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1. Introduction

Sequences are sufficient to describe topological properties in metric spaces or, more generally, topological spaces
having a countable base for the topology. However, filters are needed in more abstract spaces.The filters are the tool
which allows us to reframe topological properties in terms of convergence. Filters can be seen as generalization of
sequences.The concept of a filter was introduced by H. Cartan [18, 19] in 1937. In later times, N. Bourbaki [17] used
filters in his works. Since topological spaces are inadequate for the investigation of certain interesting limit operations,
the idea of using the concept of convergence itself as a primitive term arises naturally. In other words, notions such
as convergence, continuity, and separation holds an important place in general topology. It is possible, however, to
introduce them in a much more abstract way, based on axioms for convergence instead of neighborhood. Filters are
of central importance in the field of general topology and in the theory of convergence spaces filters are the essential
object of study. In 1948, Choquet [20] presented the concept of convergence of a filter is axiomatized. In 1954 [29],
Kowalsky used filter description of convergence in his works. In 1959, Fischer [25] used category theory in his work,
methods. In 1964, Kent [28] introduced Kent convergence spaces (there it is called convergence functions) by further
weakening of the convergence axioms. In 1965, Cook and Fisher [21] proved that continuous convergence on the
collection of continuous maps from one topological space to another is the coarsest admissible convergence structure
and conc1uded that continuous convergence, in general, is not topological. In 1975, Robertson [35] introduced the
categories GRILL (resp. FILTER), the category of grill spaces (resp. the category of filter spaces) and showed that it
is a subcategory of Kent convergence spaces [28]. In 1979, Schwarz [36] introduced the category ConFCO of constant
filter convergence spaces and showed that ConFCO is isomorphic to GRILL and FILTER. Schwarz [36] showed
that ConFCO is the natural link between FILTER and FCO (the category of filter convergence spaces).
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Baran, in [2], introduced local separation properties in set-based topological categories and then, they are gener-
alized to point free definitions by using the generic element method of topos theory [27] or [30]. One of the use of
local separation properties is to define the notion of (strong) closedness [3] in set-based topological categories and it is
shown, in [12, 13, 15], and [16] that they form appropriate closure operators in the sense of Dikranjan and Giuli [22]
in the category convergence spaces, limit spaces [23, 33], and semi uniform convergence spaces [34]. One of the other
uses of local T0 and T1 properties is to define local Hausdorff [8], local regular, completely regular, and local normal
objects in [10, 11].

In this paper, we characterize local Hausdorff constant filter convergence spaces and show that they are hereditary,
productive and coproductive.

2. Preliminaries

Let A be a set, F(A) set of all filters on A and K be a function from A to P(F(A)). If K satisfies the following
conditions, then (A,K) is called a constant filter convergence space.
(1) [x] ∈ K for each x ∈ A, where [x] = {B ⊂ A : x ∈ B}.
(2) If α ⊂ β and α ∈ K implies β ∈ K for any filter β on A.

A map f : (A,K) → (B, L) between constant filter convergence spaces is called continuous if and only if α ∈ K
implies f (α) ∈ K (where f (α) denotes the filter generated by { f (D)|D ∈ K} i.e., f (α) = {U ⊂ X : Dsuchthat f (D) ⊂ U}.
The category of constant filter convergence spaces and continuous maps is denoted by ConFCO [36].

A functor U : E → B is said to be topological or that E is a topological category over B if U is concrete (i.e., faithful
and amnestic (i.e., if U( f ) = id and f is an isomorphism, then f = id )), has small (i.e., sets) fibers, and for which
every U-source has an initial lift or, equivalently, for which each U-sink has a final lift, see [1, 26, 33]. A topological
functor U : E → B is said to be normalized if constant objects, i.e., subterminals, have a unique structure. Note also
that U has a left adjoint called the discrete functor D. Recall, in [1, 33] that an object X ∈ E is discrete iff every map
U(X) → U(Y) lift to map X → Y for each object Y ∈ E. Note that the category ConFCO is normalized topological
category.

We denote by α ∪ β the smallest filter (proper or not) containing both α and β for filters α and β, i.e., α ∪ β = {W ⊂
A : U ∩ V ⊂ W for some U ∈ α and V ∈ β} .
2.1. A source { fi : (A,K)→ (Ai,Ki), i ∈ I} in ConFCO is initial iff α ∈ K precisely when fi(α) ∈ Ki [31, 32].
2.2. The discrete structure (A,K) on A in ConFCO is given by K = {P(A) = [∅], [a] : a ∈ A}.
2.3. An epimorphism f : (A,K) → (B, L) in ConFCO is final iff α ∈ L implies there exists β ∈ K such that
f (β) ⊂ α [32, 36].
2.4. An epi sink { fi : (Ai,Ki) → (A,K), i ∈ I} is final if and only if α ∈ L implies there exists βi ∈ Ki such that
fi(βi) ⊂ α, i ∈ I [32, 36].

3. Local T2 Constant Filter Convergence Spaces

In this section, we give the characterization of pre-Hausdorff objects in the category of constant filter convergence
spaces at a point p.

Let B be set and p ∈ B. Let B ∨p B be the wedge at p [2], i.e., two disjoint copies of B identified at p, or in other
words, the pushout of p : 1→ B along itself (where 1 is the terminal object in Set, the category of sets and functions).
More precisely, if i1 and i2 : B → B ∨p B denote the inclusion of B as the first and second factor, respectively, then
i1 p = i2 p is the pushout diagram [14]. A point x in B ∨p B will be denoted by x1(x2) if x is in the first (resp. second)
component of B ∨p B. Note that p1 = p2.

The principal p− axis map, Ap : B∨p B→ B2 is defined by Ap(x1) = (x, p) and Ap(x2) = (p, x), the skewed p− axis
map, S p : B ∨p B → B2 is defined by S p(x1) = (x, x) and S p(x2) = (p, x), and the fold map at p, 5p : B ∨p B → B is
given by 5p(xi) = x for i = 1, 2 [2].

Definition 3.1. Let (X, τ) be a topological space and p ∈ X.
(1) For each point x distinct from p, if there exists a neighborhood of p missing x or there exists a neighborhood of x
missing p, then (X, τ) called T0 at p [9].
(2) For each point x distinct from p, if there exists a neighborhood of p missing x and there exists a neighborhood of x
missing p, then (X, τ) called T1 at p [9].
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(3) (X, τ) is called pre-Hausdorff space (PreT2) [9] for each point x distinct from p, the set {x, p} is not indiscrete, then
the points x and p have disjoint neighborhoods.
(4) For each point x distinct from p, if there exists a disjoint neighborhoods of p and x, then (X, τ) called T2 at p [9].

Theorem 3.2. Let (X, τ) be a topological space and p ∈ X.
(1)Then the followings are equivalent.
(a) (X, τ) is T0 at p
(b) The initial topology induced by Ap : X ∨p X → (X2, τ∗) and ∇p : X ∨p X → (X, P(X))} is discrete, where τ∗ is the
product topology on X2.
(c) The initial topology induced by id : X ∨p X → (X ∨p X, τ∗) and ∇p : X ∨p X → (X, P(X)) is discrete, where τ∗ is the
final topology on X ∨p X induced by the canonical injections {i1, i2 : (X, τ) → X

∨
p X} and id : X ∨p X → (X ∨p X is

the idendity function.
(2) (X, τ) is preT2 at p if and only if the initial topology induced from Ap : X∨p X → (X2, τ∗) and S p : X∨p X → (X2, τ∗)
are the same.
(3) (X, τ) is T2 at p if and only if (X, τ) is T0 at p and preT2 at p.

Proof. The proof is given in [9]. �

Definition 3.3. Let U : E → Set be a topological functor, X an object in E with U(X) = B, and p ∈ B.
(1) If the initial lift of the U-source {Ap : B

∨
p B → U(X2) = B2 and ∇p : B

∨
p B → UD(B) = B} is discrete, then X

is called T 0 at p [7].
(2) If the initial lift of the U-source {id : B

∨
p B→ U(B

∨
p B)′ = B

∨
p B and ∇p : B

∨
p B→ UD(B) = B} is discrete,

then X is called T
′

0 at p, where (B
∨

p B)′ is the final lift of the U-sink {i1, i2 : U(X) = B → B
∨

p B}, i1 and i2 are the
canonical injections [7].
(3) If the initial lift of the U-source S p : B ∨p B → U(X2) = B2 and the initial lift of the U-source Ap : B ∨p B →
U(X2) = B2 coincide, then X is said to be PreT2 at p [14].
(4) If X is both T 0 at p and preT 2 at p, then X is said to be T 2 at p [2, 8].
(5) If X is both T

′

0 at p and preT 2 at p, then X is said to be KT2 at p [8].

Theorem 3.4. A constant filter convergence space (B,K) is T 2 at p if and only if the following conditions are satisfied.
(1) [x] ∩ [p] < K for all x ∈ X with x , p.
(2) Kp = {α : α ⊂ [p]} is closed under finite intersection.
(3) For any α ∈ Kp and β ∈ K if α ∪ β is proper and β ∩ [p] ⊂ α, then β ∩ [p] ∈ K.

Proof. Suppose (B,K) is T 2 at p, that is, by Definition 3.3, (B,K) is both T 0 and preT 2 at p. If [x]∩ [p] ∈ K for some
x ∈ X with x , p, then let σ = [{(x, p), (p, x)}]. We get

π1Apσ = [x] ∩ [p] = π2Apσ ∈ K

and
∇pσ = [x] ∈ Kd

where Kd is the discrete structure on B. This is a contradiction since (B,K) is T 2 at p. Hence, we must have [x]∩[p] < K
for all x ∈ X with x , p, i.e condition (1) is hold. Since (B,K) is preT 2 at p, then by the proof of Theorem 3.6 in [24],
the Parts (2) and (3) holds.

Conversely, suppose the conditions hold and σ is a filter on the wedge B ∨p B which satisfies

π1Apσ ∈ K, π2Apσ ∈ K

and
∇pσ = [x], [∅]
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for some x ∈ X. If ∇pσ = [∅], then σ = [∅]. If ∇pσ = [x], then it follows easily that σ = [(x, p)], [(p, x)] or
σ ⊃ [{(x, p), (p, x)}]. We show that the last case can not occur. If σ = [{(x, p), (p, x)}], then

π1Apσ = [x] ∩ [p] = π2Apσ ∈ K

contradicting to [x] ∩ [p] < K. If
σ ⊃ [{(x, p), (p, x)}]

and
[∅] , σ , [{(x, p), (p, x)}]

then, there exists U ∈ σ such that U , {(x, p), (p, x)} and U , ∅. Since {(x, p), (p, x)} ∈ σ and σ is a filter, it follows

U ∩ {(x, p), (p, x)} = {(x, p)}, {(p, x)}

is in σ i.e σ = [(x, p)] or [(p, x)]. Therefore σ = [(x, p)], [(p, x)] or [∅] i.e (B,K) is T 0 at p.
If the conditions (2) and (3) hold, then by Theorem 3.6 of [24], (B,K) is preT 2 (in [24] preT 2 is called preT2 at p).

Hence, (B,K) both is T 0 and preT 2 at p and by Definition 3.3, (B,K) is T 2. �

Theorem 3.5. A constant filter convergence space (B,K) is KT2 at p if and only if Kp is closed under finite intersection
and for any α ∈ Kp and β ∈ K if α ∪ β is proper and β ∩ [p] ⊂ α, then β ∩ [p] ∈ K.

Proof. Suppose constant filter convergence space (B,K) is KT2 at p, that is, by Definition 3.3, (B,K) is both T
′

0 and
preT 2 at p. In particular, since (B,K) is preT 2 at p, then by the proof of Theorem 3.6 in [24], the conditions hold.
Conversely, suppose the conditions hold. By Definition 3.3, we need to show that (B,K) is both T

′

0 and preT 2 at p. Let
σ be any filter on the wedge B ∨p B with σ ⊃ ikα for some α ∈ K, k = 1, 2 and ∇pσ = [x] or [∅] for some x ∈ B.
If ∇pσ = [∅], then σ = [∅].
If ∇pσ = [x] for some x ∈ X, then

σ = [(x, p)], [(p, x)], [(x, p), (p, x)]

or
σ ⊃ [[(x, p), (p, x)]]

If σ ⊃ [{(x, p), (p, x)}], then σ lies both component of the wedge which is impossible since σ ⊃ ikα k = 1, 2. Therefore,

σ = [(x, p)], [(p, x)]

and as a result, if σ is a filter on the wedge B ∨p B with

σ ⊃ ikα

and
∇pσ = [∅], [x]

then
σ = [∅], [(x, p)], [(p, x)]

Hence, (B,K) is T
′

0 at p.
If the conditions hold, then by Theorem 3.6 of [24], (B,K) is preT 2 (in [24] preT 2 is called preT2 at p). Hence, (B,K)
is both T

′

0 and preT 2 at p.
�

Theorem 3.6. .
(1) If a constant filter convergence space (B,K) is T 2 at p and M ⊂ B with p ∈ M, then M is T 2 at p.
(2) For all i ∈ I and pi ∈ Bi, (Bi,Ki) T 2 at pi if and only if (B =

∏
i∈I Bi,K) is T 2 at p, where K is the product structure

on B and p = (p1, p2, ...).
(3) If (Bi,Ki) T1 at pi for all i ∈ I and pi ∈ Bi, then (B =

∐
i∈I Bi,K) is preT2 at (i, p), where K is the coproduct

structure on B and (i, p) ∈ B.
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Proof. (1) Let KM be the initial structure on M induced by the inclusion map i : M ⊂ B and [x] ∩ [p] ∈ KM for x ∈ M
with x , p. By 2.1,

i([x] ∩ [p]) = i([x]) ∩ i([p]) = [x] ∩ [p] ∈ K

for x ∈ X with x , p, a contradiction since (B,K) is T 2 at p. Hence, [x] ∩ [p] < KM for all x ∈ M with x , p.
Suppose α, β ∈ (KM)p. By 2.1, i(α), i(β) ∈ K and by Theorem 3.4, i(α ∩ β) ∈ K and by 2.1, α ∩ β ∈ KM .
Suppose α ∈ (KM)p and β ∈ KM for which α ∪ β is proper and β ∩ [p] ⊂ α. It follows from 2.1 that

i(α), i(β) ∈ Kp, i(α) ∪ i(β) = i(α ∪ β)

is proper and
i(β) ∩ i([p]) = i(β ∩ [p]) ⊂ i(α)

By Theorem 3.4, i(β ∩ [p]) ∈ K and by 2.1, β ∩ [p] ∈ KM . Hence, (M,KM) is T 2 at p.

(2) Suppose that (B =
∏

i∈I Bi,K) is T 2 at p. Since each (Bi,Ki) is isomorphic to a subspace of (B,K), it follows
from part (1) that (Bi,Ki) is T 2 at pi for all i ∈ I and pi ∈ Bi.
Suppose that (Bi,Ki) is T 2 at pi for all i ∈ I, pi ∈ Bi and [x] ∩ [p] ∈ K for all x = (x1, x2, ...) ∈ X with x , p. It follows
that there exists j ∈ J such that x j , p j. Since [x] ∩ [p] ∈ K, by 2.1,

π j([x] ∩ [p]) = π j([x]) ∩ π j([p]) = [x j] ∩ [p j] ∈ K j

for x j , p j which contradicts to (B j,K j) being T 2 at p j. Hence, [x] ∩ [p] < K for x ∈ X with x , p.
Suppose α, β ∈ Kp, where p = (p1, p2, ...). By 2.1, πi(α), πi(β) ∈ ((Ki)pi for all i ∈ I. Since (Bi,Ki) is preT2 at pi for all
i ∈ I, by Theorem 3.4,

πi(α) ∩ πi(β) = πi(α ∩ β) ∈ (Ki)pi

and by 2.1,
α ∩ β ∈ Kp

Suppose that α ∈ Kp and β ∈ K with α ∪ β is proper and

β ∩ [p] ⊂ απi(α) ∈ (Ki)pi , πi(β) ∈ Ki

for all i ∈ I, πi(α ∪ β) is proper and
πi(β ∩ [p]) ⊂ πi(α)

By Theorem 3.4,
πi(β ∩ [p]) = πi(β) ∩ πi[p] = πi(β) ∩ [pi] ∈ Ki

since (Bi,Ki) is T 2 at pi for all i ∈ I and by 2.1, β ∩ [p] ∈ K. Hence, by Theorem 3.4, (B,K) is T 2 at p.

(3) Suppose that (Bi,Ki) is T 2 at pi for all i ∈ I, pi ∈ Bi, (B =
∐

i∈I Bi,K), where K is the coproduct structure on B
and (i, p) ∈ B.
Suppose that (Bi,Ki) is T 2 at pi for all i ∈ I, pi ∈ Bi and [(i, x)] ∩ [(i, p)] ∈ K for (i, x) ∈ X with (i, x) , (i, p). Since
[(i, x)] ∩ [(i, p)] ∈ K, by 2.4, there exists βi ∈ Ki such that i(βi) ⊂ [(i, x)] ∩ [(i, p)]. It follows that βi = [xi] ∩ [pi] ∈ Ki

contradicting to (Bi,Ki) is T 2 at pi. Hence, [(i, x)] ∩ [(i, p)] < K for all (i, x) ∈ X with (i, x) , (i, p).
If α, β ∈ K(i,p), then by 2.4, there exist δ, γ ∈ (Ki)pi such that i(δ) ⊂ α and i(γ) ⊂ β. Note that

i(δ ∩ γ) = i(δ) ∩ i(γ) ⊂ α ∩ β

Since (Bi,Ki) is T 2 at pi, by Theorem 3.4, δ ∩ γ ∈ (Ki)pi and by 2.4, α ∩ β ∈ K(i,p).
Suppose that α ∈ K(i,p) and β ∈ K with α ∪ β is proper and β ∩ [(i, p)] ⊂ α. Then there exist δ ∈ (Ki)pi and γ ∈ Ki such
that i(δ) ⊂ α and i(γ) ⊂ β. Note that

i(δ) ∪ i(γ) = i(δ ∪ γ)

is proper and
i(γ ∩ [pi]) = i(γ) ∩ [(i, p)] ⊂ α
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implies δ ∪ γ is proper and γ ∩ [pi] ⊂ δ. Since (Bi,Ki) is T 2 at pi for all i ∈ I, by Theorem 3.4, γ ∩ [pi] ∈ (Ki)pi and by
2.4, β ∩ [(i, p)] ∈ K(i,p). Hence, by Theorem 3.4, (B,K) is T 2 at p.

�

Let preT2(E) be the subcategory of a topological category E whose objects are preT 2 objects. By Theorem 3.4
of [14] preT2(E) is a topological category . Let KT2ConFCO be the subcategory of ConFCO whose objects are local
KT2 constant filter convergence spaces. By Theorem 3.6 of [24] and by Theorem 3.5, we have the following result:

Theorem 3.7. KT2ConFCO and preT2(ConFCO) are isomorphic categories.

Theorem 3.8. The category KT2ConFCO has all kinds of limits and colimits.

Proof. Since, by Theorem 3.7, the category KT2ConFCO is isomorphic to preT2(ConFCO) and preT2(ConFCO) is
a topological category by Theorem 3.4 of [14], it follows that the category KT2ConFCO has all kinds of limits and
colimits. In particular, KT2ConFCO has all subspaces, products, coproducts, and quotients. �

Remark 3.9. .
(1) Note that, by Theorem 3.2, for the category Top of topological spaces, T2 at p and KT2 at p are equivalent and
reduce to the usual T2 at p.
(2) Let U : E → Set be a topological functor, X an object in E and p ∈ U(X) be a retract of X, i.e., the initial lift
h : 1̄ → X of the U-source p : 1 → U(X) is a retract, where 1 is the terminal object in Set. Then if X is T0 at p, then
X is T ′0 at p [7] and consequently by Definition 3.3, T2 at p implies KT2 [10, 11] but, by Theorems 3.4 and 3.5, the
reverse implication is not true. For example let R be the set of reel numbers and K = F(R), the indiscrete structure on
R. Note that by Theorem 3.5, (R,K) is KT2 at p but, by Theorem 3.4, it is not T2 at p since a condition (1) of Theorem
3.4 can not be satified.
(3) If U : E → Set is a normalized topological functor, then T2 at p implies KT2 at p [5].
(4) In a topological category over the category Set of sets, by Theorem 3.2, T2 at p and KT2 at p may be equivalent
objects. All T0 at p, T ′0 at p, preT2 at p, T2 at p and KT2 at p objects may be equivalent [6]. T2 at p and KT2 at p may
be a point or the empty set [4] or they could be all objects [6].
(5) One of the use of T0 at p and T ′0 at p is to define the notion of local T2 objects [2] and the notion of closedness in
set-based topological categories [3].
(6) One of the use of preT2 at p, T2 at p, and KT2 at p is to define the notion of local T3 and local T4 objects [10], local
completely regular objects [11] in set-based topological categories [3].
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