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Abstract. The surface-surface intersection (SSI) problem is very important subject in geometry. We examined
perpendicular transversal intersection problems of eight Frenet ruled surfaces which are called ” Involutive Frenet
ruledsurfaces (IFRS) and Mannheim Frenet ruled surfaces (MFRS) ofa curve α, in terms of the Frenet apparatus
of curve α. First using only one matrix and orthogonality conditions of the eight normal vector fields are given.
Further perpendicular transversal intersection conditions and curves if there exist of eight IFRS and MFRS are
examined.
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1. Introduction and Preliminaries

The surface-surface intersection (SSI) problems can be three types: parametric-parametric, implicit-implicit, para-
metric - implicit. The SSI is called transversal if the normal vectors of the surfaces are linearly independent. Also
the SSI is called tangential if the normal vectors of the surfaces are linearly dependent, at the intersecting points. In
transversal intersection problems, the tangent vector of the intersection curve can be found easily by the vector product
of the normal vectors of the surfaces. Because of this, there are many studies related to the transversal intersection
problems in literature on differential geometry. Also there are some studies about tangential intersection curve and its
properties. Some of these studies are mentioned by Wu, Al essio and Costa in [13], using only the normal vectors
of two regular surfaces, present an algorithm to compute the local geometric properties of the transversal intersection
curve. Tangential intersection of two surfaces are examined in [1] too. We have already try generate a surface based
on the other surface. The evolute and involute curves, Mannheim curves or Bertrand curves are the famous examples
of the generated curve pairs. In the view of such information we have generate a new ruled surface based on the other
ruled surface which are called as involutive B− scrolls, and the involute D̃− scroll . They are examined in [11] and [12]
respectively. In this paper we consider special Frenet ruled surface, cause of their generators are the Frenet vector fields
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of a curve. The quantities
{
V1,V2,V3, D̃, k1, k2

}
are collectively Frenet-Serret apparatus of a curve α, where V1,V2, and

V3 are Frenet-Serret vector fields, k1 and k2 are first and second curvatures, respectively. Also

D̃(s) =
k2

k1
(s)V1 (s) + V3 (s)

is the modified Darboux vector field of α [5]. A ruled surface can always be described (at least locally) as the set of
points swept by a moving straight line. Frenet ruled surface is one which can be generated by the motion of a Frenet
vector of any curve in IE3. The famous example of this situation can be seen in [3]. In this study tangent, normal,
binormal, Darboux ruled surfaces of any curve are collectively named ”Frenet ruled surfaces (FRS) of the curve α”.
Before, in [7] we have an examination on the positions of Frenet ruled surfaces along Bertrand pairs according to their
normal vector fields . Further we have some results on the positions of Frenet ruled surfaces along involute-evolute
curves according to their normal vector fields in [11].

Definition 1.1 ( [2]). In the Euclidean 3 − space, let α(s) be the arclengthed curve. The equations


ϕ1 (s, u1) = α (s) + u1V1 (s)
ϕ2 (s, u2) = α (s) + u2V2 (s)
ϕ3 (s, u3) = α (s) + u3V3 (s)
ϕ4 (s, u4) = α (s) + u4D̃(s)

are the parametrization of tangent ruled surface, normal ruled surface, binormal ruled surface, Darboux ruled surface
couse of they are generated by the motion of tangent, normal, binormal, Darboux Frenet vector field of any curve,
respectively, in IE3. Collectively they are called Frenet ruled surfaces (FRS).

Theorem 1.2 ( [11]). In the Euclidean 3 − space, let η1, η2, η3, and η4 be the normal vector fields of Frenet ruled
surfaces ϕ1, ϕ2, ϕ3 and ϕ4, recpectively, along the curve α. They can be expressed by the following matrix;

[
η
]

=


η1
η2
η3
η4

 =


0 0 −1
a 0 b
c d 0
0 −1 0


 V1

V2
V3


where

a =
−u2k2√

(u2k2)2 + (1 − u2k1)2
, b =

(1 − u2k1)√
(u2k2)2 + (1 − u2k1)2

,

c =
−u3k2√

(u3k2)2 + 1
, d =

−1√
(u3k2)2 + 1

.

Involute of a curve is very familiar offset curve. If the tangent vectors of α and α∗are intersect orthogonally they
are called evolute and involute curves, respectively. Let the quantities V∗1 ,V

∗
2 ,V

∗
3 and D̃∗ be collectively Frenet-Serret

vector fields, k∗1, and k∗2 be curvatures of the second curve α∗. Then we have the equalites
〈
V∗1 ,V1

〉
= 0,V2 = V∗1 . For

the evolute and involute curves.

α∗ (s) = α (s) + (σ − s)V1 (s)

is the equation of involute of the curve α. The Frenet vectors of the involute α∗, based on the its evolute curve α [4] are
V∗1 = V2, V∗2 =

−k1V1+k2V3

(k2
1+k2

2)
1
2
, V∗3 =

k2V1+k1V3

(k2
1+k2

2)
1
2

D̃∗ = k2√
k2

1+k2
2

V1 −
k′1k2−k1k

′

2

(k2
1+k2

2)
3
2

V2 + k1√
k2

1+k2
2

V3
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where D̃∗ is the modified Darboux vector of involute curve α∗of an evolute curve α, based on the Frenet apparatus of
evolute curve α.The first and second curvature of involute α∗, respectively, are

k∗1 =

√
k2

1 + k2
2

(σ − s)k1
, k∗2 =

−k2
2

(
k1
k2

)′
(σ − s)k1

(
k2

1 + k2
2

) .
For more detail see in [4, 9].Mannheim curve was firstly defined as by A. Mannheim in 1878. A curve is called a
Mannheim curve if and only if k1

(k2
1+k2

2)
is a nonzero constant, k1 is the curvature and k2 is the torsion. Mannheim

curve was redefined as; if the principal normal vector of first curve and binormal vector of second curve are linearly
dependent, then first curve is called Mannheim curve, and the second curve is called Mannheim partner curve by Liu
and Wang. As a result they called these new curves as Mannheim partner curves. For more detail see in [10].

Let α∗∗ : I → E3 be the C2−class differentiable curve with Frenet Apparatus
{
V∗∗1 (s∗∗) ,V∗∗2 (s∗∗) ,V∗∗3 (s∗∗) , k∗∗1 , k

∗∗
2

}
.

If the principal normal vector V2 of the curve α is linearly dependent on the binormal vector V∗∗3 of the curve α∗∗, then
the pair {α, α∗∗} is said to be Mannheim pair, then α is called a Mannheim curve and α∗∗ is called Mannheim partner
curve of α where < (V1,V∗∗1 ) = cos θ and besides the equality k1

k2
1+k2

2
= constant is known the offset property,for some

non-zero constant. In [8] Mannheim offsets of ruled surfaces are defined and characterized. For some function λ∗∗,
since V2 and V3 are linearly dependent. Mannheim partner curve has the following equation;

α∗∗ (s) = α (s) − λV2 (s)

where λ = −k1
k2

1+k2
2
. Frenet-Serret apparatus of Mannheim partner curve α∗∗, based in Frenet-Serret vectors of Mannheim

curve α are 
V∗∗1 = cosθ V1 − sinθ V3, V∗∗2 = sinθ V1 + cosθ V3, V∗∗3 = V2

D̃∗∗(s) = k1
λk2

cos2 θ
θ̇

V1 + V2 −
k1
λk2

cos θ sin θ
θ̇

V3

where D̃∗∗ is the modified Darboux vector of Mannheim partner α∗∗of a Mannheim curve α. The curvature and the
torsion have the following equalyties,

k∗∗1 = −
dθ
ds∗

=
θ̇

cos θ
, k∗∗2 =

k1

λk2

we use dot to denote the derivative with respect to the arc length parameter of the curve α. Also ds
ds∗∗ = 1

cos θ , where |λ|
is the distance between the curves α and α∗. For more detail see in [8].

Normal vector fields of IFRS and MFRS. In this section first, we give the Tangent, Normal, Binormal, Darboux
Frenet ruled surfaces of the involute curve α∗. Further we write their parametric equations in terms of the Frenet
apparatus of the involute-evolute curve curve α. Hence, they are called collectively ”Involutive Frenet ruled surfaces
or IFRS of curve α” as in the following way.

Definition 1.3 ( [11]). In the Euclidean 3 − space, let α(s) be the arclengthed curve. The equations

ϕ∗1 (s, v1) = α (s) + (σ − s)V1 (s) + v1V2 (s)

ϕ∗2 (s, v2) = α (s) + (σ − s)V1 (s) + v2

(
−k1V1+k2V3

(k2
1+k2

2)
1
2

)
ϕ∗3 (s, v3) = α (s) + (σ − s)V1 (s) + v3

(
k2V1+k1V3

(k2
1+k2

2)
1
2

)
ϕ∗4 (s, v4) = α (s) + (σ − s)V1 (s)

+v4

(
k2√
k2

1+k2
2

V1 −
k′1k2−k1k

′

2

(k2
1+k2

2)
3
2

V2 + k1√
k2

1+k2
2

V3

)
are the parametrization of the ruled surfaces which are called involutive tangent ruled surface (ITRS ), involutive
normal ruled surface (INRS ), involutive binormal ruled surface (IBRS ), involutive Darboux ruled surface (IDRS ),
respectively, couse of they are generated by the motion of tangent, normal, binormal, Darboux Frenet vector field of
involute curve. respectively, in IE3. They are called collectively ” Involutive Frenet ruled surfaces (IFRS).
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Theorem 1.4 ( [11]). In the Euclidean 3− space, the normal vector fields η∗1, η
∗
2, η
∗
3,and η∗4 of ruled surfaces ϕ∗1, ϕ

∗
2, ϕ

∗
3,

and ϕ∗4, recpectively, along the curve involute α∗, can be expressed by the following matrix;

[
η∗

]
=


η∗1
η∗2
η∗3
η∗4

 =


0 0 −1
a∗ 0 b∗

c∗ d∗ 0
0 −1 0


 V∗1

V∗2
V∗3


where

a∗ =
−v2k∗2√(

v2k∗2
)2

+
(
1 − v2k∗1

)2
, b∗ =

(
1 − v2k∗1

)
√(

v2k∗2
)2

+
(
1 − v2k∗1

)2
,

c∗ =
−v3k∗2√(
v3k∗2

)2
+ 1

, d∗ =
−1√(

v3k∗2
)2

+ 1
.

Also we give the Tangent, Normal, Binormal, Darboux Frenet ruled surfaces of the Mannheim partner α∗∗ of curve
α. Further we write their parametric equations in terms of the Frenet apparatus of the Mannheim curve α. Hence they
are called collectively ” Mannheim Frenet ruled surfaces of curve (MFRS) of curve α” as in the following way.

Definition 1.5 ( [6]). In the Euclidean 3 − space, let α(s) be the arclengthed curve. The equations

ϕ∗∗1 (s,w1) = α + w1cosθV1 − λV2 − w1sinθV3
ϕ∗∗2 (s,w2) = α + w2sinθ V1 − λV2 + w2cosθV3
ϕ∗∗3 (s,w3) = α + w3V2 − λV2

ϕ∗∗4 (s,w4) = α + w4
k1 cos θcosθ

λθ̇k2
V1 + (w4 − λ) V2

−w4
k1 cos θsinθ

λθ̇k2
V3

are the parametrization of the ruled surfaces which are called Mannheim Tangent ruled surface (MTRS), Mannheim
Normal ruled surface (MNRS), Mannheim Binormal ruled surface (MBRS), Mannheim Darboux ruled surface (MDRS),
respectively, couse of they are generated by the motion of tangent, normal, binormal, Darboux Frenet vector field of
Mannheim partner of any curve, respectively, in IE3. They are called collectively as Mannheim Normal ruled surface,
(MFRS).

Theorem 1.6 ( [6]). In the Euclidean 3 − space , the normal vector fields η∗∗1 , η
∗∗
2 , η

∗∗
3 , and η∗∗4 of ruled surfaces

ϕ∗∗1 , ϕ
∗∗
2 , ϕ

∗∗
3 , and ϕ∗∗4 , recpectively, along the curve

Mannheim partner α∗, can be expressed by the following matrix;

[
η∗∗

]
=


η∗∗1
η∗∗2
η∗∗3
η∗∗4

 =


0 0 −1

a∗∗ 0 b∗∗

c∗∗ d∗∗ 0
0 −1 0


 V∗∗1

V∗∗2
V∗∗3


where

a∗∗ =
−w2k∗∗2√(

w2k∗∗2
)2

+
(
1 − w2k∗∗1

)2
, b∗∗ =

(
1 − w2k∗∗1

)
√(

w2k∗∗2
)2

+
(
1 − w2k∗∗1

)2
,

c∗∗ =
−w3k∗∗2√(
w3k∗∗2

)2
+ 1

, d∗∗ =
−1√(

w3k∗∗2
)2

+ 1
.

2. Perpendicular Taransversal IFRS and MFRS

In this section, using a matrix the sixteen positions of normal vector fields of eight IFRS and MFRS are examined.
Further some interesting results are given, with simple matrices product and equality. It is trivial that, the product



Ş. Kılıçoğlu, S. Şenyurt, Turk. J. Math. Comput. Sci., 9(2018), 71–79 75

matrix of unit normal vector fields
[
η∗

]
=

[
η∗1, η

∗
2, η
∗
3, η
∗
4

]
and

[
η∗∗

]
=

[
η∗∗1 , η

∗∗
2 , η

∗∗
3 , η

∗∗
4

]
of IFRS and MFRS, respectively,

along the curve α is

[
η∗

] [
η∗∗

]T
=



〈
η∗1, η

∗∗
1

〉 〈
η∗1, η

∗∗
2

〉 〈
η∗1, η

∗∗
3

〉 〈
η∗1, η

∗∗
4

〉〈
η∗2, η

∗∗
1

〉 〈
η∗2, η

∗∗
2

〉 〈
η∗2, η

∗∗
3

〉 〈
η∗2, η

∗∗
4

〉〈
η∗3, η

∗∗
1

〉 〈
η∗3, η

∗∗
2

〉 〈
η∗3, η

∗∗
3

〉 〈
η∗3, η

∗∗
4

〉〈
η∗4, η

∗∗
1

〉 〈
η∗4, η

∗∗
2

〉 〈
η∗4, η

∗∗
3

〉 〈
η∗4, η

∗∗
4

〉
 .

Theorem 2.1. The product matrix
[
η∗

] [
η∗∗

]T of the unit normal vector fields of IFRS and MFRS , respectively, along
the curve α is 

0 −
k2cosθ−k1 sinθ

m a∗∗
−

k2cosθ−k1 sinθ
m c∗∗

−
k1cosθ+k2 sinθ

m d∗∗
k1cosθ+k2 sinθ

m

−a∗ b∗a∗∗ k2cosθ−k1 sinθ
m

−a∗b∗∗

k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

b∗c∗∗

+ k1cosθ+k2 sinθ
m b∗d∗∗

−a∗

−c∗ d∗a∗∗ −k1cosθ−k2 sinθ
m

+c∗b∗∗
−k1cosθ−k2 sinθ

m d∗c∗∗

+ k2cosθ−k1 sinθ
m d∗d∗∗

d∗ k2cosθ−k1 sinθ
m

0 −
−k1cosθ−k2 sinθ

m a∗∗
−
−k1cosθ−k2 sinθ

m c∗∗

−
k2cosθ−k1 sinθ

m d∗∗
k2cosθ−k1 sinθ

m


where m =

√
k2

1 + k2
2 , 0.

Proof. Let
[
η∗

]
= [A∗] [V∗] and

[
η∗∗

]
= [A∗∗] [V∗∗] . Also[

η∗
] [
η∗∗

]T
=

[
A∗

] [
V∗

] ([
A∗∗

] [
V∗∗

])T

=
[
A∗

] ([
V∗

] [
V∗∗

]T
) [

A∗∗
]T

=
[
A∗

] 
0 0 1

−k1cosθ−k2 sinθ

(k2
1+k2

2)
1
2

k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

0
k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

k1cosθ+k2 sinθ

(k2
1+k2

2)
1
2

0


[
A∗∗

]T .

Using the following matrix product form of Frenet vector fields of the involute curve α∗, and Mannheim partner curve
α∗∗; we have

[
V∗

] [
V∗∗

]T
=


0 0 1

−k1cosθ−k2 sinθ

(k2
1+k2

2)
1
2

k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

0
k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

k1cosθ+k2 sinθ

(k2
1+k2

2)
1
2

0

 . (2.1)

Hence

[
η∗

] [
η∗∗

]T
=


0 0 −1
a∗ 0 b∗

c∗ d∗ 0
0 −1 0




0 0 1
−k1cosθ−k2 sinθ

(k2
1+k2

2)
1
2

k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

0
k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

k1cosθ+k2 sinθ

(k2
1+k2

2)
1
2

0


[
A∗∗

]T

=



−
k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

−
k1cosθ+k2 sinθ

(k2
1+k2

2)
1
2

0

b∗ k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

b∗ k1cosθ+k2 sinθ

(k2
1+k2

2)
1
2

a∗

d∗ −k1cosθ−k2 sinθ

(k2
1+k2

2)
1
2

d∗ k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

c∗

−
−k1cosθ−k2 sinθ

(k2
1+k2

2)
1
2

−
k2cosθ−k1 sinθ

(k2
1+k2

2)
1
2

0


 0 a

∗∗

c∗∗ 0
0 0 d∗∗ −1
−1 b∗∗ 0 0

 (2.2)

this product give us the result. �

The perpendicular transversal intersection of two surface, basically, can be examined by the position of their unit
normal vector fields η∗1, η

∗
2, η
∗
3, η
∗
4 and η∗∗1 , η

∗∗
2 , η

∗∗
3 , η

∗∗
4 . We can examine the sixteen positions of eight surfaces, basically,



An Examination Perpendicular Transversal Intersection of IFRS and MFRS in E3 76

according to the position of their unit normal vector fields in a matrix. Since the equality of the last two matrices (2.1)
and (2.2), we have sixteen interesting results according to the normal vector fields with the following theorems.

Theorem 2.2. There are only two pairs of Frenet ruled surface which are always perpendicular transversal, these are
ITRS ; MTRS of curve α and IDRS ; MTRS of curve α.

Proof. According to matrices equality we can say easily that〈
η∗1, η

∗∗
1
〉

=
〈
η∗4, η

∗∗
1
〉

= 0

hence we have the proof. �

Theorem 2.3. Involutive tangent ruled surface and Mannheim normal ruled sur f ace of curve α have perpendicular
normal vector fields and w2k∗∗2 , 0, so tan θ = k2

k1
.

Proof. Since
〈
η∗1, η

∗∗
2

〉
= (k1sinθ − k2cosθ) a∗∗ and using the orthogonality condition k1sinθ − k2cosθ = 0, or since

w2k∗∗2 , 0 we have tan θ = k2
k1
. �

Theorem 2.4. Involutive tangent ruled surface and Mannheim binormal ruled sur f ace of curve α have perpendicular
normal vector fields, if

tan θ =
k1k2 (λ + w3)
−λk2

2 + w3k2
1

.

Proof. Since
〈
η∗1, η

∗∗
3

〉
= (k1sinθ − k2cosθ) c∗∗ − (k1cosθ + k2sinθ) d∗∗ and under the orthogonality condition

(k1sinθ − k2cosθ) c∗∗ − (k1cosθ + k2sinθ) d∗∗ = 0

we have

tan θ =
k2c∗∗ + k1d∗∗

k1c∗∗ − k2d∗∗
=

λk1k2 + w3k1k2

−λk2k2 + w3k1k1
. �

Theorem 2.5. Involutive tangent ruled surface and Mannheim Darboux ruled sur f ace of curve have perpendicular
normal vector fields, if tan θ = − k1

k2
.

Proof. Since
〈
η∗1, η

∗∗
4

〉
= k1cosθ + k2sinθ and under the orthogonality condition k1cosθ + k2sinθ = 0, hence tan θ =

−
k1
k2
. �

Theorem 2.6. Involutive normal ruled surface and Mannheim tangent ruled sur f ace of Bertrand curve α have not
perpendicular normal vector fields, except v2 = 0.

Proof. Since
〈
η∗2, η

∗∗
1

〉
= −a∗, and under the orthogonality condition

−v2k∗2√(
v2k∗2

)2
+

(
1 − v2k∗1

)2
= 0,

and k∗2 , 0 it is trivial. �

Theorem 2.7. Involutive normal ruled surface and Mannheim normal ruled sur f ace of Bertrand curve α have per-
pendicular normal vector fields along under the condition

k2cosθ − k1sinθ = m
−v2k1 + v2k1w2

θ̇
cos θ

−w2k11 + w2k1v2

√
k2

1+k2
2

(σ−s)k1

. (2.3)

Proof. Since
〈
η∗2, η

∗∗
2

〉
= b∗a∗∗ k2cosθ−k1 sinθ

m − a∗b∗∗, and under the orthogonality condition

b∗a∗∗
k2cosθ − k1sinθ

m
− a∗b∗∗ = 0
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we get

k2cosθ − k1sinθ = m
−v2

k1
λk2

(
1 − w2k∗∗1

)
−w2

k1
λk2

(
1 − v2k∗1

)
= m

−v2k1

(
1 − w2

θ̇
cos θ

)
−w2k1

(
1 − v2

√
k2

1+k2
2

(σ−s)k1

) .
�

Theorem 2.8. Involutive normal ruled surface and Mannheim binormal ruled sur f ace have perpendicular normal
vector fields for the value

tan θ =
− (λ + w3) k2k1

λk2
2 − w3k2

1 − v2λ
k2

2m
(σ−s)k1

.

Proof. Since
〈
η∗2, η

∗∗
3

〉
= (k2cosθ − k1sinθ) b∗c∗∗ + b∗d∗∗ (k1cosθ + k2sinθ) and

under the orthogonality condition

(k2cosθ − k1sinθ) b∗c∗∗ + b∗d∗∗ (k1cosθ + k2sinθ) = 0

we have

tan θ =
−w3k2k∗∗2 − k1

k2 − w3k∗∗2 k1 − v2k2k∗1

=
−w3

k1
λk2

k2 − k1

k2 − w3
k1
λk2

k1 − v2k2

√
k2

1+k2
2

(σ−s)k1

.

�

Theorem 2.9. Involutive normal ruled surface and Mannheim Darboux ruled sur f ace have not perpendicular normal
vector fields, except v2 = 0.

Proof. Since
〈
η∗2, η

∗∗
4

〉
= −a∗, and under the orthogonality condition

−v2k∗2√(
v2k∗2

)2
+

(
1 − v2k∗1

)2
= 0

since k∗2 , 0 it is trivial. �

Theorem 2.10. Involutive binormal ruled surface and Mannheim tangent ruled sur f ace of curve α have not perpen-
dicular normal vector fields, except w3 = 0, or k∗∗2 = 0.

Proof. Since
〈
η∗3, η

∗∗
1

〉
= −c∗ = −

−w3k∗∗2√
(w3k∗∗2 )2

+1
and under the orthogonality condition −w3k∗∗2 , 0. it is trivial. �

Theorem 2.11. Involutive binormal ruled surface and Mannheim normal ruled sur f ace of curve α have perpendicular
normal vector fields for

k1cosθ + k2sinθ =
λk3

2v3

(
1 − w2θ̇

)
mk2

1(σ − s)w2 cos θ

(
k1

k2

)′
Proof. Since

〈
η∗3, η

∗∗
2

〉
= d∗a∗∗ −k1cosθ−k2 sinθ

m + c∗b∗∗ and under the orthogonality condition

d∗a∗∗
−k1cosθ − k2sinθ

m
+ c∗b∗∗ = 0
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we have

k1cosθ + k2sinθ = m
−1 + w2k∗∗1

w2k∗∗2
v3k∗2

= m

−1 + w2
θ̇

cos θ

w2
k1
λk2

 −k2
2

(
k1
k2

)′
v3

(σ − s)k1

(
k2

1 + k2
2

) .
�

Theorem 2.12. Involutive binormal ruled surface and Mannheim binormal ruled sur f ace have perpendicular normal
vector fields for the value;

tan θ =
w3k2

1 − λk2
2

− (λ + w3) k2k1
.

Proof. Since
〈
η∗3, η

∗∗
3

〉
= d∗d∗∗ (k2cosθ − k1sinθ) − (k1cosθ + k2sinθ) d∗c∗∗ and under the orthogonality condition

d∗∗ (k2cosθ − k1sinθ) − (k1cosθ + k2sinθ) c∗∗ = 0

we have

(d∗∗k2 − c∗∗k1) cosθ = sinθ

tan θ =
−k2 + w3k∗∗2 k1

−k1 − w3k∗∗2 k2
.

�

Theorem 2.13. Involutive binormal ruled surface and Mannheim Darboux ruled sur f ace of curve α have perpendic-
ular normal vector fields, if tan θ = k2

k1
.

Proof. Since
〈
η∗3, η

∗∗
4

〉
= d∗ (k2cosθ − k1sinθ) and under the condition

k2cosθ − k1sinθ = 0

and d∗ , 0. �

Theorem 2.14. Involutive Darboux ruled surface and Mannheim normal ruled sur f ace of Bertrand curve α have
perpendicular normal vector fields, if
tan θ = − k1

k2
.

Proof. Since
〈
η∗4, η

∗∗
2

〉
= (k1cosθ + k2sinθ) a∗∗ and under the orthogonality condition there is not a real value of a∗∗ , 0,

hence we get k1cosθ + k2sinθ = 0. �

Theorem 2.15. Involutive Darboux ruled surface and Mannheim binormal ruled sur f ace of curve α have perpendic-
ular normal vector fields, for the value

tan θ =
w3k2

1 − λk2
2

(λ + w3) k1k2
.

Proof. Since
〈
η∗4, η

∗∗
3

〉
= (k1cosθ + k2sinθ) c∗∗ − (k2cosθ − k1sinθ) d∗∗ and under the orthogonality condition

(k1cosθ + k2sinθ) c∗∗ − (k2cosθ − k1sinθ) d∗∗ = 0,

we have

tan θ =
c∗∗k1 − d∗∗k2

d∗∗k1 + c∗∗k2
=
−w3

k1
λk2

k1 + k2

−k1 − w3
k1
λk2

k2
. �

Theorem 2.16. Involutive Darboux ruled surface and Mannheim Darboux ruled sur f ace of curve α have perpendic-
ular normal vector fields, if tan θ = k2

k1
.
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Proof. Since
〈
η∗4, η

∗∗
4

〉
= (k2cosθ − k1sinθ) and under the orthogonality condition

(k2cosθ − k1sinθ) = 0

we have the proof. �

Corollary 2.17. The perpendicular intersection conditions of eigth Frenet ruled surfaces which are called IFRS and
MFRS are given as in one table

〈, 〉 η∗∗T η∗∗N η∗∗B η∗∗D
η∗T 0 tan θ = k2

k1
tan θ =

k1k2(λ+w3)
−λk2

2+w3k2
1

tan θ = −k1
k2

η∗N , 0
k2cosθ − k1sinθ

= m
v2k1

(
1−w2

θ̇
cos θ

)
w2k1(1−v2k∗1)

tan θ
=

(λ+w3)k2k1

λk2

(
w3

k1
λk2

k1−k2+v2k2
m

(σ−s)k1

) , 0

η∗B , 0
k1cosθ + k2sinθ

=
λk3

2v3(1−w2 θ̇)
(

k1
k2

)′
mk2

1(σ−s)w2 cos θ

tan θ =
−w3k2

1+λk2
2

(λ+w3)k1k2
tan θ = k2

k1

η∗D 0 tan θ = −k1
k2

tan θ =
w3k2

1−λk2
2

(λ+w3)k1k2
tan θ = k2

k1



.

Proof. It is trivial, using the
[
η∗

] [
η∗∗

]T
= 0. �
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[6] Kılıçoğlu, Ş., An Examination on the Mannheim Frenet ruled surface based on Norml vecr fields in E3, Konuralp Journal of Mathematics,

4(2)(2016), 223–229. 1.5, 1.6
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