
Turk. J. Math. Comput. Sci.
9(2018) 117–124
c©MatDer
http://dergipark.gov.tr/tjmcs
http://tjmcs.matder.org.tr MATDER

A New General Forward Difference Operator and Some Applications

Yaşar Bolata, Ömer Akinb,∗

aKastamonu University, Faculty of Science and Arts, Department of Mathematics, Kastamonu, Turkey.
bTOBB-Economy and Technology University, Faculty Of Science, Department of Mathematics, Ankara, Turkey

Received: 08-10-2018 • Accepted: 08-11-2018

Abstract. In this study, the forward difference operator is defined in the most general form. As an application we
give some criteria on the behavior of solutions of some first-order difference equations involving this operator.To
do this, we use a lemma firstly constructed here that gives the relationship between ordinary difference operator and
our new operator. Our main theorem improves the known results in the literature, since the potential function in this
equation is of a wider function class, including potential functions in equivalent equations existing in the literature.
Also some examples are provided to illustrate our main results.
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1. Introduction

Differential and difference equations have many applications in some fields such as economics, mathematical biol-
ogy and many areas in applied sciences, we refer the reader to the monographs [1–4] and the references cited therein.
The study of solutions of ordinary difference equations has attracted the attention of many authors for many years. In
last ten years they defined a generalized difference operator ∆a, where a is a real number, and by using lemma that gives
the relationship between the ordinary difference operator ∆ and generalized difference operator ∆a, gave a number of
criteria on the behavior of the difference equations involving operator ∆a. Some of them are given below: Second order
non-linear difference equation involving the generalized difference operators ∆a and ∆b of the form

∆a(pn∆axn) + qn∆axn = f (n, xn,∆bxn)

has been investigated by Tan and Yangs [19] and obtained some oscillatory and nonoscillatory results. After that a class
of nonlinear third order difference equations involving the generalized difference operator ∆a that is the more general
case of the above equation

∆a(pn∆2
ayn) + qn∆2

ayn = f (n, yn,∆ayn,∆
2
ayn).

This last equation has been considered by Parhi and Panda [16] and obtained sufficient conditions for being oscillatory
or nonoscillatory. In [15], Parhi has investigated second order difference equations involving generalized difference
operator of the forms

∆a(pn−1∆ayn−1) + qnyn = 0, n ≥ 1
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and
∆a(pn−1∆ayn−1) + qnyn = fn, n ≥ 1,

and obtained some oscillatory and nonoscillatory criteria.
In [6], Bolat and Akin have investigated the oscillatory properties of solutions of the difference equation of

∆b(pn(∆m−1
b xn)α) + qnxβn−σ = 0,

and they obtained some new results.
Bolat [5] has given some results on the trichotomy of nonoscillatory solutions for the difference equation involving

the generalized difference operator ∆a of the form

∆a(pn(∆a(xn − a1−nxn−1))α) + qnxβn−σ = 0, n ∈ Nmax{1,σ}.

In the present work, we define a new generalized difference operator ∆an that we give ”the variable operator” name,
in the form ∆an yn = yn+1 − anyn, where an is a sequence of real numbers, and consider delay difference equation
involving this new generalized difference operator ∆an of the form

∆an yn + pnyn−k = 0, n, k ∈ N, (1.1)

where an and pn are real sequences.
The organization of this paper is as follows. Firstly we give the solutions of some classes of the first order ordinary

difference equations and the first order generalized difference equations involving generalized difference operator,
and secondly we give some results on behavior of their solutions in the second section. In the third section we give
some lemmas to prove the main results and to study behavior of solutions of the first order delay difference equations
involving variable difference operator, and give a main result. In the last section some examples are provided to
illustrate our main results.

By a solution of Eq. (1.1) we mean a sequence (yn) which satisfies Eq. (1.1) for sufficiently large n.We consider
only such solutions which are nontrivial for all large n. A solution of Eq. (1.1) is called nonoscillatory if it is eventually
positive or eventually negative. Otherwise it is called oscillatory.

2. On The Behaviour of Solutions of The First Order Difference Equations

Firstly, let’s consider the simplest ordinary difference equation of the form

∆yn = 0. (2.1)

The solution of equation (2.1) is yn = c, where c = y0 is a constant. Secondly, let’s consider the simplest difference
equation involving generealized difference operator ∆a of the form

∆ayn = 0, (2.2)

where a is nonzero real number. The solution of equation (2.2) is

yn = can, (2.3)
where c = y0 is an arbitrary constant. The behavior of the solution (2.3) is very strongly determined by the value and
sign of the constant a. We can say: |a| > 1 gives growing behavior (exponential growth), |a| = 1 gives stabil behavior,
|a| < 1 gives decaying behavior (exponential decay), 0 < a < 1 gives stable behavior, a < 0 gives oscillating behavior.
Note that, while the solution of the equation (2.1) shows a fixed sign behavior, the behavior of the solution (2.3) of the
equation (2.2) can be in five different ways according to the state of a.

Finally, let us consider the simplest difference equation involving variable difference operator ∆an of the form

∆an yn = 0. (2.4)

The solution of equation (2.4) is
yn = cbn, (2.5)

where c = y0 is an arbitrary constant and bn =
∏n−1

i=0 ai. The results on the behavior of the solution (2.5) of the equation
(2.4) can be given as similar to the conclusion of Parhi below.

Parhi [14] considered the difference equations of the form

yn+1 + anyn = 0 (E1)
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and the associated nonhomogeneous equation

yn+1 + anyn = bn,

and gave the following criteria on the behavior of solutions of the equation (E1):

Theorem 2.1 ( [14]). i. If an < 0; n ≥ 0, then equation (E1) is disconjugate on (0,∞).
ii. If an > 0; n ≥ 0, then equation (E1) is oscillatory.
iii. If {an} is oscillatory in the sense that for every N ≥ 0 there exists n ≥ N such that an−1an < 0, then equation (E1)

is oscillatory.

Although all of the above equations are in the first order, we can easily see that each of these equations has different
solutions and different behaviors.

Many authors studied the oscillation of the delay difference equation with constant coefficient of the form

∆xn + pxn−k = 0, n = 0, 1, 2, ..., (E2)

where p is a constant number, and the delay difference equation of the form

∆xn + pnxn−k = 0, n = 0, 1, 2, ..., (E3)
where ∆xn = xn+1 − xn, {pn} is a sequence of nonnegative real numbers and k is a positive integer. For example;

In [12, p.167, Theorem 7.2.1] been showed that for p ∈ R and k ∈ Z, every solution of (E2) is oscillatory if and only if
the following conditions holds:

(a) k = −1 and p ≤ −1;
(b) k = 0 and p ≥ 1;
(c) k ∈ {...,−3,−2} ∪ {1, 2, ...} and p (k+1)k+1

kk > 1.
In [10] Domshlak has studied the difference equation when k = 1 in Equation (E3) in the form

∆xn + pnxn−1 = 0, n = 0, 1, 2, ...,
and has given some oscillation results.

Then in [11] Erbe and Zhang showed that if

lim inf
n→∞

pn >
kk

(k + 1)k+1 (2.6)

or

lim sup
n→∞

n∑
pi

i=n−k

> 1

then all the solutions of the equation (E3) are oscillatory.
In [13] Ladas, Philos and Sficas improved the condition (2.6) and showed that

lim inf
n→∞

1
k

n−1∑
pi

i=n−k

 > kk

(k + 1)k+1

is a sufficient condition for the oscillation of every solution of the delay difference equation (E3).
In [17] Stavroulakis proved that if

0 < α0 := lim inf
n→∞

n−1∑
pi

i=n−k

≤

(
k

k + 1

)k+1

(2.7)

and

lim sup
n→∞

pn > 1 −
α2

0

4
are satisfied then all the solutions of equation (E3) oscillate.

In [9] Chen and Yu obtained that if (2.7) holds and that
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lim sup
n→∞

n∑
pi

i=n−k

> 1 −
1 − α0 −

√
1 − 2α0 − α

2
0

2
(2.8)

is satisfied then every solution of (E3) oscillates.
In [18] Stavroulakis improved the condition (2.8) as

lim sup
n→∞

n∑
pi

i=n−k

> 1 −
α2

0

4

or

lim sup
n→∞

n∑
pi

i=n−k

> 1 −
αk

0

4
.

In [8] Chatzarakis and Stavroulakis obtained the following condition for the oscillation of every solution of equation
(E3)

lim sup
n→∞

n−1∑
pi

i=n−k

> 1 −
α2

0

2(2 − α0)
. (2.9)

In [7] Chatzarakis, Koplatadze and Stavroulakis improved the condition (2.9) as

lim sup
n→∞

n∑
pi

i=n−k

> 1 −
(
1 −

√
1 − α0

)2
. (2.10)

Now we consider a class of first order linear difference equations with constant coefficients and involving generalized
difference operator ∆a, which is the more general form of (E2) and (E3) of the form

∆ayn + pyn−k = 0, n = 0, 1, 2, ... (2.11)

where k ∈ Z and a, p ∈ R. The characteristic equation for equation (2.11) is

λk+1 − aλk + p = 0. (2.12)

Now similar as in the above results (a) − (c), we can give immediately the following results according to the
characteristic equation (2.12).

Theorem 2.2. Every solution of (2.11) is oscillatory if and only if the following conditions hold:
(c1) k = −1 and a

1+p < 0;
(c2) k = 0 and a − p < 0;
(c3) k = 1 and a2 − 4p < 0 or a < 0 and p > 0.

Theorem 2.3. Let a < 0. Every solution of (2.11) is oscillatory if and only if the following conditions hold:

(c4) k is a positive odd integer and p > 0;
(c5) k is a positive even integer and p < 0;
(c6) k is a negative odd integer such that k < −1 and p < 0;
(c7) k is a negative even integer such that k < −1 and p > 0.

Theorem 2.4. Let a > 0. Every solution of (2.11) is oscillatory if and only if the following condition holds:

(c8) k > 0 is odd integer and p >
(

a
k+1

)k+1
kk.

The proof of Theorem 2.2. According to the characteristic equation (2.12), the proof can easily be made. We omit it in
here. �
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The proof of Theorem 2.3. In here we will prove the condition (c4). Proves of the other conditions of the theorem can
be made in a similar manner. Set f (λ) := λk+1 − aλk + p in (2.12). We have f

′

(λ) = (k + 1)λk − akλk−1. From here
we obtain nonzero critical point λ0 = ak

k+1 < 0. The other hand we have f
′′

(λ0 = ak
k+1 ) =

(
ak

k+1

)k (k+1)2

ak > 0. That is

the function f has its minimum value on the point λ0 = ak
k+1 as fmin( ak

k+1 ) = −
(

a
k+1

)k+1
kk + p. Here it must be that

−
(

a
k+1

)k+1
kk + p > 0, that is p >

(
a

k+1

)k+1
kk. Since a < 0 and k is an odd integer, p > 0. That is f (+0) > 0, f (−0) > 0,

f (∞) = ∞ and f (−∞) = ∞. Therefore the characteristic equation (2.12) has no real roots. Hence every solution of
(2.11) is oscillatory. The proof is completed. �

The proof of Theorem 2.4. The proof is completely similar to the proof of Theorem 2.3. �

Secondly consider the first order linear difference equation involving generalized difference operator ∆a, which is
the more general form of the equation (2.11) of the form

∆ayn + pnyn−k = 0, n = 0, 1, 2, ... (2.13)

Here we can give immediately the following results similar to the above results.

Theorem 2.5. Suppose that
lim
n→∞

inf pn = p. (2.14)

Every solution of (2.13) is oscillatory if and only if the conditions (c1) − (c3) hold.

Theorem 2.6. Let be a < 0 and satisfy (2.14). Every solution of (2.13) is oscillatory if and only if the conditions
(c4) − (c7) hold.

Theorem 2.7. Let be a > 0 and satisfy (2.14). Every solution of (2.13) is oscillatory if and only if the condition (c8)
holds.

Proofs of Theorem 2.5, Theorem 2.6 and Theorem 2.7. The proofs can be done similarly as Theorems 2.2, 2.3 and 2.4,
respectively. �

Finally consider a class of first order linear difference equations involving variable difference operator ∆an , which is
the more general form of (2.13) of the form

∆an yn + pnyn = 0, n ∈ N, (2.15)

where an and pn are real sequences, n ≥ 0. One can easily see that the solution of equation (2.15) is

yn = c
n−1∏
i=0

(ai − pi),

where c = y0 is any real constant.
Here we can give immediately the following the results.

Theorem 2.8. Let an and pn be rael sequences.When each of the following cases is satisfied, then all the solutions of
equation (2.15) are oscillatory.

(i) (an − pn) < 0 for all n ∈ N,
(ii) (an − pn) is oscillatory for all n ∈ N.

Proof. The proof is obvious. Therefore we omit it in here. �

3. Main Results

Now let’s examine the behavior of the solutions of the first-order delay difference equation involving new general-
ized difference operator Eq. (1.1), which is the more general form of equation (2.15).

In this section, we consider Eq. (1.1) and give some results for the oscillation of its all solutions. For the investigation
of oscillatory of solutions of Eq. (1.1), we need to use the following Lemma which gives relation between the variable
forward difference operator ∆an and the ordinary forward difference operator ∆.
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Lemma 3.1. Let (an) be a real valued sequence. Then for any real valued sequence (yn)

∆an yn = bn∆(
yn

bn−1
)

and

∆m
an

yn = bn[∆an(](m−1)∆(
yn

bn−1
))...), n ∈ N (3.1)

are satisfied. Where bn =
∏n

i=0 ai and [∆(an](m−1) = ∆(an [∆(an]m−2.

Proof. The proof can be easly done by the mathematical induction method and according to the definition of variable
difference operator ∆an . �

Corollary 3.2. If an ≡ 1 in the Lemma 3.1, then (3.1) be

∆m
1 yn = ∆myn,

where ∆1 = ∆.
If an ≡ a, then (3.1) be

∆m
a yn = an+m∆m(

yn

an+m−1 ).

By using Lemma 3.1, we can rewrite Eq. (1.1) in the form

∆

 yn∏n−1
i=0 ai

 +
pn∏n
i=0 ai

yn−k = 0

or

∆

(
yn

bn−1

)
+ pn

yn−k

bn
= 0 (3.2)

In equation (3.2) by putting up yn
bn−1

= zn, we reach the equation of the form

∆zn + p∗nzn−k = 0, (3.3)

where p∗n = pn
∏n

i=n−k
1
ai

.
Now we can state the following oscillation results for the Eq. (1.1).

Theorem 3.3. Let p∗n be nonnegative for n ≥ 0. Assume that

α0 := lim inf
n→∞

n−1∑
i=n−k

p∗i ≤
(

k
k + 1

)k+1

(3.4)

and

lim sup
n→∞

n∑
i=n−k

p∗i > 1 −
(
1 −

√
1 − α0

)2
(3.5)

are satisfied then every solution of Eq. (1.1) oscillates.

Proof. If we adapt conditions (3.4) and (3.5) to the conditions (2.7) and (2.10) respectively the proof can be done as
in [7, 17]. Therefore we can say that all solutions of equation (3.3) are oscillatory. Hence, since yn

bn−1
= zn and an is

a positive (or negative) real sequence for n ∈ N, all solutions yn of Eq. (1.1) are oscillatory too. This completes the
proof. �
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4. Examples

Example 4.1. Consider the generalized delay difference equation

∆nxn + pnxn−4 = 0, n = 0, 1, 2, ... (4.1)

where pn =

{ 1
20

n!
(n−5)! , n , 0(mod 5)

79
100

n!
(n−5)! , n = 0(mod 5)

.

Here an = n and k = 4. We see that

α0 := lim inf
n→∞

n−1∑
i=n−k

pi

i∏
j=n−k

1
a j

=
1
5
<

(
4
5

)4

≈ 0, 32768

and

lim sup
n→∞

n∑
i=n−k

pi

i∏
j=n−k

1
a j

= 0, 99 > 1 −
(
1 −

√
1 − α0

)2
= 0.96.

Since the conditions (3.4) and (3.5) are satisfied, then every solution of equation (4.1) oscillates.

Example 4.2. Consider a delay difference equation with generalized variable difference operator of the form

∆( 1
7 + 4

32n )yn +

(
9
56

+
1

32n

)
yn−2 = 0, n ∈ N, (4.2)

here an = ( 1
7 + 4

32n ) and pn =
(

9
56 + 1

32n

)
and k = 2. Since

α0 := lim inf
n→∞

n−1∑
i=n−2

(
9

56
+

1
32i

) i∏
j=n−2

7(32 j)
28 + 32 j = 0, 011775 <

8
27

and

lim sup
n→∞

n−1∑
i=n−2

(
9

56
+

1
32i

) i∏
j=n−2

7(32 j)
28 + 32 j = 9 > 0, 999,

all the conditions of Theorem 3.1 are satisfied . Therefore all solutions of equation (4.2) are oscillatory. One of such
solutions is yn =

(
− 1

2

)n
. Whereas in the case an = 1, equation (4.2) is not oscillatory.

Example 4.3. Consider a delay difference equation with generalized variable difference operator of the form

∆an yn + pnyn−2 = 0, n ∈ N, (4.3)

here an = ( 1
14 + 16

32n ) and pn =
(

1
14 + 1

32n

)
and k = 2. Since

α0 := lim inf
n→∞

n−1∑
i=n−2

32i + 14
14(32i)

i∏
j=n−2

14(32 j)
224 + (32 j)

= 0.0634 <
8

27

and

lim sup
n→∞

n−1∑
i=n−2

32i + 14
14(32i)

i∏
j=n−2

14(32 j)
224 + (32 j)

= 15 > 1 − (1 −
√

1 − 0.0634)2 = 0.999,

the conditions of Theorem 3.1. are satisfied. Therefore the equation (4.3) is oscillatory. One of such solutions is
yn =

(
− 1

2

)n
. When an = 1 equation (4.3) becomes

∆yn + pnyn−2 = 0, n ∈ N,

which is also oscillatory.

Example 4.4. Consider delay difference equation with generalized variable difference operator of the form

∆an yn + pnyn−1 = 0, n ∈ N. (4.4)
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Taking an = 10n2+n+9
9(n2−1) and pn = n+9

9n , we see that the conditions of Theorem 3.1

α0 := lim inf
n→∞

n−1∑
i=n−k

pi

i∏
j=n−k

1
a j

= 0.1 <
1
4

is satisfied, but

lim sup
n→∞

n∑
i=n−k

pi

i∏
j=n−k

1
a j

= 0.324 < 1

is not satisfied. Hence All solutions of equation (4.4) are not oscillatory. One of such solutions is yn = 1
n . Whereas in

the case an = 1, equation (4.4) becomes
∆yn + pnyn−1 = 0, n ∈ N,

which is oscillatory. Because α0 := lim inf
n→∞

n−1∑
i=n−k

pi = 1
9 <

1
4 and lim sup

n→∞

n∑
i=n−k

pi = 1.1 > 0.956.

Corollary 4.5. When an ≡ 1, conditions (3.4) and (3.5) are reduced to the conditions (2.7) and (2.10) respetctively.
When b ≡ a, conditions (3.4) and (3.5) are corresponded one or more of appropriate in the conditions (c1 − c8).

5. Conclusion

In equation (E3), potential function pn does not satisfy the oscillation conditions for Eq. (1.1) (or equation (3.3))
to be oscillatory of its every solution, see above examples. That is, the function pn in equation (E3) can not be taken
of place of pn in Eq. (1.1) (or p∗n in equation (3.3)). However it can easily be seen that the potential function pn in
Eq. (1.1) satisfies the oscillation conditions in equation (E3), see above examples. Therefore our results are new and
improve previous results.
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