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Abstract  

In this work, a new class of continuous distributions is presented and the mathematical properties of the new 

distribution class is studied. We estimate the model parameters by the maximum likelihood method and assess 

its performance based on biases and mean squared errors in a simulation study framework. For the real data set, 

the special member of the new class provides a better fit than other models generated by other well-known 

families.  

Keywords: Odd Log-Logistic Family; Maximum Likelihood Estimation; Compound Class; Order Statistics. 

Sürekli dağılımların bir diğer odd log-logistik logaritmik sınıfı 

Öz  

Bu çalışmada, sürekli dağılımların yeni bir sınıfı sunulmuştur ve bu yeni dağılım sınıfının matematiksel 

özellikleri çalışılmıştır. Model parametreleri en çok olabilirlik tahmin yöntemi ile elde edilmiş ve bu tahmin 

edicilerin performansları yan ve hata kareler ortalamasına dayalı olarak bir simülasyon çalışması üzerinde 

gözlemlenmiştir. Gerçek bir seti için, yeni sınıfın özel bir üyesi diğer iyi bilinen dağılım sınıflarının üyelerinden 

daha iyi uyum sağlamıştır. 

Anahtar sözcükler: Odd log-logistik ailesi; En çok olabilirlik tahmini; Birleştirilmiş sınıf; Sıra istatistikleri. 

1. Introduction 

Several continuous univariate models have been extensively used for modeling data in many areas such as 

insurance, economics, environmental sciences, engineering and biological studies. So, several new families 

of distributions have been constructed by extending common classes of continuous distributions. These new 

families of distributions give high flexibility by adding one "or more" parameters to the baseline distribution. 

Many odd log-logistic-G families can be cited by Alizadeh et al. (2015), Cordeiro et al. (2016a, b), Alizadeh 
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et al. (2017), Brito et al. (2017), Cordeiro et al. (2017), Alizadeh et al. (2018) and Korkmaz et al. (2018), 

among others.  

Let  ( ; ) ( )G x G x    be a baseline cumulative distribution function (cdf) and     be the  1p   vector of 

associated parameters. Recently, Gleaton and Lynch (2004, 2006 and 2010) introduced a class of 

distributions called the odd log-logistic family with one extra shape parameter  0    defined by the cdf  

1

( ; , ) ( ; ) ( ; ) ( ; ) ,OLL GH x G x G x G x      



                                                        (1) 

where  ( ; ) ( ) 1 ( ; ).G x G x G x     In this paper, we introduce a new family of distributions called 

"another odd log-logistic logarithmic-G" (AOLLL-G) family. The cdf of this family is given by 

 
1 ( , )

( ; , , ) 1 log(1 ) log 1 ,
( , ) ( , )

AOLLL G

G x
F x

G x G x



 

 
   

 





   
     

    

                             (2) 

where  ( ; )G x    is the baseline cdf depending on a parameter vector     and  0    and  0 1    are 

two additional shape parameters. For each baseline G, it includes odd log-logistic (AOLL-G) family by 

Gleaton and Lynch (2004 and 2006) and logarithmic-G family. Some special models are given in Table 1. 

Table 1. Some special models. 

( , ) Reduced distribution

- 1 ( , ) OLL-G family [Gleaton and Lynch (2004 and 2006)]

1 - ( , ) Logarithmic-G family baseline distribution

1 1 ( , ) ( , )

G x

G x

G x

G x G x

  





 





 

This paper is organized as follows. In Section 2, we define the new family. Some of its special cases are 

presented in Section 3. In Section 4, we derive some of its mathematical properties. Section 5 provides 

maximum likelihood estimation procedure for model parameters. In Section 6, a simulation study is 

performed to see the efficiency of maximum likelihood method. In Section 7, we illustrate the importance 

of the new family by means of an application to real data set. The paper is concluded in Section 8. 

2. The new family and its motivation 

The corresponding density function of (2) is given by  

1 1

1

( ; , , ) ( , ) ( , ) ( , )

( , ) ( , )
,

( , ) (1 ) ( , ) log(1 )

AOLLL Gf x g x G x G x

G x G x

G x G x

 

 

 

      

 

   

 





 

      
 

       

                           (3) 

where  ( ; )g x    is the baseline pdf,  0    and  0 1   . Equation (3) will be most tractable when the 

cdf  ( )G x   and the pdf  ( )g x   have simple analytic expressions. Hereafter, a random variable  X   with 

density function (3) is denoted by  X   AOLLL-G ( , , )    . Henceforward  ( ) ( ; )G x G x   and 

( )g x = ( ; )g x   and so on. A motivation of this family can be explained as follows: Suppose that a parallel 

system is made up of  N   components and the lifetimes of the components are independent and identically 

distributed (iid) random variables, denoted as  
1, , NZ Z  , with common cdf (2). Then, the system fails 
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as soon as the last component fails, namely the lifetime of the whole system is represented by  

1min{ , , }NX Z Z  . In many survival parallel systems, it is almost impossible to have a fixed number 

of components because some of them get lost or censored for various reasons. Therefore, we may assume 

that  N   is a discrete random variable. Suppose that  N  has the logarithmic distribution with, probability 

mass function given by  

( ) / log(1 ), 1, 2, ,  0 1.nP N n n n          

Then the cdf of the life length of the whole system, X , is obtained as  

 

1

1

1

( ) ( | ) ( )

( , )
/ log(1 ) 1 1

( , ) ( , )

( , )
1 log(1 ) log 1

( , ) ( , )

n

n

n

n

F x P X x N n P N n

G x
n

G x G x

G x

G x G x



 



 


 

 

 


 











   

   
             

   
     

    



  

which is identical to (2). The hazard rate function (hrf) of  X   becomes  

1
1 1

1

1

( ; , , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) (1 ) ( , )

( , )
log 1 .

( , ) ( , )

h x g x G x G x G x G x

G x G x

G x

G x G x

   

 



 

        

  

 

 


 





    

    

   
   

    

                    (4) 

3   Special AOLLL-G models 

3.1   The AOLLL-normal distribution 

We define a new model called AOLLL-normal (AOLLL-N) distribution from (3) by taking  

   ; ,
x

G x



  

    and     1; ,
x

g x



       with   ,    , where       and       

are the pdf and cdf of the standard normal distribution, respectively. Then, the new pdf can be obtained 

using (3), where  , , , 0,0 1x          . The pdf of the new model is denoted by AOLLL-

N. We plot this pdf and its hrf in Figure 1. From Figure 1, we see that the pdf shapes of the AOLLL-N are 

skewed and bi-modal. 
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Figure 1. Plots of the pdf and hrf of the AOLLL-N distributions. 

3.2   The AOLLL-Weibull distribution 

We now consider the Weibull (W) distribution as a baseline distribution with pdf  

   1; ,
b

axb bg x a b ba x e
  and cdf     

; , 1
b

ax
G x a e


   . Then, the new pdf can be obtained via 

(3), where  0, , , 0,0 1x a b      . The new model is denoted by AOLLL-W and its pdf and hrf 

plots for selected parameter values are displayed in Figure 2. From Figure 2, we see that pdf of the new 

model have various important shapes, the pdf shapes are decreasing, unimodal, bi-modal, firstly decreasing 

then unimodal shaped. Also, its hrf shapes are increasing, decreasing, unimodal, bathtub and firstly 

unimodal and then increasing. So, we can say that new distribution can be useful for modelling various data 

sets. 

 

 
Figure 2. Plots of the pdf and hrf of the AOLLL-W distributions 

 

4   Mathematical properties 

4.1   Quantile function 

The new family of distributions is easily simulated by inverting (2) as follows: if  U   has a uniform  

(0, 1)U   distribution, then 
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 

   

1

1 1

11

1

1 11 1

1 1 (1 )
( )

1 (1 ) 1 1 (1 )

u

u u

Q U G



 



 



 





 

      
  

                    (5) 

         

has the density function (2). Although, we have stated that  (0, 1)   , Equation (2) is still a cdf if  0   

. Hence, we can consider the new family for any  1   . 

4.2   Useful expansions 

By using the power series 

1

log(1 ) /  for | | 1,i

i

u u i u




     

the cdf of the new model follows as  

 

 
1

( ) 1 ( ) / ( ) 1 ( ) ,
i

i i

i

F x G x i G x G x
 





    
              (6) 

where  | | 1   . Next, we obtain an expansion for  ( )F x  . First, we use a power series for  ( )G x 
   

( 0    real) given by  

0

( ) ( ) ( ) ,k

k

k

G x a G x 




                                                                                                  (7) 

where  

( ) ( 1) .k

ka
k




 
   

 
                                                                                                          (8) 

For any real  0   , we consider the generalized binomial expansion 

 

0

[1 ( )] ( 1) ( ) .k k

k

G x G x
k






 
    

 
                (9) 

 

Also, we have  

  
0

0

( ) ( )( )
,

( )( ) 1 ( )

ki
k k

i k
k k

A

a i G xG x

b G xG x G x














 

 

where  ( , )k kb h i   is defined in the Appendix. The ratio of the two power series can be expressed as 

0

( , ) ( ) ,k

k

k

A c i G x




                                                                                                   (10) 
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where the coefficients  ( , )kc i  's (for  0k   ) are determined from the recurrence equation  

1

0 0

1

( , ) ( ) ( , ) / .
k

k k r k r

r

c i a i b b c i b  





 
  
 

  

Then, we can write  

 

0 0

( ) 1 ( ) ( ),k k k k

k k

F x b H x d H x
 

 

                  (11) 

 

where  

0 0

1

( , ) / , 1i

k k

i

b c i i d b 




      

and for  1k   ,  
k kd b . The pdf of  X   follows by differentiating (11) as 

1 1

0

( ) ( ),k k

k

f x d h x


 



                                                                                                    (12) 

where  1( ) ( 1) ( ) ( )k

kh x k G x g x     is the exponentiated G (Exp-G) density function with power 

parameter  ( 1)k   . Equation (12) reveals that the new density function is a linear combination of Exp-G 

densities for  | | 1   . Thus, some structural properties of the new family such as the ordinary and 

incomplete moments and generating function can be determined from well-established properties of the 

Exp-G distribution. 

4.3   Moments 

Let  
kY   be a random variable with Exp-G distribution with power parameter  1k   , i.e., with density  

1( )kh x
 . A first formula for the  n th ordinary moment of  X    AOLLL-G follows from (12) as  

1

0

( ) ( ).n n

k k

k

E X d E Y






                                                                                                   (13) 

A second formula for  ( )nE X   follows from (12) in terms of the G quantile function (qf) as  

1

0

( ) ( 1) ( , ),n

k

k

E X k d n k






                                                                                     (14) 

1

0

( ) ( 1) ( , ),n

k

k

E X k d n k






   

 

where  
1

0
( , ) ( ) ( ) ( )n k n k

Gn k x G x g x dx Q u u du



    . For empirical purposes, the shape of many 

distributions can be usefully described by what we call the incomplete moments. These types of moments 

play an important role for measuring inequality, for example, income quantiles and Lorenz and Bonferroni 

curves, which depend upon the incomplete moments of a distribution. The  n th incomplete moment of  X   

is calculated as 

 

( )

1
0

0

( ) ( | ) ( 1) ( ) .
G y

n n k

n k G

k

m y E X X y k d Q u u du






                   (15) 
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The last integral can be computed for most G distributions. 

 

4.4   Generating function 

Let  ( ) ( )t X

XM t E e   be the moment generating function (mgf) of X. Then, we can write from (12) as  

1

0

( ) ( ),X k k

k

M t d M t






                                                                                                             (16) 

where  ( )kM t   is the mgf of  
kY  . Hence,  ( )XM t   can be determined from the Exp-G generating function. 

A second formula for  ( )M t   can be determined from (12) as  

1

0

( ) ( 1) ( , ),k

i

M t k d t k






                                                                                        (17) 

where  

       
1

0
, exp exp .

kk

Gt k tQ u u du tx G x dx



      

4.5   Order statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Suppose that  

1, , nX X   is a random sample from the new class. Let  :i nX   denote the  i th order statistic. From 

equations (2) and (3), the pdf of  :i nX   can be written as  

 
1

: 1

0 0 0

( ) ( 1) ( 1) ( ) ( ) ( ) ,

j i
n i

j r k

i n r k

j r k

n i
f x K d r G x g x d G x

j

 
  



  

     
       

    
    

 

where  !/[( 1)! ( )!]K n i n i   ) for a power series raised to a positive integer number. Following 

Gradshteyin and Ryzhik (2000) for power series raised, we obtain  

 
1

1,

0 0

( ) ( ) ,

j i

k k

k j i k

k k

d G x e G x

 
 

 

 

 
 

 
   

 

where 
1

1, 0 0

j i

j ie d  

     and, for  1k   , 

 

 
1

1, 0 1,

1

[ ( ) ] .
k

j i k q j i k q

q

e k d q j i k d e


    



    

 

Setting 1( 1)r rd r d

  for multiplying two power series, we have  

 



M. Alizadeh, M.Ç. Korkmaz, J.A. Almamy, A.A.E. Ahmed / 
İstatistikçiler Dergisi: İstatistik&Aktüerya, 2018, 11, 55-72 

 

62 

: 1,

0 0 0

0 0

( ) ( 1) ( ) ( ) ( )

( 1) ( ) ( ) ,

n i
j r k

i n r j i k

j r k

n i
j k

k

j k

n i
f x K g x d G x e G x

j

n i
K g x e G x

j

  


 

  

 


 

     
       

    

 
   

 

  

 

 

 

where  

1,

0

.
k

k j i q k q

q

e e d 

  



  

 

Hence, we can write  

 

: 1

0

( ) ( ),i n k k

k

f x s h x






  
 

 

(18) 

 

where (for  0k   )  

 

0

( 1) .
1

n i
j

k k

j

n ik
s e

jk






 
   

  
  

 

Equation (18) is the main result of this section. It reveals that the pdf of the AOLLL-G order statistics is a 

linear combination of Exp-G densities when  1 1    . So, several mathematical quantities of the new 

family order statistics can be obtained from those quantities of the Exp-G distribution. 

4.6   Entropies 

The Rényi entropy (Rényi, 1961), of a random variable with pdf ( )f x  is defined by  

 
1

0
( ) 1 log ( ) ,RI f x dx 

   
    

for  0    and  1   . The Shannon entropy (Shannon, 1948) of a random variable  X   is defined by  

  log ( )E f X  . It is the special case of the Rényi entropy when  1   . Direct calculation gives  
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First, we define and compute  
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By using the binomial expansion, we have (for  1 1    )  
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 3( , )k kb h a i     is defined in Appendix and the coefficients  kc  's for  0k    are obtained from the 

following recurrence equation  
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After some algebraic manipulations, we obtain 
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Then the simplest formula for the entropy of  X   is given by  
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For the Rényi entropy, after some algebraic developments, we obtain an alternative expression  
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By using the binomial expansion, we have  

 

 

2

, 0

( 1)
1

1 1

20

( 1)
( , , ) ( 1)

( ) .
(1 )

u

i j i

i j

j

i

A

i
B

i j

u
g G u du

u u

 


 

   
   






 
 



     
     

   

   
   




 

Further,  

 

 

2

0 1,

1,

00 1,

,

k
k k k

u kk
kk k

a u
A c u

b u

 
 





 


  

 

where  

 

1,

( 1)
( 1) ,k q

k

q k

j q
a

q k

 
 



   
   

  
  

 

 
1, ( , 2 )k kb h i      is defined in Appendix and the coefficients  

1, kc  's for  0k    are obtained from 

the following recurrence equation 

 

1

1, 0 1, 1, 0

1

( , , , ) / .
k

k k k r k r

r

c c i j a b b c b       





 
   

 
  

 



M. Alizadeh, M.Ç. Korkmaz, J.A. Almamy, A.A.E. Ahmed / 
İstatistikçiler Dergisi: İstatistik&Aktüerya, 2018, 11, 55-72 

 

65 

Finally  

 

  1 1

, ,

, , 0

( , , )  ( ) ,
ki j k Y

i j k

B a E g G Y  


 



   

where 

 

 , , 1,

( 1)
( 1) ( , , , ) / 1i j i

i j k k

i
a c i j k

i j

   
   

     
     

   
 

and  ( 1, 1)kY Beta k  . 

 

 

 

5   Estimation and Inference 

Here, we determine the MLEs of the model parameters of the new family from complete samples. Let  

1, , nx x
  be the observed values from the new family of distributions with parameters  ,    and    . 

Let  ( , , )T     be the parameter vector. The total log-likelihood function for     is then given by 
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) 

 

The log-likelihood function can be maximized either directly or by solving the nonlinear likelihood 

equations obtained by differentiating (19). We use the goodness of fit function in R and NLMixed procedure 

in SAS to obtain the MLEs. The components of the score function   ( ) / , / , /
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where  
( )

( )h

   means the derivative of the function  h   with respect to    . 

 

 

6   Simulation study 

In here, we obtain the graphical results to see MLEs of the model parameters. We generate  1000N    

samples of size  20, 21, , 500n    from AOLLL-W distribution with selected parameters values 2 

, 0.25   ,  2a    and  0.5b   . The random numbers generation is obtained by its quantile function. 

We also calculate the empirical means, standard deviations (sd), bias and mean square error (MSE) of the 

MLEs. The bias and MSE are calculated by (for  , , ,h a b   ) 
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2
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
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respectively. All computations are obtained by using optim-CG routine in R program. We give results of 

this simulation study in Figure 3. From Figure 3, we observe that when the sample size increases, the 

empirical means for all parameters approach to true parameter value whereas the all biases, sd's and MSEs 

decrease as expected.  
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Figure 3. Simulation results for the AOLLL-W distribution. 

 

7   An Application 

In this section, we illustrate the flexibility of the AOLLL-W distribution on the real data set. We also 

compare this model with the beta Weibull (BW) model by Famoye et al. (2005), Kumaraswamy Weibull 

(KwW) model by Cordeiro, et al. (2010), odd log-logistic Weibull (OLL-W) model by Cruz et al. (2017) 

and generalized odd log-logistic Weibull (GOLL-W) model by Cordeiro et al. (2017). The cdfs of these 

models are given by (for  0, , , , 0x a b    ):  
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where B  ,    is the complete beta function. To compare AOLLL-W model with above models process 

has been done under the estimated log-likelihood values  ˆ  , Akaike Information Criteria (AIC), Cramer 

von Mises (W 
 ) and Anderson-Darling ( A

 ) goodness of-fit statistics for all distribution models. We note 

that The AIC is by given by  2 2AIC p     where  p  is the number of the estimated model parameters 

and  n   is sample size. The  W 
  and  A

  statistics have been described as  

       
2

11

1

ˆ 0.5 12
n

ii
W F x i n n

 


     

 

and  

 

       1

11

ˆˆ2 1 ln ln .
n

i n ii
A i n F x F x n 

 

            

 

It can be seen for W 
  and  A  statistics Chen and Balakrishnan (1995) and Evans et al. (2008). In general, 

it can be chosen as the best model which has the smaller the values of the AIC,  W 
  and  A

  statistics and 

the larger the values of  ˆ  . All computations are performed by the maxLike routine in the R programme. 

The real data set is the stress-rupture life of kevlar 49/epoxy strands which are subjected to constant 

sustained pressure at the 90% stress level until all had failed. This data set was studied by Andrews and 

Herzberg (1985) and Cooray and Ananda (2008). The data are: 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 

0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.1, 0.1, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.2, 0.23, 0.24, 0.24, 0.29 

, 0.34, 0.35, 0.36, 0.38, 0.4, 0.42, 0.43, 0.52, 0.54, 0.56, 0.6, 0.6, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 

0.73, 0.79, 0.79, 0.8, 0.8, 0.83, 0.85, 0.9, 0.92, 0.95, 0.99, 1, 1.01, 1.02, 1.03, 1.05, 1.1, 1.1, 1.11, 1.15, 1.18, 

1.2, 1.29, 1.31, 1.33, 1.34, 1.4, 1.43, 1.45, 1.5, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.8, 

1.8, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.2, 4.69, 7.89. In the applications, the information 

about the hazard shape can help in selecting a model. For this aim, a device called the total time on test 

(TTT) plot (Aarset, 1987) is useful. The TTT plot is obtained by plotting   r
n

T   against  /r n   where  

         1 1/n nr
i in i r i

T y n r y y 
     

 ,  1,...,r n   and  
iy   are the order statistics of the sample. It 

is convex shape for decreasing hrf and is concave shape for increasing hrf. The TTT plot for the kevlar data 

in Figure 4 deals with convex-concave-convex shaped.  
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Figure 4. TTT plot for the Kevlar data 

 

The MLEs of all models parameters, ˆ , their standard errors, AIC,  W 
  and  A

  statistics are given in 

Table mle. As it can be seen from Table MLE, the AOLLL-W model could be chosen as the best model 

among the fitted models under the comparing statistics. 

 

Table 2. MLEs, standard erros of the estimates (in parentheses), ˆ , AIC, W 
  and  A

 statistics. 

 

 

The plots of the fitted pdfs, cdfs and hrfs of all models are displayed in Figures 5-7. These plots also show 

that the AOLLL-W model has the best fitting to these data compared to the other models. The fitted hrf of 

the AOLLL-W model provides better fitting than other models. 
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Figure 5. Fitted pdfs for the data set. 

 

 

 
 

Figure 6. Fitted cdfs for the data set. 

 

 
Figure 7. Fitted hrfs for the data set. 

 

8   Conclusions 

In this work, we present a new class of distributions called another odd log-logistic logarithmic-G (AOLLL-

G) family of distributions. The mathematical properties of this new family are provided. The model 

parameters are estimated by the maximum likelihood estimation method and the observed information 

matrix is determined. Simulation results to assess the performance of the maximum likelihood estimators 

are discussed. It is shown that a special case of the new class can provide a better fit than other models 

generated by well-known families. 
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Appendix: Useful power series 

It can be seen Gradshteyn and Ryzhik (2000) for following equations. 

By expanding  z
  in Taylor series, we can write  

0 0

( ) ( 1) / ! ,k i

k i

k i

z z k f z 
 

 

                                                                                                       ( A1) 

where 

( ) ( ) ( 1) / !k i

i i k

k i

k
f f k

i
 






 
    

 
  

and  ( ) ( 1) ( 1)k k         is the descending factorial. Further, we obtain an expansion for  

[ ( ) ( ) ]a a cG x G x  . We can write  

0

[ ( ) ( ) ] ( ) ,a a j

j

j

G x G x t G x




   

where  

( ) ( ) ( 1) .j

j j j

a
t t a a a

j

 
     

 
 

Then, using (A1), we have  

0 0

[ ( ) ( ) ] ( ) ,

i

a a c j

i j

i j

G x G x f t G x
 

 

 
   

 
   

where  ( )i if f c  . Finally, we obtain  

0

[ ( ) ( ) ] ( , ) ( ) ,a a c j

j

j

G x G x h a c G x



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where  0 ,( , ) ij i i jh a c f m
   and for  0i     

1

, 0 , , 0 0

1

( ) [ ( 1) ]  (for 1) and .
j

i

i j m i j m i
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m j t m j j t m j m t





      

  

 

 


