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Abstract. The main purpose of this work is to obtain many travelling wave solutions for general Kaup-
Kuperschmidt (KK), general Lax, general Sawada-Kotera (SK) and general Ito equations with the aid of symbolic
computation by employing the extended direct algebraic method. The stability of these solutions and wave motion
have been analyzed by illustrative plots.
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1. Introduction

Life is a constant change in our world. The mathematical model of such changes are best expressed by differential
equations. Therefore, even if we do not realize it, differential equations are appearing at every stage of life. So the
solution of differential equations gives life better sense. Numerous methods have been developed to solve differential
equations especially in the last thirty years. For example, Hirota’s bilinear method , inverse scattering method, the tanh
method, Backlund transformation, homogeneous balance method, the sine-cosine function method, the exp-function
method, Jacobi elliptic function method, algebraic method, the (G′/G)-expansion method, the first integral method, the
modified simple equation method, the auxiliary equation method, differential transform method, exponential rational
function method, extended direct algebraic method, extended simple equation method, Khater method, so on [1–4, 7,
10–15, 17–21, 23, 25–38, 41, 42, 44, 46, 47].

Consider the family of fifth-order Korteweg-de Vries (fKdV) equation in its standard form as

ut + αu2ux + δuxuxx + γuu3x + u5x = 0, (1.1)

where α, β and γ are arbitrary nonzero and real parameters, and u = u (x, t) is a differentiable function. The fKdV
equation (1.1) describes motions of long waves in shallow water under gravity and in one-dimensional nonlinear lattice
and has wide applications in quantum mechanics and nonlinear optics.

The fKdV equation (1.1) involves two dispersive terms u3x and u5x . Since the parameters α, β and γ are arbitrary
constants then, the small changes on these parameters drastically change the characteristics of the fKdV equation.
Therefore, different forms of the equation can be obtained by changing these.

However, four well known forms of the fKdV that are of particular interest given by

Email address: mmizrak@sirnak.edu.tr



Stability Analysis for Some Nonlinear Fifth-Order Equations 126

(i) The Kaup-Kuperschmidt (KK) equation reads

ut +
1
5
γ2u2ux +

5
2
γuxuxx + γuu3x + u5x = 0, (1.2)

(ii) The Lax equation reads

ut +
3

10
γ2u2ux + 2γuxuxx + γuu3x + u5x = 0, (1.3)

(iii) The Sawada-Kotera (SK) equation is given by

ut +
1
5
γ2u2ux + γuxuxx + γuu3x + u5x = 0, (1.4)

(iv) The Ito equation is given as

ut +
2
9
γ2u2ux + 2γuxuxx + γuu3x + u5x = 0. (1.5)

The first three equations KK, Lax and SK equations are completely integrable equations that have infinite sets of
conserved quantities and give multiple soliton solutions. However, the Ito equation is not completely integrable but has
a limited number of conserved quantities.

Exact solutions for several forms of Eq.(1.1) have been obtained by many researchers with various methods [5,6,9,
16, 22, 43, 45].

2. Analysis of The Extended Direct AlgebraicMethod

The following is a given nonlinear partial differential equations with two variables x and t,

P (u, ux, ut, uxx, uxt, utt, ...) = 0 (2.1)

P is a polynomial function with respect to the indicated variables or some functions which can be reduced to a
polynomial function by using some transformations.

Step 1: Assume that Eq. (2.1) has the following formal solution as:

u (x, t) = u (ξ) =

m∑
i=0

aiϑ
i (ξ) (2.2)

where

ϑ′ =

√
αϑ2 + βϑ4 and ξ = kx + ωt, (2.3)

where α, β are arbitrary constants and k, ω, are the wave length and frequency, respectively.
Step 2: Balancing the highest order derivative term and the highest order nonlinear term of Eq. (2.1), then the

coefficients of series, α, β, a0, a1,. . . , am, k, ω, can be determined.
Step 3: Substituting Eqs. (2.2) and (2.3) into Eq. (2.1) and collecting coefficients of ϑiϑ(i) (which ϑ(i) shows ith

derivative w.r.t. ξ), then setting coefficients equal zero, we will obtain a set of algebraic equations. By solving this
system, the parameters α, β, a0, a1,. . . , am, k, ω, can be determined.

Step 4: By substituting the parameters, α, β, a0, a1,. . . , am, k, ω, and ϑ (ξ) , into Eq. (2.2), the solutions of Eq. (2.1)
can be easily obtained.

3. Stability Analysis

Hamiltonian system is a mathematical formalism to describe the evolution equations of a physical system. By using
the form of a Hamiltonian system for which the momentum is given as

M =
1
2

∫ ∞

−∞

u2dξ, (3.1)

where M is the momentum, u is the travelling wave solutions in Eq. (2.1). The sufficient condition for soliton stability
is
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∂M
∂ω

> 0, (3.2)

where ω is the frequency [8, 24, 39, 40].

4. Applications of The Extended Direct AlgebraicMethod for The Family of Fifth-Order Korteweg-de Vries
Equation

In this section, we apply the extended direct algebraic method to find the travelling wave solutions for general KK,
general Lax, general SK and general Ito equations.

4.1. The Extended Direct Algebraic Method for General KK equation. Consider the travelling wave solutions Eq.
(2.2) and Eq. (2.3), then the general Kaup-Kuperschmidt (KK) equation, Eq. (1.2), becomes

ωu′ +
1
5
γ2ku2u′ +

5
2
γk3u′u′′ + γk3uu′′′ + k5u(5) = 0. (4.1)

Balancing the nonlinear uu
′′′

and highest order derivative u(5) in Eq. (4.1) that gives m = 2 . Since general KK, general
Lax, general SK and general Ito equations, which are from the same category, then their solutions can be written as,

u (ξ) = a0 + a1ϑ + a2ϑ
2. (4.2)

By substituting Eq. (4.2) into Eq. (4.1) yields a set of algebraic equations for a0, a1,q, s, α, β, k, ω . The system of
equations are found as

k5α2a1 + ωa1 + k3αγa0a1 +
1
5

kγ2a2
0a1 = 0,

2ωa2 + 8k3αγa0a2 +
2
5

kγ2a2
0a2 +

7
2

k3αγa2
1 +

2
5

kγ2a0a2
1 + 32k5α2a2 = 0,

60k5αβa1 +
6
5

kγ2a0a1a2 + 6k3βγa0a1 + 24k3αγa1a2 +
1
5

kγ2a3
1 = 0,

4
5

kγ2a2
1a2 + 28k3αγa2

2 +
4
5

kγ2a0a2
2 + 24k3βγa0a2 + 11k3βγa2

1 + 480k5αβa2 = 0,

55k3βγa1a2 + kγ2a1a2
2 + 120k5β2a1 = 0,

2
5

kγ2a3
2 + 54k3βγa2

2 + 720k5β2a2 = 0.

By solving this algebraic equation system gives,

a0 = −
40k2α

γ
, a1 = 0, a2 = −

120k2β

γ
, ω = −176k5α2,

a0 = −
5k2α

γ
, a1 = 0, a2 = −

15k2β

γ
, ω = −k5α2.

Substituting these parameters into Eq. (4.2), then the following solutions of Eq. (1.2) can be obtained as

u1(x, t) = −
40k2α

γ
+

120k2αS ech2[
√
α(kx − 176k5α2t)]
γ

, (4.3)

u2(x, t) = −
40k2α

γ
−

1920e2
√
α(kx−176k5α2t)k2αβ

(e(2
√
α(kx−176k5α2t) − 4β)2γ

, (4.4)

u3(x, t) = −
40k2α

γ
−

1920e2
√
α(kx−176k5α2t)k2αβ

(1 − 4βe(2
√
α(kx−176k5α2t))2γ

, (4.5)
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u4(x, t) = −
5k2α

γ
+

15k2αS ech2[
√
α(kx − k5α2t)]
γ

,

u5(x, t) = −
5k2α

γ
−

240e2
√
α(kx−k5α2t)k2αβ(

e2
√
α(kx−k5α2t) − 4β

)2
γ
,

u6(x, t) = −
5k2α

γ
−

240e2
√
α(kx−k5α2t)k2αβ(

1 − 4βe2
√
α(kx−k5α2t)

)2
γ
.

Figure 1. Travelling waves solutions of Eqs. (4.3)-(4.5) in different forms.

The travelling wave solutions of Eqs. (4.3)-(4.5) are shown in Fig.1 α = k = 1, β = −1 and γ = 10 with in the
interval [-5, 5] and [0,0.01]. According to the conditions of stability Eq. (3.1) and Eq. (3.2), the travelling wave
solutions of Eqs. (4.3)-(4.5) are stable in the interval [-5, 5] and [0, 0.01].

4.2. The Extended Direct Algebraic Method for General Lax equation. Applying the travelling wave solutions
Eqs. (2.2) and (2.3), then general Lax equation, Eq. (1.3), is in the form

ωu′ +
3
10
γ2ku2u′ + 2γk3u′u′′ + γk3uu′′′ + k5u(5) = 0. (4.6)

Since the solution of Eq. (4.6) in the form of Eq. (4.2), by substituting Eq. (4.2) into Eq. (4.6) yields a set of algebraic
equations is for a0, a1,a2, α, β, p, q, r, k, ω. The solution of the system of algebraic equations, can be found as
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a0 = −
20k2α

γ
, a1 = 0, a2 = −

60k2β

γ
, ω = −56k5α2,

a0 = −
20k2α

3γ
, a1 = 0, a2 = −

20k2β

γ
, ω = −

8
3

k5α2.

Substituting these parameters into Eq. (4.2), then the following solutions of the general Lax equation, Eq. (1.3), can
be obtained as

u1(x, t) = −
20k2α

γ
+

60k2αS ech2[
√
α(kx − 56k5α2t)])
γ

, (4.7)

u2(x, t) = −
20k2α

γ
−

960k2αβe2
√
α(kx−56k5α2t)(

e2
√
α(kx−56k5α2t) − 4β

)2
γ
, (4.8)

u3(x, t) = −
20k2α

γ
−

960k2αβe2
√
α(kx−56k5α2t)(

1 − 4βe2
√
α(kx−56k5α2t)

)2
γ
, (4.9)

u4(x, t) = −
20k2α

3γ
+

20k2αS ech2[
√
α(kx − 8

3 k5α2t)])
γ

,

u5(x, t) = −
20k2α

3γ
−

320k2αβe2
√
α(kx− 8

3 k5α2t)(
e2
√
α(kx− 8

3 k5α2t) − 4β
)2
γ
,

u6(x, t) = −
20k2α

3γ
−

320k2αβe2
√
α(kx− 8

3 k5α2t)(
1 − 4βe2

√
α(kx− 8

3 k5α2t)
)2
γ
.

The travelling wave solutions of Eqs. (4.7)-(4.9) are shown in Fig.2 with α = k = 1, β = −1 and γ = 10 in the
interval [-5, 5] and [0,0.01]. According to the conditions of stability Eq. (3.1) and Eq. (3.2), the travelling wave
solutions of Eqs. (4.7)-(4.9) are stable in the interval [-5, 5] and [0, 0.01].

4.3. The Extended Direct Algebraic Method for General SK Equation. Using the Eqs. (2.2) and (2.3), then the
general SK equation, Eq. (1.4), becomes

ωu′ +
1
5
γ2ku2u′ + 2γk3u′u′′ + γk3uu′′′ + k5u(5) = 0. (4.10)

Since the solution of Eq. (4.10) in the in the form Eq. (4.2), by substituting Eq. (4.2) into Eq. (4.10) yields a set of
algebraic equations is for a0, a1, α, β, k, ω, p, q . The solution of the system of algebraic equations, can be found as

a0 = −
20k2α

γ
, a1 = 0, a2 = −

60k2β

γ
, ω = −16k5α2,

a0 = −
10k2α

γ
, a1 = 0, a2 = −

30k2β

γ
, ω = 4k5α2.

Substituting these parameters into Eq. (4.2), then the following solutions of then the general SK equation, Eq. (1.4),
can be obtained as

u1(x, t) = −
20k2α

γ
+

60k2αS ech2[
√
α(kx − 16k5α2t)])
γ

, (4.11)

u2(x, t) = −
20k2α

γ
−

960k2αβe2
√
α(kx−16k5α2t)(

e2
√
α(kx−16k5α2t) − 4β

)2
γ
, (4.12)
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Figure 2. Travelling waves solutions of Eqs. (4.7)-(4.9) in different forms.

u3(x, t) = −
20k2α

γ
−

960k2αβe2
√
α(kx−16k5α2t)(

1 − 4βe2
√
α(kx−16k5α2t)

)2
γ
, (4.13)

u4(x, t) = −
10k2α

γ
+

30k2αS ech2[
√
α(kx + 4k5α2t)])
γ

,

u5(x, t) = −
10k2α

γ
−

480k2αβe2
√
α(kx+4k5α2t)(

e2
√
α(kx+4k5α2t) − 4β

)2
γ
,

u6(x, t) = −
10k2α

γ
−

480k2αβe2
√
α(kx+4k5α2t)(

1 − 4βe2
√
α(kx+4k5α2t)

)2
γ
.

The travelling wave solutions Eqs. (4.11)-(4.13) are shown in Fig.3, α = k = 1, β = −1 and γ = 10 in the interval
[-5, 5] and [0, 0.01]. According to the conditions of stability Eq. (3.1) and Eq. (3.2), the travelling wave solutions of
Eqs. (4.11)-(4.13) are stable in the interval [-5, 5] and [0, 0.01].
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Figure 3. Travelling waves solutions of Eqs. (4.11)-(4.13) in different forms.

4.4. The Extended Direct Algebraic Method for General Ito Equation. Consider the travelling wave solutions Eqs.
(2.2) and (2.3), then the general Ito equation, Eq. (1.5), becomes

ωu′ +
2
9
γ2ku2u′ + 2γk3u′u′′ + γk3uu′′′ + k5u(5) = 0. (4.14)

Since the solution of Eq.(4.14) in the form Eq. (4.2), by substituting Eq. (4.2) into Eq.(4.14) yields a set of algebraic
equations is for a0, a1, α, β, k, ω, p, q, r. The solution of this system of algebraic equations, can be found as

a0 = −
30k2α

γ
, a1 = 0, a2 = −

90k2β

γ
, ω = −96k5α2.

Substituting these parameters into Eq. (4.2), then the following solutions of the general Ito equation, Eq. (1.5), can be
obtained as

u1(x, t) = −
30k2α

γ
+

90k2αS ech2[
√
α(kx − 96k5α2t)])
γ

, (4.15)

u2(x, t) = −
30k2α

γ
−

1440k2αβe2
√
α(kx−96k5α2t)(

e2
√
α(kx−96k5α2t) − 4β

)2
γ
, (4.16)

u3(x, t) = −
30k2α

γ
−

1440k2αβe2
√
α(kx−96k5α2t)(

1 − 4βe2
√
α(kx−96k5α2t)

)2
γ
. (4.17)
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Figure 4. Travelling waves solutions of Eqs. (4.15)-(4.17) in different forms.

The travelling wave solutions of Eqs. (4.15)-(4.17) are shown in Fig.4, α = k = 1, β = −1 and γ = 10 with in
the interval [-5, 5] and [0, 0.01]. According to the conditions of stability Eq. (3.1) and Eq. (3.2), the travelling wave
solutions of Eqs. (4.15)-(4.17) are stable in the interval [-5, 5] and [0, 0.01].

5. Conclusion

In this study, implementing the extended direct algebraic method travelling wave solutions of general KK, general
Lax, general SK and general Ito equations obtained with aid of Mathematica program. Graphs of the equations were
plotted at specified intervals to demonstrate the stability of the new solutions. It has also been verified that all the
solutions found provide the equations. Moreover, many new nonlinear equations that arising in mathematical physics
can also be solved by this efficient method.
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