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1. Introduction

Filters are introduced by H. Cartan [11, 12] in 1937 which can be seen as generalization of sequences. In 1948,
Choquet [13] defined the concept of convergence of a filter. In 1954, Kowalsky [16] gave a filter description of
convergence. In 1979, Schwarz [23] introduced the category ConFCO of constant filter convergence spaces and
continuous maps.

In 1991, M. Baran [2] introduced a local pre-Hausdorff topological space (where a topological space X is local
pre-Hausdorff for given any fixed point and any distinct point from this fixed point if there is a neighbourhood of one
missing the other, then the two points have disjoint neighbourhoods). Pre-Hausdorff objects are used to characterize
the decidable objects [19] in a topos [15], where an object X of E, a topos, is said to be decidable if the diagonal is
a complemented subobject [17]. Also, finite pre-Hausdorff spaces can also be described using the notion of a Borel
field [22, 24]. Furthermore, local pre-Hausdorff objects are used to define various forms of each of local Hausdorff
objects [2] and local T3 objects, and local T4 objects in arbitrary topological categories [9].

In this paper, we characterize local pre Hausdorff constant filter convergence spaces at point p and give some
invariance properties of them.
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2. Preliminaries

Let A be a set, F(A) set of all filters on A and K be a function from A to P(F(A)). If K satisfies the following two
conditions, then (A,K) is called a constant filter convergence space.
(1) [x] ∈ K for each x ∈ A, where [x] = {B ⊂ A : x ∈ B}.
(2) If α ⊂ β and α ∈ K implies β ∈ K for any filter β on A.

A map f : (A,K) → (B, L) between constant filter convergence spaces is called continuous if and only if α ∈ K
implies f (α) ∈ K (where f (α) denotes the filter generated by { f (D)|D ∈ K} i.e., f (α) = {U ⊂ X : D such that
f (D) ⊂ U}. The category of constant filter convergence spaces and continuous maps is denoted by ConFCO [23].

A functor U : E → B is said to be topological or that E is a topological category over B if U is concrete (i.e., faithful
and amnestic (i.e., if U( f ) = id and f is an isomorphism, then f = id )), has small (i.e., sets) fibers, and for which
every U-source has an initial lift or, equivalently, for which each U-sink has a final lift, see [1, 14, 21]. A topological
functor U : E → B is said to be normalized if constant objects, i.e., subterminals, have a unique structure. Note also
that U has a left adjoint called the discrete functor D. Recall, in [1, 21] that an object X ∈ E is discrete iff every map
U(X) → U(Y) lift to map X → Y for each object Y ∈ E. Note that the category ConFCO is normalized topological
category.

We denote by α ∪ β the smallest filter (proper or not) containing both α and β for filters α and β, i.e., α ∪ β = {W ⊂
A : U ∩ V ⊂ W for some U ∈ α and V ∈ β} .
2.1. A source { fi : (A,K)→ (Ai,Ki), i ∈ I} in ConFCO is initial iff α ∈ K precisely when fi(α) ∈ Ki [18, 20].
2.2. A sink { fi : (Ai,Ki) → (A,K), i ∈ I} is final if and only if α ∈ L implies there exists βi ∈ Ki such that
fi(βi) ⊂ α, i ∈ I [20, 23].

3. Local Pre-Hausdorff Constant Filter Convergence Spaces

In this section, we give the characterization of pre-Hausdorff constant filter convergence spaces at a point p and give
some invariance properties of them.

Let B be set and p ∈ B. Let B ∨p B be the wedge at p [2], i.e., two disjoint copies of B identified at p, or in other
words, the pushout of p : 1→ B along itself (where 1 is the terminal object in Set, the category of sets and functions).
More precisely, if i1 and i2 : B → B ∨p B denote the inclusion of B as the first and second factor, respectively, then
i1 p = i2 p is the pushout diagram [10]. A point x in B ∨p B will be denoted by x1(x2) if x is in the first (resp. second)
component of B ∨p B. Note that p1 = p2.

The principal p− axis map, Ap : B∨p B→ B2 is defined by Ap(x1) = (x, p) and Ap(x2) = (p, x), the skewed p− axis
map, S p : B ∨p B → B2 is defined by S p(x1) = (x, x) and S p(x2) = (p, x), and the fold map at p, 5p : B ∨p B → B is
given by 5p(xi) = x for i = 1, 2 [2].

Definition 3.1. (X, τ) is called pre-Hausdorff space (PreT2) [10] or [7] for each point x distinct from p, the set {x, p} is
not indiscrete, then the points x and p have disjoint neighborhoods.

Theorem 3.2. Let (X, τ) be a topological space and p ∈ X. (X, τ) is preT2 at p if and only if the initial topology
induced by Ap : X ∨p X → (X2, τ∗) and S p : X ∨p X → (X2, τ∗) are the same, where τ∗ is product topology on X2.

Proof. The proof is given in [7]. �

Definition 3.3. Let U : E → Set be a topological functor, X an object in E with U(X) = B and p be a point in B.
If the initial lift of the U-source S p : B∨pB→ U(X2) = B2 and the initial lift of the U-source Ap : B∨pB→ U(X2) = B2

coincide, then X is said to be PreT2 at p [2] or [6].

Theorem 3.4. Let αi, i = 1, 2, 3 be proper filter on B. If σ = (π1Ap)−1α1 ∪ (π2Ap)−1α2 ∪ (π2S p)−1α3, then
(1) σ is a proper filter if and only if either
(a) α2 ⊂ [p] and α1 ∪ α3 is proper
or
(b) α1 ⊂ [p] and α1 ∪ α3 is proper.
(2) If σ is a proper, then
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π1Apσ =


[p], if (a) fails
α1 ∪ α3, if (b) fails
[p] ∩ (α1 ∪ α3), neither fails

π2Apσ =


α2 ∪ α3, if (a) fails
[p], if (b) fails
[p] ∩ (α2 ∪ α3), neither fails

π2S pσ =


α2 ∪ α3, if (a) fails
α1 ∪ α3, if (b) fails
α3 ∪ (α1 ∩ α2), neither fails

Proof. It is proved in [3].
�

Theorem 3.5. Let αi, i = 1, 2, 3 be proper filter on B. There exists a proper filter σ on B ∨p B such that π1Apσ =

α1, π2Apσ = α2, and π2S pσ = α3 if and only if
(1) If (a) of Theorem 3.4 fails, then α2 = α3 and α1 = [p].
(2) If (b) of Theorem 3.4 fails, then α1 = α3 and α2 = [p].
(3) If neither (a) nor (b) of Theorem 3.4 fails, then α1 ∩ α2 = α3 ∩ [p].

Proof. It follows easily from Theorem 3.4.
�

Let (B,K) be a constant filter convergence space, p ∈ B, and Kp = {α : α ⊂ [p]}.

Theorem 3.6. A constant filter convergence space (B,K) is PreT2 at p if and only if the following conditions hold.
(1) Kp is closed under finite intersection.
(2) For any α ∈ Kp and β ∈ K if α ∪ β is proper and β ∩ [p] ⊂ α, then β ∩ [p] ∈ K.

Proof. Suppose (B,K) is PreT2 at p and α, β ∈ Kp. If we let α1 = α, α2 = β, and α3 = α ∩ β in Theorem 3.4, then
α1 ∪ α3 = α and α2 ∪ α3 = β are proper

α1, α2 ⊂ [p]
and

α1 ∩ α2 = α ∩ β = α3 ∩ [p]
Hence by Theorem 3.5 (3) there exists a proper filter σ on the wedge such that

π1Apσ = α

π2Apσ = β

and
π2S pσ = α ∩ β

Since π1Apσ, π2Apσ ∈ K and (B,K) is PreT2 at p, it follows that π2S pσ = α ∩ β ∈ K.

We now show that condition (2) holds. Suppose that α ∈ Kp and β ∈ K for which α ∪ β is proper and β ∩ [p] ⊂ α.
In Theorem 3.5, letting α1 = α, α2 = β ∩ [p], and α3 = β. It follows that

α1, α2 ⊂ [p]
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both
α1 ∪ α2 = α ∪ (α ∩ β) = α ∪ β

and
α2 ∪ α3 = β

are proper and
α1 ∩ α2 = α ∩ (β ∩ [p]) = β ∩ [p] = α3 ∩ [p]

Hence by Theorem 3.5(3) there exists a proper filter σ on the wedge such that

π1Apσ = α

π2Apσ = β ∩ [p]

and
π2S pσ = β

Since π1S pσ ∈ K, π2S pσ ∈ K and (B,K) is PreT2 at p, it follows that π2Apσ = β ∩ [p] ∈ K. This shows (2) holds.
Conversely, suppose conditions (1) and (2) hold. We show that (B,K) is PreT2 at p. We first show that for any filter σ
on the wedge if π1S pσ and π2S pσ are in K, then π2Apσ ∈ K. Note that π1Apσ = π1S pσ. If σ is improper, then clearly
π2Apσ ∈ K. If σ is proper, then in case 1 of Theorem 3.5,

π1S pσ = [p]

and
π2Apσ = π2S pσ

and consequently π2Apσ ∈ K since π2S pσ ∈ K. In case 2 of Theorem 3.5 we have

π2Apσ = [p]

and
π2S pσ = π1S pσ

and thus, π2S pσ ∈ K. In case 3 of Theorem 3.5, we have in particular

π1S pσ ⊂ [p]

π1S pσ ∪ π2S pσ

is proper and
π1Apσ ⊃ π2S pσ ∩ [p]

Hence, by the condition (2) with α = π1Apσ and β = π2S pσ, we get π2S pσ ∩ [p] ∈ K and consequently, π2Apσ ∈ K
since

π2Apσ ⊃ π2S pσ ∩ [p]

and
π2S pσ ∩ [p] ∈ K

It remains to show that if π1Apσ and π2Apσ are in K, then π2S pσ ∈ K. In case 1 of Theorem 3.5, we have π1Apσ = [p]
and π2S pσ = π2Apσ, and consequently π2S pσ ∈ K since π2Apσ ∈ K. In case 2 of Theorem 3.5 we have π2Apσ =

[p] ∈ K. In case 3 of Theorem 3.5, we have in particular,

π1Apσ ⊂ [p]

π2Apσ ⊂ [p]

and
π1Apσ ∩ π2Apσ = π2S pσ ∩ [p]

Hence by condition (1), we get π1Apσ ∩ π2Apσ ∈ K and consequently π2S pσ ∈ K. Thus, by Definition 3.3, (B,K) is
PreT2. �
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Theorem 3.7. (1) If a constant filter convergence space (B,K) is preT2 at p and M ⊂ B with p ∈ M, then M is preT2
at p.

(2) For all i ∈ I and pi ∈ Bi, (Bi,Ki) preT2 at pi if and only if (B =
∏

i∈I Bi,K) is preT2 at p, where K is the product
structure on B and p = (p1, p2, ...).

(3) If (Bi,Ki) T1 at pi for all i ∈ I and pi ∈ Bi, then (B =
∐

i∈I Bi,K) is preT2 at (i, p), where K is the coproduct
structure on B and (i, p) ∈ B.

Proof. (1) Let KM be the initial structure on M induced by the inclusion map i : M ⊂ B and α, β ∈ (KM)p. By 2.1,
i(α), i(β) ∈ K and by Theorem 3.6, i(α ∩ β) ∈ K and by 2.1, α ∩ β ∈ KM .
Suppose α ∈ (KM)p and β ∈ KM for which α ∪ β is proper and β ∩ [p] ⊂ α. It follows from 2.1 that

i(α), i(β) ∈ Kp, i(α) ∪ i(β) = i(α ∪ β)

is proper and
i(β) ∩ i([p]) = i(β ∩ [p]) ⊂ i(α)

By Theorem 3.6, i(β ∩ [p]) ∈ K and by 2.1, β ∩ [p] ∈ KM . Hence, (M,KM) is preT2 at p.

(2) Suppose that (B =
∏

i∈I Bi,K) is preT2 at p. Since each (Bi,Ki) is isomorphic to a subspace of (B,K), it follows
from part (1) that (Bi,Ki) is preT2 at pi for all i ∈ I and pi ∈ Bi.
Suppose that (Bi,Ki) is preT2 at pi for all i ∈ I, pi ∈ Bi and α, β ∈ Kp, where p = (p1, p2, ...). By 2.1, πi(α), πi(β) ∈
((Ki)pi for all i ∈ I. Since (Bi,Ki) is preT2 at pi for all i ∈ I, by Theorem 3.6,

πi(α) ∩ πi(β) = πi(α ∩ β) ∈ (Ki)pi

and by 2.1, α ∩ β ∈ Kp.
Suppose that α ∈ Kp and β ∈ K with α ∪ β is proper and β ∩ [p] ⊂ α. For all i ∈ I

πi(α) ∈ (Ki)pi , πi(β) ∈ Ki

πi(α ∪ β) is proper and

πi(β ∩ [p]) ⊂ πi(α).

By Theorem 3.5,
πi(β ∩ [p]) = πi(β) ∩ πi[p] = πi(β) ∩ [pi] ∈ Ki

since (Bi,Ki) is preT2 at pi for all i ∈ I and by 2.1, β ∩ [p] ∈ K. Hence, (B,K) is preT2 at p.

(3) Suppose that (Bi,Ki) preT2 at pi for all i ∈ I, pi ∈ Bi, (B =
∐

i∈I Bi,K), where K is the coproduct structure on B
and (i, p) ∈ B.
If α, β ∈ K(i,p), then by 2.2, there exist δ, γ ∈ (Ki)pi such that i(δ) ⊂ α and i(γ) ⊂ β. Note that

i(δ ∩ γ) = i(δ) ∩ i(γ) ⊂ α ∩ β.

Since (Bi,Ki) is preT2 at pi, by Theorem 3.6, δ ∩ γ ∈ (Ki)pi and by 2.2, α ∩ β ∈ K(i,p).
Suppose that α ∈ K(i,p) and β ∈ K with α ∪ β is proper and β ∩ [(i, p)] ⊂ α. Then there exist δ ∈ (Ki)pi and γ ∈ Ki such
that i(δ) ⊂ α and i(γ) ⊂ β. Note that

i(δ) ∪ i(γ) = i(δ ∪ γ)

is proper and
i(γ ∩ [pi]) = i(γ) ∩ [(i, p)] ⊂ α

implies δ ∪ γ is proper and
γ ∩ [pi] ⊂ δ.

Since (Bi,Ki) is preT2 at pi for all i ∈ I, by Theorem 3.6, γ ∩ [pi] ∈ (Ki)pi and by 2.2, β ∩ [(i, p)] ∈ K(i,p). Hence, by
Theorem 3.6, (B,K) is preT2 at p.

�
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Remark 3.8. In a topological category over the category of sets, preT2 at p could be only indiscrete objects [4] (a
topological category is the category of stack convergence spaces [23]), they could be all objects of the category [5]
(a topological category is the category of constant limit convergence spaces [5]), and they could be only discrete ob-
jects [8] (a topological category is the category of local filter convergence spaces [23])
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