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1. Introduction

It is well-known that in the operator theory, for any differential operator the important questions are:
1. which differential expression; it is generated by in the corresponding functional space?
2. which boundary conditions, it is generated by?
3. which special class does it belong to?
4. in which cases its spectrum is discrete ?
(see [13]).

Remember that a densely defined closed operator N in any Hilbert space is called formally normal if D(N) ⊂ D(N∗)
and ‖N f ‖ = ‖N∗ f ‖ for all f ∈ D(N), where N∗ is the adjoint to the operator N. If a formally normal operator has
no formally normal extension, then it is called maximal formally normal operator. If a formally normal operator N
satisfies the condition D(N) = D(N∗), then it is called a normal operator [1].

Generalization of J. von Neumann’s theory to the theory of normal extensions of formally normal operators in
Hilbert space has been obtained by E. A. Coddington in [1]. The first results in the area of normal extension of un-
bounded formally normal operators in a Hilbert space are also due to Y. Kilpi [10, 11] and R. H. Davis [2]. Some
applications of this theory to two-point regular type first order differential operators in Hilbert space of vector func-
tions can be found in [9] ( also see references therein).
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2. Statement of the Problem

In this work we consider the differential-operator expression given by

l(u) = (αu)′(t) + Au(t),

in the weighted Hilbert space L2
α(H, (a,∞)), where H is a Hilbert space, a ∈ R, α : (a,∞) → (0,∞), α ∈ C(a,∞),

1
α
∈ L1(a,∞), A : D(A) ⊂ H → H is a selfadjoint operator, A ≥ E and E : H → H is an identity operator. Connected

with this differential expression one can construct the minimal and maximal operator in L2
α(H, (a,∞)) (see [7]). In this

case, it can be shown that the minimal operator is formally normal, but it is not maximal. The all normal extensions of
the minimal operator and their spectrum have been studied in [8].

In this work under the condition A−1 ∈ C∞(H), we investigate the discreteness of spectrum of normal extensions in
detail. Later on, the asymptotical behavior of eigenvalues of any normal extension has been examined.

3. Asymptotical behavior of s− number of inverse for normal extensions

In this section we will investigate discreteness of the spectrum and asymptotical behavior of singular numbers of
normal extensions of minimal operator L0 in L2

α(H, (a,∞)).
Throughout the paper, it will be defined that

δ(s, t) =

t∫
s

1
α(τ)

dτ and δ = δ(a,∞).

Before of all we can give the following simple fact.

Theorem 3.1. If dimH < ∞, then each normal extension LW has a pure point spectrum and s−numbers of extensions
L−1

W have the same asymptotics

sn

(
L−1

W

)
∼

δ

2nπ
, as n→ ∞.

Now let prove us the following result.

Theorem 3.2. If A−1 ∈ S∞(H) and the operator LW is any normal extension of minimal operator L0, then L−1
W ∈

S∞(L2
α(H, (a,∞))).

Proof. Let LW be any normal extension of the operator L0 in L2
α(H, (a,∞)).

It can be verified that

L−1
W f (t) =

1
α(t)

e−Aδ(a,t)
(
E −W∗e−Aδ

)−1
W∗

∞∫
a

e−Aδ(s,∞) f (s)ds

+
1
α(t)

t∫
a

e−Aδ(s,t) f (s)ds, f ∈ L2
α(H, (a,∞)).

Now we prove that if A−1 ∈ S∞(H), then

K f (t) :=
1
α(t)

t∫
a

e−Aδ(s,t) f (s)ds ∈ S∞(L2
α(H, (a,∞))).

Since
1
α
∈ L1(a,∞), then from the absolute continuity property of Lebesque integral for arbitrary ε > 0 there exists

τ > 0 such that for any Lebesque measurable set with λ(e) < τ it is true
∫
e

1
α(s)

ds < ε [12].
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In order to prove K ∈ S(L2
α(H, (a,∞))) define the following operator:

Kε f (t) :=
1
α(t)

t−τ/2∫
a

e−Aδ(s,t) f (s)ds, f ∈ L2
α(H, (a,∞)), ε > 0,

Kε : L2
α(H, (a,∞))→ L2

α(H, (a,∞)) for ε > 0.

In this case, for any f ∈ L2
α(H, (a,∞)), we have that

‖Kε f ‖2L2
α

=

∞∫
a

‖
1
α(t)

t−τ/2∫
a

e−Aδ(s,t) f (s)ds‖2Hα(t)dt

≤

∞∫
a

1
α(t)


t−τ/2∫
a

‖ f (s)‖Hds


2

dt

=

∞∫
a

1
α(t)


t−τ/2∫
a

√
α(s)
α(s)

√
α(s)‖ f (s)‖Hds


2

dt

≤

∞∫
a

1
α(t)

δ(a, t − τ/2)


t−τ/2∫
a

α(s)‖ f (s)‖2Hds

 dt

≤ δ2‖ f (s)‖2L2
α(H,(a,∞)) < ∞.

For each ε > 0, the operator Kε can be represented as follows

Kε f (t) :=
1
α(t)

∞∫
a

Kε(t, s) f (s)ds,

where f (t) ∈ L2
α(H, (a,∞)) and for each (t, s) ∈ [a,∞) × [a,∞),

Kε(t, s) =

{
e−Aδ(s,t), i f a ≤ s < t − τ(ε)/2,

0, i f t − τ(ε)/2 ≤ s < ∞.

Since each dual (t, s) ∈ [a,∞) × [a,∞), a ≤ s < t −
τ

2
, satisfies the following property:

Ae−Aδ(s,t) ∈ B(H)

(Note that, B(H) is the class of linear bounded operators in H (see [3])).

e−Aδ(s,t) = Ae−Aδ(s,t)A−1 ∈ S∞(H).

Now for any γ > a define the following linear bounded operator in form

Kγ
ε f (t) :=

1
α(t)

γ∫
a

Kε(t, s) f (s)ds,

Kγ
ε : L2

α(H, (a,∞))→ L2
α(H, (a,∞)).

Recall that this operator is compact (see [4]).

Since for every t, s ∈ [a,∞) such that s < t, δ(s, t) =
t∫

s

1
α(s)

ds > 0, then ‖Kε(t, s)‖ ≤ 1.
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On the other hand

‖(Kε − Kγ
ε ) f ‖2L2

α(H,(a,∞)) = ‖
1
α(t)

∞∫
γ

Kε(t, s) f (s)ds‖2L2
α(H,(a,∞))

≤

∞∫
a

1
α(t)


∞∫
γ

‖Kε(t, s)‖
√
α(s)
α(s)

√
α(s)‖ f (s)‖Hds


2

dt

≤

∞∫
a

1
α(t)


∞∫
γ

1
α(s)

ds



∞∫

a

α(s)‖ f (s)‖2Hds

 dt

= δ‖ f ‖2L2
α(H,(a,∞))

∞∫
γ

1
α(s)

ds.

Hence ‖(Kε − Kγ
ε )‖ ≤ δ1/2

∞∫
γ

1
α(s)

ds

1/2

tends to 0 as γ tends to infinity.

That is Kγ
ε → Kε as γ → ∞ in operator norm. It is well known in operator theory that Kε ∈ S(L2

α(H, (a,∞))) ( [4]) .
Then, we have the following

‖(K − Kε) f ‖2L2
α(H,(a,∞)) = ‖

1
α(t)

t∫
t−τ/2

e−Aδ(s,t) f (s)ds‖2L2
α(H,(a,∞))

=

∞∫
a

‖
1
α(t)

t∫
t−τ/2

e−Aδ(s,t) f (s)ds‖2Hα(t)dt

≤

∞∫
a

1
α(t)


t∫

t−τ/2

‖e−Aδ(s,t)‖‖ f (s)‖Hds


2

dt

≤

∞∫
a

1
α(t)


t∫

t−τ/2

√
α(s)
α(s)

√
α(s)‖ f (s)‖Hds


2

dt

≤

∞∫
a

1
α(t)

δ(t − τ/2, t)


t∫

t−τ/2

α(s)‖ f (s)‖2Hds

 dt

≤

∞∫
a

1
α(t)

δ(t − τ/2, t)


∞∫

a

α(s)‖ f (s)‖2Hds

 dt

=

∞∫
a

1
α(t)

δ(t − τ/2, t)‖ f ‖2L2
α(H,(a,∞))

≤ εδ‖ f ‖2L2
α(H,(a,∞)), f ∈ L2

α(H, (a,∞)),

that is,
‖Kε − K‖ ≤ ε1/2δ1/2,

therefore, Kε converges to K as ε tends to 0.
Again it is well known that K ∈ S∞(L2

α(H, (a,∞))) ( [4]).
Thus the representation of LW implies that L−1

W ∈ S∞(L2
α(H, (a,∞))).
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Corollary 3.3. Let LW be any normal extension of the minimal operator L0 and let λ ∈ ρ(LW ). Then Rλ(LW ) ∈
S∞(L2

α(H, (a,∞))).

One can easily deduce it by the following relation

Rλ(LW ) = L−1
W − λRλ(LW )L−1

W .

Using the same method in the proof of Theorem 3.2, we obtain the following results.

Corollary 3.4. If A−1 ∈ Sp(H), p ≥ 1 and LW is any normal extension of L0, then L−1
W ∈ Sp(L2

α(H, (a,∞))).

Furthermore, from the representation of resolvent Rλ(LW ) of the operator

Rλ(LW ) f (t) =
1
α(t)

e(λE−A)δ(a,t)
(
W − e(λE−A)δ

)−1
∞∫

a

e(λE−A)δ(s,∞) f (s)ds

+
1
α(t)

t∫
a

exp ((λE − A)δ(s, t)) f (s)ds, f ∈ H, λ ∈ ρ(LW )

Rλ(LW1 ) − Rλ(LW2 ) =
1
α(t)

e(λE−A)δ(a,t)
[(

W1 − e(λE−A)δ
)−1
−

(
W2 − e(λE−A)δ

)−1
]

×

∞∫
a

e(λE−A)δ(s,∞) f (s)ds

= −
1
α(t)

e(λE−A)δ(a,t)
(
W1 − e(λE−A)δ

)−1
(W1 −W2)

(
W2 − e(λE−A)δ

)−1

×

∞∫
a

e(λE−A)δ(s,∞) f (s)ds, f ∈ H,

we also have the following assertion.

Corollary 3.5. Let LW1 , LW2 be two normal extensions of the minimal operator L0 in L2
α(H, (a,∞)) and λ ∈ ρ(LW1 ) ∩

ρ(LW2 ). Then we have
Rλ(LW1 ) − Rλ(LW2 ) ∈ Sp(L2

α(H, (a,∞))), 1 ≤ p,
if and only if

W1 −W2 ∈ Sp(H), p ≥ 1.

Now we will present a result on the structure of the spectrum of the normal extension of the minimal operator L0.

Theorem 3.6. If A−1 ∈ S∞(H) and LW is any normal extension of the minimal operator L0 in L2
α(H, (a,∞)), then the

spectrum of LW has the form

σ(LW ) =

{
λn(A) −

i
δ

(argλn (W∗exp (−Aδ)) + 2kπ) , n ∈ N; k ∈ Z
}
.

Proof. Theorem 4.1 in [8] implies that

σ(LW ) =
{
λ ∈ C : λ = δ−1(ln|µ|−1 + 2kπi − iargµ), k ∈ Z, µ ∈ σ (W∗exp (−Aδ))

}
.

Since A−1 ∈ S∞(H), then
W∗e−Aδ = W∗

(
Ae−Aδ

)
A−1 ∈ S∞(H).

Because for any eigenvector xλ ∈ H corresponding to the eigenvalue λ ∈ σp

(
W∗e−Aδ

)
we have

W∗e−Aδxλ = λ
(
W∗e−Aδ

)
xλ.

In this case since λ ∈ C is an eigenvalue of the adjoint operator to W∗e−Aδ, that is, of the operator e−AδW with the
same eigenvector xλ in H, then the last relation implies

e−AδWW∗e−Aδxλ = λ
(
W∗e−Aδ

)
e−AδWxλ = λ

(
W∗e−Aδ

)
λ
(
W∗e−Aδ)xλ,
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namely,

e−2Aδxλ = |λ
(
W∗e−Aδ

)
|2xλ.

Hence

|λ
(
W∗e−Aδ

)
|2 = λe−2Aδ = e−2λ(A)δ

that is,

|µ| = |λ
(
W∗e−Aδ

)
| = e−λ(A)δ

and from this relation we have
ln|µ| = −λ(A)δ.

Thus

σ(LW ) =

{
λ ∈ C : λ = λn(A) −

i
δ

(
argλn

(
W∗e−Aδ

)
+ 2kπ

)
, n ∈ N; k ∈ Z

}
.

Now we can prove the main theorem of this section.

Theorem 3.7. If A−1 ∈ S∞(H) and λn(A) ∼ cnα, 0 < c, α < ∞, then L−1
W ∈ S∞(L2

α(H, (a,∞))) and

sn(L−1
W ) ∼ dn−β, 0 < d < ∞, β =

α

1 + α
.

Proof. Since A−1 ∈ S∞(H), then by Theorem 3.2 L−1
W ∈ S∞(L2

α(H, (a,∞))).
Firstly, note that if N is any normal compact operator in any Hilbert space H, then for the s−number of the operator

N, we have
s(N) = |λ(N)|.

from [4]. Therefore,

sm(L−1
W ) = |λm(L−1

W )| = |λm(LW )|−1

= |λn(A) −
i
δ

(
argλn

(
W∗e−Aδ

)
+ 2kπ

)
|−1

= |λn(A) −
i
δ

(δn + 2kπ) |−1,

where, m = m(n, k) ∈ N, n ∈ N, k ∈ Z, δn = argλn

(
W∗e−Aδ

)
.

It is clear that for each n ∈ N, 0 ≤ δn < 2π.
Denote by N(λ; T ) the cardinality of the set {n : |λn(T )| ≤ |λ|}; that is,

N(λ; T ) :=
∑

0≤|λn(T )|≤|λ|

1, λ ∈ C,

is the number of eigenvalues of the some linear closed operator T in any Hilbert space with modules of eigenvalues
less than or equal to |λ|. This function takes values in the set of nonnegative integers and in case where T is unbounded
it is nondecreasing and tends to +∞ as |λ| to∞.

It is easy to see that

|λ(LW )| =
[
c2n2α +

1
δ2 (δn + 2kπ)2

]1/2

,

where n ∈ N, k ∈ Z.
Since 0 ≤ δn < 2π for each n ∈ N, then from the last equality we have[

c2n2α +
4π2

δ2 k2
]1/2

≤ |λ(LW )| ≤
[
c2n2α +

4π2

δ2 (k + 1)2
]1/2

, n ∈ N, k ∈ Z.

Therefore
|λ(LW )| ∼

√
c2n2α + h2k2, n ∈ N, k ∈ Z,
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where h =
2π
δ
.

On the other hand, we note that
(
c2n2α + h2k2

)1/2
, n ∈ N, k ∈ Z, are modules of eigenvalues of the periodical

boundary condition, for the Dirichlet problem, i.e.,

|λ(LE)| =
(
c2n2α + h2k2

)1/2
, n ∈ N, k ∈ Z.

In another word, asymptotical behavior of the modules of eigenvalues of each normal extension LW and Dirichlet
extension is the same, that is,

|λm(LW )| ∼ |λm(LE)| as m→ ∞.
Using the method established in [5] or [6] (in our case k ∈ Z ) can be found that

|λm(LE)| ∼ pm
α
α+1 , m→ ∞, 0 < p < ∞.

On the other hand, since
sm(L−1

E ) ∼ |λm(L−1
E )|, m→ ∞,

then following result holds

sm(L−1
W ) ∼ |λm(L−1

W )| ∼ |λm(L−1
E )| ∼ dm−

α
α+1 , as m→ ∞, 0 < d < ∞,

which completes the proof.
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