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Abstract. In this work, the differential equation of a differentiable curve is expressed, by making use of Laplace
and normal Laplace operators, as a linear combination of the unit Darboux vector defined as C = sinϕT + cosϕB
of that curve. Later, the necessary and sufficient conditions are given for the space curves to be a 1-type Darboux
vector.

2010 AMS Classification: 14H45, 14H50, 53A04.

Keywords: Darboux vector, Laplacian operator, helix, space curve, differential equation.

1. Introduction

It is really important to find a relation between a special curve and its curvatures in differential geometry. One of
such special curves of this kinds is an helix. It is well-known that the necessary and sufficient condition for a curve
to be an helix, in the Euclidean 3-space E3, is that the ratio of the curvature to the torsion of the given curve must be
constant [9]. So many researchers have studied on helices and there are lots of papers focusing exclusively on helices.
There have been so many studies in literature, to cite some examples, Chen and Ishikawa classified the biharmonic
curves [3,5]. Later Kocayigit and Hacisalihoglu have studied the space curves and biharmonic curves in the Euclidean
3-space E3 and Minkowski 3-space E3

1 [7, 8]. Also Arslan and et al. [2] have given some characterizations of 1-type
Darboux vector by using Laplacian and normal Laplacian operators. In this paper, by taking Fenchel’s work [4] into
account, the differential equation of a space curve, in the Euclidean 3-space, is given first according to the unit Darboux
vector and then according to the normal connexion. In the case of helix of the curve, the differential equation obtained
from Laplace and normal Laplace operators, is also given.

*Corresponding Author
Email addresses: osmancakir75@hotmail.com (O. Çakır), senyurtsuleyman@hotmail.com (S. Şenyurt)
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Figure 1. Darboux Vector

2. Preliminaries

Let α : I → E3, α(s) =
(
α1(s), α2(s), α3(s)

)
be a differentiable curve with a unit speed. The Frenet frame of this

curve is given as

T (s) = α
′

(s), N(s) =
α
′′

(s)
‖ α

′′ (s) ‖
, B(s) = T (s) ∧ N(s).

If we denote the curvature of the curve α by κ(s) and the torsion by τ(s) then we have

κ(s) =‖ α
′′

(s) ‖ , τ(s) =
〈α
′

(s) ∧ α
′′

(s), α
′′′

(s)〉
‖ α

′
∧ α

′′
‖2

.

Frenet vectors T, N, B and their derivative vectors satisfy the following Frenet-Serret formulae along the curve α,

∇α′T (s) = κ(s)N(s) ,
∇α′N(s) = −κ(s)T (s) + τ(s)B(s) ,
∇α′B(s) = −τ(s)N(s) (2.1)

where ∇ is the Levi-Civita connection given by ∇α′ = d
ds and s is the arc length parameter of the curve α [6]. The

vector fields T ,N , B are called unit tangent vector field, principle normal vector field and binormal vector field of α
respectively. The Frenet formulae given in (2.1) may be interpreted as follows: If a moving point traverses the curve
in such a way that s is the time parameter, then the moving frame {T ,N , B} moves according to equations (2.1). This
motion contains, apart from an instantaneous translation, instantaneous rotation with angular velocity vector given by
the Darboux vector W = τT + κB, [1]. So the unit Darboux vector is defined as :

W =
τ

√
κ2 + τ2

T +
κ

√
κ2 + τ2

B.

If the angle between the Darboux vector W, whose direction is that of instantaneous axis of the rotation and the
binormal vector B, is ϕ , then the unit Darboux vector can be given as

C = sinϕT + cosϕB , sinϕ =
τ

‖ W ‖
, cosϕ =

κ

‖ W ‖
(2.2)
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citefenchel-1951.
Let α : I → E3 be a differentiable curve then the Laplacian operator of α ,the normal connection of α and the normal
Laplacian operator of α are defined as [3, 5]

∆ = −∇2
α′ = −∇α′∇α′ , (2.3)

∇⊥α′
−→
ξ = ∇α′

−→
ξ − 〈∇α′

−→
ξ ,
−→
T 〉
−→
T , where ∀

−→
ξ ∈ χ(α(I))⊥

∆⊥ = −∇
⊥(2)
α′ = −∇⊥α′∇

⊥
α′ , (2.4)

respectively.
Let C be the unit Darboux vector and ∆ be the Laplacian operator of the curve α. Then α is said to be an harmonic

Darboux vector if and only if ∆C = 0 and if ∆C = λC holds this time we call C as an harmonic 1-type provided that λ
is constant, [2].

3. Differential Equations for A Space Curve According to The Unit Darboux Vector

In this section, we give the differential equations which characterize a curve α in E3 , as a linear combination of
both the unit Darboux vector C and the normal unit Darboux vector C⊥.

Theorem 3.1. Let α : I → E3 be a Frenet curve with curvature κ , torsion τ and unit Darboux vector C then the
differential equation characterizing the curve α is given by

∇3
α′C − µ3∇

2
α′C − µ2∇α′C − µ1C = 0

µ3 =
ϕ′′

ϕ′
+

(ϕ′ ‖ W ‖)
′

‖ W ‖
,

µ2 = (
ϕ′′

ϕ′
)
′

− ((ϕ′)2+ ‖ W ‖2) −
ϕ′′

ϕ′
(ϕ′ ‖ W ‖)′

‖ W ‖
,

µ1 =
ϕ′

‖ W ‖
(ϕ′ ‖ W ‖)′ − ((ϕ′)2)′.

Proof. When we take the derivative of C = sinϕT + cosϕB with respect to s, we get

∇α′C = ϕ′(cosϕT − sinϕB) (3.1)

By using the equations (2.2) and (3.1) we can evaluate the values of T and B as

T = sinϕC +
cosϕ
ϕ′
∇α′C, B = cosϕC −

sinϕ
ϕ′
∇α′C (3.2)

If we take the derivative of equation (3.1) with respect to s, this time we have

∇2
α′C = ϕ′′(cosϕT − sinϕB) + ϕ′(cosϕT − sinϕB)′

it follows

∇2
α′C = ϕ′′(cosϕT − sinϕB) − (ϕ′)2(sinϕT + cosϕB

)
+ϕ′
(
κcosϕ + τsinϕ

)
N

and taking the equation (2.2) into account with the second derivative of C we obtain

∇2
α′C = ϕ′′(cosϕT − sinϕB) − (ϕ′)2C + ϕ′ ‖ W ‖ N (3.3)

If we put the values of T and B from (3.2) into the equation (3.3) we get

∇2
α′C = ϕ′′cosϕ

(
sinϕC +

∇α′C
ϕ′

cosϕ
)
− ϕ′′sinϕ

(
cosϕC −

∇α′C
ϕ′

sinϕ
)

−(ϕ′)2C + ϕ′ ‖ W ‖ N

So the second derivative of C is given as

∇2
α′C =

ϕ′′

ϕ′
∇α′C − (ϕ′)2C + ϕ′ ‖ W ‖ N (3.4)
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and from here we can deduce the normal vector N as

N =
1

(ϕ′)2 ‖ W ‖

(
ϕ′∇2

α′C − ϕ
′′∇α′C + (ϕ′)3C

)
(3.5)

Finally we take the derivative of (3.4) in this case we get

∇3
α′C = (

ϕ′′

ϕ′
)′∇α′C +

ϕ′′

ϕ′
∇2
α′C − ((ϕ′)2)′C − (ϕ′)2∇α′C + (ϕ′ ‖ W ‖)′N

+ϕ′ ‖ W ‖ (−κT + τB) (3.6)

Now let’s put the values of T and B, taken from (3.2), into (3.6) we obtain

∇3
α′C =

(
(
ϕ′′

ϕ′
)′ − ((ϕ′)2+ ‖ W ‖2)

)
∇α′C +

ϕ′′

ϕ′
∇2
α′C

−(ϕ′)2)′C + (ϕ′ ‖ W ‖)′N (3.7)

It is about to finish to obtain the desired differential equation that we substitute (3.5) into the equation (3.7) it becomes

∇3
α′C =

(
(
ϕ′′

ϕ′
)′ − ((ϕ′)2+ ‖ W ‖2)∇α′C +

ϕ′′

ϕ′
∇2
α′C − ((ϕ′)2)′C

+(ϕ′ ‖ W ‖)′(
1

(ϕ′)2 ‖ W ‖
(ϕ′∇2

α′C − ϕ
′′∇α′C + (ϕ′)3C))

)
If we rearrange the above expression we have

∇3
α′C =

(ϕ′′
ϕ′

+
(ϕ′ ‖ W ‖)′

ϕ′ ‖ W ‖

)
∇2
α′C

+
(
(
ϕ′′

ϕ′
)′ − ((ϕ′)2+ ‖ W ‖2) −

ϕ′′

(ϕ′)2 ‖ W ‖
(ϕ′ ‖ W ‖)′

)
∇α′C

+
( ϕ′

‖ W ‖
(ϕ′ ‖ W ‖)′ − ((ϕ′)2)′

)
C

By writing the coefficients

µ3 =
(ϕ′′
ϕ′

+
(ϕ′ ‖ W ‖)′

ϕ′ ‖ W ‖

)
,

µ2 =
(
(
ϕ′′

ϕ′
)′ − ((ϕ′)2+ ‖ W ‖2) −

ϕ′′

(ϕ′)2 ‖ W ‖
(ϕ′ ‖ W ‖)′

)
,

µ1 =
( ϕ′

‖ W ‖
(ϕ′ ‖ W ‖)′ − ((ϕ′)2)′

)
we get the equation that completes the proof

∇3
α′C = µ3∇

2
α′C + µ2∇α′C + µ1C �

Theorem 3.2. Let α : I → E3 be a Frenet curve with curvature κ , torsion τ and normal Darboux vector C⊥ then the
differential equation characterizing the curve α is given by

∇
⊥(2)
α′ C⊥ − λ2(∇⊥α′ )C

⊥ − λ1C⊥ = 0 (3.8)

λ2 =
ϕ′τsinϕ − (τcosϕ)′

τcosϕ
,

λ1 = −

(
ϕ′τsinϕ − (τcosϕ)′

)
ϕ′tanϕ − τ3cosϕ − τ(ϕ′sinϕ)′

τcosϕ
.
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Proof. Let α : I → E3 be a Frenet curve with curvature κ , torsion τ and normal Darboux vector C⊥. We know that

C = sinϕT + cosϕB and C⊥ = cosϕB

When we differentiate C⊥ = cosϕB repeatedly with respect to s, we find that

∇⊥α′C
⊥ =

dC⊥

ds
= −τcosϕN − ϕ′sinϕB (3.9)

and
∇
⊥(2)
α′ C⊥ =

(
ϕ′τsinϕ − (τcosϕ)′

)
N −
(
τ2cosϕ + (ϕ′sinϕ)′

)
B (3.10)

Since C⊥ = cosϕB , that is , B = 1
cosϕC⊥. If we put the value of B into the equation (3.9) we get

N = −
1

τcosϕ
(
∇⊥α′C

⊥ + ϕ′tanϕC⊥
)
.

Finally putting the values of C⊥ and N into the equality (3.10) we obtain

∇
⊥(2)
α′ C⊥ =

ϕ′τsinϕ − (τcosϕ)′

τcosϕ
(
∇⊥α′C

⊥ + ϕ′tanϕC⊥
)

−
τ2cosϕ + (ϕ′sinϕ)′

cosϕ
C⊥

it follows

∇
⊥(2)
α′ C⊥ =

ϕ′τsinϕ − (τcosϕ)′

τcosϕ
∇⊥α′C

⊥

−

(
(τcosϕ)′ − ϕ′τsinϕ

)
ϕ′τtanϕ − τ3cosϕ − τ(ϕ′sinϕ)′

τcosϕ
C⊥

Setting the coefficients

λ2 =
ϕ′τsinϕ − (τcosϕ)′

τcosϕ
,

λ1 = −

(
ϕ′τsinϕ − (τcosϕ)′

)
ϕ′tanϕ − τ3cosϕ − τ(ϕ′sinϕ)′

τcosϕ
,

we get required equation which we want to show. �

Corollary 3.3. Let a differentiable curve α be a circular helix, then the differential equation characterizing the curve
according to the normal Darboux vector C⊥ is given by

∇
⊥(2)
α′ C⊥ − τ2C⊥ = 0 (3.11)

Proof. If α is a circular helix, then we have a constant ratio κ
τ
. Since

κ
τ

= tanϕ = const, so taking derivative of κ
τ

with respect to s, yields
( κ
τ
)′ = ϕ′sec2ϕ = 0 or ϕ′ = 0.

Considering the equation (3.8) we attain λ2 = 0 and λ1 = −τ2. �

Theorem 3.4. Let α : I → E3 be a Frenet curve with unit Darboux vector C. Then the unit Darboux vector C is an
harmonic Darboux vector if and only if ϕ′ = 0 , where ϕ is the angle between W and B.

Proof. Since the unit Darboux vector C is harmonic, that is, 4C = 0 and also we have (2.3), (3.3) so we can write

−ϕ′′(cosϕT − sinϕB) + (ϕ′)2C − ϕ′ ‖ W ‖ N = 0

Now it is clear that ϕ′ = 0. �

Corollary 3.5. Let α : I → E3 be a curve with the unit Darboux vector C. Then the curve α is a generalized helix if
and only if 4C = 0 , where
4 denotes the Laplacian operator.
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Proof. Assume that α is a generalized helix, then the ratio κ
τ

is constant along the curve α and we have ϕ′ = 0.
If we take the equations (2.3) and (3.3) together into account we find that , ∆C = 0.
Conversely, suppose that ∆C = 0 then we have ϕ′ = 0 that is ,
( τ
κ
)′ = ϕ′sec2ϕ = 0 ⇒ τ

κ
= constant ⇒ α is a generalized helix. �

Corollary 3.6. Let α : I → E3 be a generalized helix. Then the unit Darboux vector C belonging to this curve cannot
be a 1-type harmonic Darboux vector.

Proof. By the definition of 1-type harmonic Darboux vector, we write ∆C = λC. Considering the expression (3.3), we
have

ϕ′′cosϕ +
(
λ − (ϕ′)2)sinϕ = 0, ϕ′′sinϕ −

(
λ − (ϕ′)2)cosϕ = 0, ϕ′ ‖ W ‖= 0

it is clear that λ = 0, that is, C is harmonic so the proof is completed. �

Theorem 3.7. Let α : I → E3 be a Frenet curve with normal Darboux vector C⊥ and let 4⊥ be a normal Laplacian
operator. Then ∆⊥C⊥ = λC⊥ holds, provided that λ ∈ R and

λ = τ2 +
( τ′
2τ

cosϕ
)′secϕ. (3.12)

Proof. From (2.4) and (3.10) we can figure out ∆⊥C⊥ vector as

∆⊥C⊥ =
(
(τcosϕ)′ − ϕ′τsinϕ

)
N +
(
τ2cosϕ + (ϕ′sinϕ)′

)
B

Since we want to reckon ∆⊥C⊥ = λC⊥, it follows that

(τcosϕ)′ − ϕ′τsinϕ = 0 and τ2cosϕ + (ϕ′sinϕ)′ = λcosϕ (3.13)

If (τcosϕ)′ − ϕ′τsinϕ = 0 then we have

ϕ′sinϕ =
τ′cosϕ

2τ

Putting this value into (3.13) completes the proof. �

Corollary 3.8. Let α : I → E3 be a Frenet curve with normal Darboux vector C⊥ and let 4⊥ be a normal Laplacian
operator. Then ∆⊥C⊥ = λC⊥ holds along the curve, if and only if α is a circular helix, provided that τ2 = λ.

Proof. Suppose that α : I → E3 is a circular helix, then we have constant curvatures κ and τ so we can write
κ′ = τ′ = 0. It is obvious that from (3.11) we get τ2 = λ.
Conversely assume that τ2 = λ = const. Taking account of (3.11) gives us ∇⊥(2)

α′ C⊥ − τ2C⊥ = 0 or ∆⊥C⊥ = λ1C⊥.
Since λ1 = τ2, then we get ∆⊥C⊥ = τ2C⊥ ,that is , α is an helix. Therefore τ

κ
= const.

Since τ = constant , so we obtain κ = constant, that means α is a circular helix. �

Corollary 3.9. Let α : I → E3 be a curve with normal Darboux vector C⊥ and let 4⊥C⊥ = 0 hold. Then curvatures of
the curve entail the following equality

κτ2 +
( τ′κ

2τ
√
κ2 + τ2

)′ √
κ2 + τ2 = 0

Proof. If 4⊥C⊥ = 0 then because of (3.12) we have

τ2 +
( τ′
2τ

cosϕ
)′secϕ = 0

If we substitute κ
‖W‖ for cosϕ into (3.12) we obtain desired result and it completes the proof. �
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