the field itself increases. 

Thus, the energy EU  contains two components – the 

energy of the charges in the electric potential and the 

field energy. 

Let us now sum up the left-hand sides of 

Equations (11) and (13) to find the total contribution 

into the relativistic energy of the system, arising due 

to the presence of the electric charges. If we take into 

account the right-hand side of Equation (13) and the 

definition of the electric potential energy in Equation 

(14), we will again obtain the energy EU . This 

shows that indeed the contribution into the system’s 

energy is made by the energy of the charges in the 

electric potential as well as by the field energy. 

However, as mentioned above, these energies 

coincide neither with the electric potential energy nor 

with the field energy, found using the stress-energy 

tensor of the electromagnetic field. This arises due to 

difference between the covariant approach that takes 

into account the principle of least action, and the 

noncovariant approach of the classical electrostatics. 

Note also that Equation (13) can be interpreted 

as an example of action of the theorem of 

equipartition of energy. According to this theorem, 

the degrees of freedom, included in the Hamiltonian 

quadratically, contribute to the energy of the system 

two times less than the degrees of freedom, included 

in the Hamiltonian linearly (Huang, 1987). The 

electric field strength is included in the tensor 

invariant quadratically and the electric field potential 

is included in relativistic energy linearly. As a result, 

according to Equation (13), the field strength and the 

field potential can be considered separate and 

independent degrees of freedom of the 

electromagnetic field, which are equally necessary 

for description of the processes in the field. 
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