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Abstract

In this work, a new class of continuous distributions is presented and the mathematical properties of the new
distribution class is studied. We estimate the model parameters by the maximum likelihood method and assess
its performance based on biases and mean squared errors in a simulation study framework. For the real data set,
the special member of the new class provides a better fit than other models generated by other well-known
families.

Keywords: Odd Log-Logistic Family; Maximum Likelihood Estimation; Compound Class; Order Statistics.
Siirekli dagilimlarin bir diger odd log-logistik logaritmik sinifi

Oz

Bu ¢alismada, siirekli dagilimlarin yeni bir sinifi sunulmustur ve bu yeni dagilim smifinin matematiksel
ozellikleri ¢alisilmistir. Model parametreleri en ¢ok olabilirlik tahmin yontemi ile elde edilmis ve bu tahmin
edicilerin performanslari yan ve hata kareler ortalamasina dayali olarak bir simiilasyon ¢alismasi tizerinde
gozlemlenmigstir. Gergek bir seti igin, yeni sinifin ozel bir tiyesi diger iyi bilinen dagilim siniflarinin iiyelerinden
daha iyi uyum saglamigtir.

Anahtar sézciikler: Odd log-logistik ailesi; En ¢ok olabilirlik tahmini; Birlestirilmis smif; Sira istatistikleri.
1. Introduction

Several continuous univariate models have been extensively used for modeling data in many areas such as
insurance, economics, environmental sciences, engineering and biological studies. So, several new families
of distributions have been constructed by extending common classes of continuous distributions. These new
families of distributions give high flexibility by adding one "or more" parameters to the baseline distribution.
Many odd log-logistic-G families can be cited by Alizadeh et al. (2015), Cordeiro et al. (20163, b), Alizadeh
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et al. (2017), Brito et al. (2017), Cordeiro et al. (2017), Alizadeh et al. (2018) and Korkmaz et al. (2018),
among others.

Let G(X; #)=G(x) be abaseline cumulative distribution function (cdf) and ¢ bethe px1 vector of

associated parameters. Recently, Gleaton and Lynch (2004, 2006 and 2010) introduced a class of
distributions called the odd log-logistic family with one extra shape parameter « >0 defined by the cdf

Hou o (6 @ $)=G(x 9)"[G(x ¢)* +G(x ¢)"] @)

where G(x; @) =G(x) =1-G(x; ¢). In this paper, we introduce a new family of distributions called

"another odd log-logistic logarithmic-G" (AOLLL-G) family. The cdf of this family is given by

. _1_ _ -1 _ ﬂG(X, Q)a
Frowe(X @, B, ¢)=1 {['09(1 p)] |09[1 Gix, 9 +G(x, ?)a}}, )

where G(X; ¢@) is the baseline cdf depending on a parameter vector ¢ and « >0 and 0< <1 are

two additional shape parameters. For each baseline G, it includes odd_log-logistic (AOLL-G) family by
Gleaton and Lynch (2004 and 2006) and logarithmic-G family. Some special models are given in Table 1.

Table 1. Some special models.

a| B |G(x ¢) Reduced distribution

- | T1| G(x, ¢#) | OLL-G family [Gleaton and Lynch (2004 and 2006)]
1| - |G ¢) Logarithmic-G family baseline distribution
1|11 G(x, ¢) G(x, ¢)

This paper is organized as follows. In Section 2, we define the new family. Some of its special cases are
presented in Section 3. In Section 4, we derive some of its mathematical properties. Section 5 provides
maximum likelihood estimation procedure for model parameters. In Section 6, a simulation study is
performed to see the efficiency of maximum likelihood method. In Section 7, we illustrate the importance
of the new family by means of an application to real data set. The paper is concluded in Section 8.

2. The new family and its motivation

The corresponding density function of (2) is given by
fron s (6 @ B, @)=aBg(x, #)G(x, ¢ 'G(x, )" x
[6(x, ) +G(x, )] "’ 3)
x[G(x, )" +@-B)G(x ¢)*] log@-p)|

where g(x; ¢) isthe baseline pdf, &« >0 and 0< <1 .Equation (3) will be most tractable when the

cdf G(x) andthe pdf g(x) have simple analytic expressions. Hereafter, a random variable X with
density function (3) is denoted by X ~ AOLLL-G (&, B, ¢) . Henceforward G(x)=G(X; ¢) and
g(x) = g(X; @) and so on. A motivation of this family can be explained as follows: Suppose that a parallel

system is made up of N components and the lifetimes of the components are independent and identically
distributed (iid) random variables, denoted as Z,,---, Z,, , with common cdf (2). Then, the system fails
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as soon as the last component fails, namely the lifetime of the whole system is represented by
X =min{Z,,---, Z,} . In many survival parallel systems, it is almost impossible to have a fixed number

of components because some of them get lost or censored for various reasons. Therefore, we may assume
that N is a discrete random variable. Suppose that N has the logarithmic distribution with, probability
mass function given by

P(N=n)=-4"/nlog(l-p), n=1 2,..., 0<p<1.

Then the cdf of the life length of the whole system, X , is obtained as

F(x):iP(X <x|N =n)P(N =n)

n=1

:i[—ﬂ”/nlog(l—ﬂ)] 1{1 G, g) }

CG(x, 9)" +G(x, 9)°

B BG(x, ¢)”
=1-1[log(1- log| 1~ q
{[og( Pl 09{ G(x, ¢)" +G(x @”’H

which is identical to (2). The hazard rate function (hrf) of X becomes
hx; a B, §)=-apg(x, )G HG(x §** [G(x, #*+6(x, |
<[G(x, 9" +A-AG(X, ¢ @)

x<log|1- pO(x _@a :
G(x, 9)+G(x, ¢)"

3 Special AOLLL-G models

3.1 The AOLLL-normal distribution

We define a new model called AOLLL-normal (AOLLL-N) distribution from (3) by taking
G(x u, o) :dD(%) and g(X; u, o) :a‘lqﬁ(x%‘) with ¢=(u, o) ,where ¢(-) and @(-)
are the pdf and cdf of the standard normal distribution, respectively. Then, the new pdf can be obtained
using (3), where xeR, ueR, a, 0>0,0< <1 .Thepdfof the new model is denoted by AOLLL-

N. We plot this pdf and its hrf in Figure 1. From Figure 1, we see that the pdf shapes of the AOLLL-N are
skewed and bi-modal.
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Figure 1. Plots of the pdf and hrf of the AOLLL-N distributions.

3.2 The AOLLL-Weibull distribution

We now consider the Weibull (W) distribution as a baseline distribution with pdf
g(x; a, b):babxbflef(ax)b and cdf G(x ; a, 7/):1—e’(ax)b . Then, the new pdf can be obtained via

(3), where x>0, «, a, b>0,0< <1 . The new model is denoted by AOLLL-W and its pdf and hrf

plots for selected parameter values are displayed in Figure 2. From Figure 2, we see that pdf of the new
model have various important shapes, the pdf shapes are decreasing, unimodal, bi-modal, firstly decreasing
then unimodal shaped. Also, its hrf shapes are increasing, decreasing, unimodal, bathtub and firstly
unimodal and then increasing. So, we can say that new distribution can be useful for modelling various data
sets.

20

T
— a=0.1E, =05, a=1, b=k — a=0.18, =05, a=1, b=t i -
= = a=03, p=08, a=1, b=f = = a=03, p=08, a=1, b=t ' -
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- a=07, p=05, a=1, b=2 a=0J8, p=085, a=1, k=175 7

0.0 os 1.0 1.5 20 0.0 0z 0.4 0e oa 10 1.2

Figure 2. Plots of the pdf and hrf of the AOLLL-W distributions

4 Mathematical properties

4.1 Quantile function

The new family of distributions is easily simulated by inverting (2) as follows: if U has a uniform
U (0, 1) distribution, then
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QU)=G™ {1—};[11— (Lﬂ)l—u}}% |
{%I:l— (l—ﬂ)l—u ]}; + {1— %[1— (1- ﬂ)l—u ]};

(®)

has the density function (2). Although, we have stated that S < (0, 1) , Equation (2) is stillacdfif <0
. Hence, we can consider the new family forany £ <1 .

4.2 Useful expansions

By using the power series

—log@l-u)=>Yu'/i for |u|<1,
i=1

the cdf of the new model follows as

F() =1—iﬂ‘ GO /i 60 +[1-G(I] | ©)

where | B|<1 . Next, we obtain an expansion for F(X) . First, we use a power series for G(x)“
(>0 real) given by

600" = Ya (@) G,

(7
where

2, (@)= (- m

(8)
For any real o >0 , we consider the generalized binomial expansion
> a
[1-G(]" = (- (kj G(x)". (9)
k=0

Also, we have

G(x)” _ Zicoy (i) G(x)"
{G(x)“+[1—G(x)]“}' Yio b G*

A

where b, =h (a, i) isdefined in the Appendix. The ratio of the two power series can be expressed as

A= ick (@, i) G(X), (10)
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where the coefficients ¢, («, 1) 's (for k>0 ) are determined from the recurrence equation

C (e, i)= (ak(ai)—bglzk:br ¢, (a, i)j/bo.

Then, we can write
F(X)zl—Zbk Hk(x)zzdk H, (X), (11)
k=0 k=0

where
b, =" B'c. (e, )]/i, dy=1-b,
i=1

andfor k>1, d, =b,. The pdf of X follows by differentiating (11) as
F() =20, M, (x), (12)
k=0

where h_,(x)=(k+1) G(x)“g(x) is the exponentiated G (Exp-G) density function with power
parameter (k +1) . Equation (12) reveals that the new density function is a linear combination of Exp-G

densities for | #|<1 . Thus, some structural properties of the new family such as the ordinary and

incomplete moments and generating function can be determined from well-established properties of the
Exp-G distribution.

4.3 Moments

Let Y, be arandom variable with Exp-G distribution with power parameter k+1 , i.e., with density
h,.,(X) . Afirst formula for the n' ordinary moment of X ~ AOLLL-G follows from (12) as

E(X")=2d,, E(Y/). (13)
k=0

A second formula for E(X") follows from (12) in terms of the G quantile function (qgf) as

E(X")=>(k+1) d, z(n, k), (14)
k=0

E(X") = Z(k +1) d,,, z(n, k),
k=0

where z(n, K)=]"x" G(x)* g(x)dx=[Qs(u)" udu .For empirical purposes, the shape of many
distributions can be usefully described by what we call the incomplete moments. These types of moments
play an important role for measuring inequality, for example, income quantiles and Lorenz and Bonferroni

curves, which depend upon the incomplete moments of a distribution. The n™ incomplete moment of X
is calculated as

m () =E(X"[X <y) =Y (k+D d,, [ Q) udu (15)

0
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The last integral can be computed for most G distributions.

4.4 Generating function

Let M, (t)=E(e'”) be the moment generating function (mgf) of X. Then, we can write from (12) as

My () =Sy M, (D), (16)

where M, (t) isthe mgfof Y, .Hence, M, (t) can be determined from the Exp-G generating function.
A second formula for M (t) can be determined from (12) as

M®) =S (k+D) d., < K) 17)
where |=o

£(tk)= J'Olexp[tQG (u)Ju*du = J:exp [X]G (x)" dx.

4.5 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Suppose that
X.,-.., X, is arandom sample from the new class. Let X;., denote the i™ order statistic. From
equations (2) and (3), the pdf of X,., can be written as

n

jHi-1

L 00=K (D) [”;ij {Zd (r+2) GO’ g(x)} [idk G(x)k} ,

where K =nY[(i—-1)! (n—i)!]) for a power series raised to a positive integer number. Following
Gradshteyin and Ryzhik (2000) for power series raised, we obtain

{idk G(x)k} _ “Se.ine GO

where

e =dJ"™" and, for k>1,

j+i-1,0
k

ej+i—1,k:(k do)ilz[q(j‘”)_k] dq €t k—q-
-1

Setting d.’ = (r +1)d, , for multiplying two power series, we have

r+l
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L (0=K 3(-1) (”j"] g(x){id: G(x)' } {Ze G(x)k}
K 3! (”J."J 0(x) Se G,

where

k
* *
ek - ZejJri—l, q dk—q'
q=0

Hence, we can write
fi n (x)= zsk hk+l(x)'
k=0 (18)

where (for k>0)

k n—i . n_i
S, =—— -1)’ e,
i D (Jj :

Equation (18) is the main result of this section. It reveals that the pdf of the AOLLL-G order statistics is a
linear combination of Exp-G densities when —1< £ <1 . So, several mathematical quantities of the new
family order statistics can be obtained from those quantities of the Exp-G distribution.

4.6 Entropies

The Rényi entropy (Rényi, 1961), of a random variable with pdf f (x) is defined by

-1 0
() =(1-7) "log| [ 1 (0K |
for »>0 and y =1 .The Shannon entropy (Shannon, 1948) of a random variable X is defined by
E {— Iog[ f(X )]} It is the special case of the Rényi entropy when » T1 . Direct calculation gives

E{~log[ f (X)]} =~log{ap/[~log(~ )]} - E{log[ g(X; ¢)]}+(1-a)E {log[ G(X; ¢)]}
+1-a)E{log[ G(X; ¢)]}+2E{log[ G(X; ¢)* +G(X; ¢)" |}
+E[Iog(1—{ﬁé(x, P I[G(X, ) +G(X, @“]})}.

First, we define and compute

u* (1-u)®

[u® +@—u)*]> [l_MT

u®+(1-u)*

du.

A(ai’ aZ' aS’ a4; a, ﬂ):_ﬁ)

By using the binomial expansion, we have (for —1< f<1)



M. Alizadeh, M.C. Korkmaz, J.A. Almamy, A.A.E. Ahmed / 63
Istatistikgiler Dergisi: Istatistik&Aktiierya, 2018, 11, 55-72

Aa, & 2 ai o f)- i(-”i”[_?“j ( A ij ﬁﬂ‘[ e

o U+ (@L-uy*

Ay

Further

Zf:oazuk S
AJl = © . k :ZCku
P WV A

where

CE e

q=k

b, =h (o, a,+i) isdefined in Appendix and the coefficients c, 's for k>0 are obtained from the
following recurrence equation

k
G = a @ i j)- (a:—b;lzb: c:rj/bs.
r=1

Then,
A@, &, &, a; a f)= f)" (_?“j m G(a, &, a i, j)/(1+k).

i, j=0

After some algebraic manipulations, we obtain

E{Iog[G(X)]}:ﬁ’f_ﬁ) (O[A+t-1 a-1 2, 1 a, f)l,]/at},

E{Iog[G(X)J}:ﬁf_ﬂ) [0[Ale-1, a+t-1, 2, L a, B)l,]/at},

E{log{G(X; §)* +G(X; @a}}zﬁf—ﬂ) {o[Al@-1 a-1 2-t, L a, B)l,]/at},

_AG(X, 9 _ ap DI
E{Iog{l 5K, 9 +6(X, g)“}_—loga—ﬁ) {0[Ala-1 a-1, 2, 1-t; a, B)|,]/et}.

Then the simplest formula for the entropy of X is given by
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E{~log[ f (X)]} = -log{aB/[~log(1- £)]} ~E{log[ a(X; ¢)]}

_all-a)f [o[A@+t-1 a-1 2, 1 a, f)l,]/at}

log1-/5)
_% [A@-1 a+t-1 2, % a, f)l,]/ot)
_Eé%%zﬁ [A@-1 a-1 2-t, L a, B)l.]/at)
_ﬁ {o[AMa-1, a-1, 2, 1-t; a, B)|,]/at}.

For the Rényi entropy, after some algebraic developments, we obtain an alternative expression

1.(") =7(1-7) log{ap/[-logll- B)]} +(1-7) log[B(a, B, 7)].

where
1 g 71 ':G—l (U):' yler (1_ u)(afl)y

Bla, B, 7)=
a 4 Io [ua_'_(l_u)“:lzy |:1_ u{j&l_—u:()l"’ T

By using the binomial expansion, we have

Bla, B, 7)= i(—l)”jlgi (7] (7(05—1?+05 .j

i j=0 J
Y ares y7 @D
gBURCaOl [u +@-uy "
Ay

Further,
0 * k 0
AJ _ Zkzoal, ku _ ZC* uk
- © * Kk 1, k !
’ Zk:Obl, kU k=0

where

. &fle-Dr+ij)(fa ke
e

q=k

b, =h (e, 2y+i) isdefined in Appendix and the coefficients ¢, 's for k>0 are obtained from

the following recurrence equation

k
RO N D Y Wy
r=1
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Finally
Bla, B, 7)= i ai'j'kEYk{gyfl(Gfl(Y))},

i, j, k=0
where

ya@-D+a i

ai,j,kz(_l)iJrjﬂiC;k(}/l a, i, J)(_Iy] ( i

and Y, ~Beta(k+1, 1).

]/(k+1)

5 Estimation and Inference

Here, we determine the MLEs of the model parameters of the new family from complete samples. Let
X1 %o pe the observed values from the new family of distributions with parameters «, £ and ¢ .

Let ®@=(a, p, zﬁ)T be the parameter vector. The total log-likelihood function for ® is then given by

£y =£,(@)=n log{ap[-log-A)]}+ Y loa[9(x; §]+(@-D3 log[G(x: HG(x; &)

23 l0g[G(x: 9)° +G(x: 9)]-Ylog[Gx; 9 +@-ACK: 9] (15
i=1 i=1 )

The log-likelihood function can be maximized either directly or by solving the nonlinear likelihood
equations obtained by differentiating (19). We use the goodness of fit function in R and NLMixed procedure

in SAS to obtain the MLEs. The components of the score function U (®) = (6€n loa,0l,10p,0!, /GQ)T
are

ot, &G0 9 log|G(x; 8) |+ 1L-AG(x; §)*log| G(x; 4)]

:_22 a ~ a
oa i—1 G(x; 9)“+(@1-B)G(x; 9)
_ie(xi: #)“1og[G(x; 4)]+G(x: ¢)*log[G(x; ¢)]
i1 G(x;; Q)a‘*‘é(xi; #)°

+nat+ Zn: log [G(xi; Q)G(xi; 41_5)],

ol, 1 _ T & G(Xi; z})“
aﬁ_nﬂ +n[(1-p)log(1-p)] +iZ=1:(;(Xi; ?)“+(1—ﬂ)é(xi; )"

and
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ot, 9" 9) .G (%, ) G2 (x, )
o6 Z ok ) )Z Gk, 9) )Z G(x, )

n GO(x, §)|G(x; )t -(L-BG(x; $*]

T (e g A PB: B

_aid”(xi, A G 9" -G(x; @H]_

= G(x; )" +G(x; ¢)°

where () means the derivative of the function h with respect to g

6 Simulation study

In here, we obtain the graphical results to see MLEs of the model parameters. We generate N =1000
samples of size Nn=20, 21,..., 500 from AOLLL-W distribution with selected parameters values o = 2

, =025, a=2 and b=0.5. The random numbers generation is obtained by its quantile function.

We also calculate the empirical means, standard deviations (sd), bias and mean square error (MSE) of the
MLEs. The bias and MSE are calculated by (for h=«, S, a, b)

Bias, =N *Y" (i, ~h) and MSE,=N"Y" (h—h)

respectively. All computations are obtained by using optim-CG routine in R program. We give results of
this simulation study in Figure 3. From Figure 3, we observe that when the sample size increases, the
empirical means for all parameters approach to true parameter value whereas the all biases, sd's and MSEs
decrease as expected.
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Figure 3. Simulation results for the AOLLL-W distribution.

7 An Application

In this section, we illustrate the flexibility of the AOLLL-W distribution on the real data set. We also
compare this model with the beta Weibull (BW) model by Famoye et al. (2005), Kumaraswamy Weibull
(KwW) model by Cordeiro, et al. (2010), odd log-logistic Weibull (OLL-W) model by Cruz et al. (2017)
and generalized odd log-logistic Weibull (GOLL-W) model by Cordeiro et al. (2017). The cdfs of these
models are given by (for x>0, «, £, a, b>0):

Fou (0)=B"(a B) |t (1-0) o

B

Fa (X) =1—{1_(1_e—<bx>a ”
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-1
a \af a2\ RV A
o e e

and

-1

Forw (X) :(1—e‘(bx)a) [(l—e‘(bx)a) +e‘“(bx)a} ,

where B(«, f) is the complete beta function. To compare AOLLL-W model with above models process

has been done under the estimated log-likelihood values 7 , Akaike Information Criteria (AIC), Cramer
von Mises (W " ) and Anderson-Darling (A" ) goodness of-fit statistics for all distribution models. We note

that The AIC is by given by AIC = —20+2 p where p is the number of the estimated model parameters
and n issample size. The W* and A" statistics have been described as

W* = Zi"zl{lf (% )-[i-05] nl}z +(12n)"

and

A =—y"[(2i-1) n?] [In F (x(i))+ In Ié(x(m_i))}— n.

It can be seen for W* and A’ statistics Chen and Balakrishnan (1995) and Evans et al. (2008). In general,
it can be chosen as the best model which has the smaller the values of the AIC, W™ and A" statistics and

the larger the values of ( . All computations are performed by the maxLike routine in the R programme.
The real data set is the stress-rupture life of kevlar 49/epoxy strands which are subjected to constant
sustained pressure at the 90% stress level until all had failed. This data set was studied by Andrews and
Herzberg (1985) and Cooray and Ananda (2008). The data are: 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04,
0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.1, 0.1, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.2, 0.23, 0.24, 0.24, 0.29
, 0.34, 0.35, 0.36, 0.38, 0.4, 0.42, 0.43, 0.52, 0.54, 0.56, 0.6, 0.6, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72,
0.73,0.79,0.79, 0.8, 0.8,0.83,0.85,0.9,0.92,0.95,0.99, 1, 1.01, 1.02, 1.03, 1.05, 1.1, 1.1, 1.11, 1.15, 1.18,
1.2,1.29,1.31,1.33,1.34,1.4,1.43,1.45,15, 151, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.8,
1.8, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.2, 4.69, 7.89. In the applications, the information
about the hazard shape can help in selecting a model. For this aim, a device called the total time on test

(TTT) plot (Aarset, 1987) is useful. The TTT plot is obtained by plotting T (%) against r/n where
T (%):[Z{‘:ly(i) +(n-r) y(r)]lzi“:ly(i) , r=1.., n and vy, are the order statistics of the sample. It

is convex shape for decreasing hrf and is concave shape for increasing hrf. The TTT plot for the kevlar data
in Figure 4 deals with convex-concave-convex shaped.
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Figure 4. TTT plot for the Kevlar data

The MLEs of all models parameters, 7, their standard errors, AIC, W* and A" statistics are given in
Table mle. As it can be seen from Table MLE, the AOLLL-W model could be chosen as the best model
among the fitted models under the comparing statistics.

Table 2. MLEs, standard erros of the estimates (in parentheses), [ ,AIC, W" and A" statistics.

Model o B a b ) AIC A* W=

AOLLL-W 1.0520 -18.1865 0.7106 2.8107 101.7842 211.5684 0.7087 0.1187
(0.2562) (6.5255) (0.10497) (0.6321)

GOLL-W 1.1651 0.6119 1.1100 0.6195 102.7667 213.5335 0.9353 0.1563
(0.9266) (D.888E) (0.4325) (0.8775)

KwW  0.7358 0.2288  1.0252 3.7984 102.6115 213.2231 0.8577 0.1388
(0.1818) (0.0274) (0.0214) (0.0196)

BW 0.7119  0.2188 1.0753 3.5333 102.2966 212.5933 0.7924 0.1280
(0.1183) (0.0244) (0.0332) (0.3835)

OLL-W  0.8893 1.0396 1.0194 102.8435 211.6869 1.0140 0.1813

(0.1946) (0.1285) (0.1773)

The plots of the fitted pdfs, cdfs and hrfs of all models are displayed in Figures 5-7. These plots also show
that the AOLLL-W model has the best fitting to these data compared to the other models. The fitted hrf of
the AOLLL-W model provides better fitting than other models.
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Figure 5. Fitted pdfs for the data set.
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Figure 7. Fitted hrfs for the data set.

8 Conclusions

In this work, we present a new class of distributions called another odd log-logistic logarithmic-G (AOLLL-
G) family of distributions. The mathematical properties of this new family are provided. The model
parameters are estimated by the maximum likelihood estimation method and the observed information
matrix is determined. Simulation results to assess the performance of the maximum likelihood estimators
are discussed. It is shown that a special case of the new class can provide a better fit than other models
generated by well-known families.
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Appendix: Useful power series

It can be seen Gradshteyn and Ryzhik (2000) for following equations.

By expanding z”* in Taylor series, we can write
2t =) (A) (=D TkI=>f, 7, (Al)
k=0 i=0
where
f = f.(}t):i(ﬂ,) (- K /k!
i i e k | "
and (1), =A(1-1)...(A-k+1) is the descending factorial. Further, we obtain an expansion for
[G(X)* +G(X)*]° . We can write
[G()*+G(¥)°1=D% G(X)',
j=0
where
k!
t;=t;(a)=a;(@)+(-1) i)

Then, using (Al), we have

[G(X)* +G(X)* =1, [itj G(x)"j |

where f, = f,(c) . Finally, we obtain
[6()° +8(0° = Xh,(a. ©) G’

where h;(a, ¢)=3, f; m ; andfor i>0

i _
m ;=(] to)’lz[m(j +)-j1 t, m ;. (forj=L)andm , =t
m=1



