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Abstract. The suborbital graph is a directed graph arisen from the transitive group action. We investigate
suborbital graphs forming by the action of NP(Γ) which is the normalizer of modular group in the Picard group. We
give necessary and sufficient conditions for paired and self-paired graphs.
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1. Introduction

Continued fractions were studied by the great mathematicians of the seventeenth and eighteenth centuries and are
a subject of active investigation today. They provide much insight into many mathematical problems, particularly into
the nature of numbers. Nearly all books on the theory of numbers include a chapter on continued fractions. Most
remarkable properties are as follows:

• Rational fractions and irrational numbers can be expanded into continued fractions and infinite continued
fractions respectively;

• Continued fractions can be used to give better rational approximations to irrational numbers;
• The continued fraction expansion of every quadratic irrational is periodic. This fact is then used as the key to

the solution of Diophantine and Pell’s equations [8].
On the other hand, the concept of suborbital graph was introduced by Sims in 1967 for finite permutation groups [7].

Sarma et al. showed that the trees in suborbital graphs of modular group can be defined as a new kind of contined
fraction and that any irrrational numbers has a unique subgraph F1,2 expansion as an example [6]. This was followed
by a similar study where the case of subgraph F1,3 and subgraph F1,4 were examined [4]. In that year, Nathanson
published a work that reveals the relationship between continued fractions and trees produced by linear fractional
transformations [5]. Actually, Jones et al. also pointed out same idea in [3]. We conclude that graphs of the objects
like as modular group might be worth examining from this point of view. In [9], some properties of the graphs of the
normalizer of modular group were studied following from the case of Γ. Nevertheless, connectivity of the graph was
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not yet examined. First step for this, we obtain paired and self paired graphs in this short note which may be thought
as a sequel of [9].

2. Suborbital Graphs

Let PS L(2,R) denote the group of all linear fractional transformations

T : z→
az + b
cz + d

,where a, b, c and d are real and ad − bc = 1.

In terms of matrix representation, the elements of PS L(2,R) correspond to the matrices

±

(
a b
c d

)
; a, b, c, d ∈ R and ad − bc = 1.

This is the automorphism group of the upper half plane H := {z ∈ C : Im(z) > 0} . Γ, the modular group, is the
subgroup of PS L(2,R) such that a, b, c and d are integers. P = PS L(2,Z[i]), the Picard group, is the subgroup of
PS L(2,C) such that a, b, c and d are Gaussian integers. A Fuchsian group is a discrete subgroup of PS L(2,R). It is
known that every finitely generated Fuchsian groups has a unique presentation with generators and relations [2]. The
presentation of NP(Γ) is

NP(Γ) = 〈u =

(
0 1
−1 0

)
, y =

(
1 1
−1 0

)
, r =

(
0 i
i 0

)
; u2 = y3 = r2 = (ry)2 = (ru)2 = 1〉 [9].

Let (G,∆) be a transitive permutation group, consisting of a group G acting on a set ∆ transitively. An equivalence
relation ≈ on ∆ is called G-invariant if, whenever α, β ∈ ∆ satisfy α ≈ β, then g(α) ≈ g(β) for all g ∈ G.

The equivalence classes are called blocks, and the block containing α is denoted by [α].
We call (G,∆) imprimitive if ∆ admits some G-invariant equivalence relation different from

i. the identity relation, α ≈ β if and only if α = β;
ii. the universal relation, α ≈ β for all α, β ∈ ∆.

Otherwise (G,∆) is called primitive. These two relations are supposed to be trivial relations. Clearly, a primitive
group must be transitive, for if not the orbits would form a system of blocks. The converse is false, but we have the
following useful result.

Lemma 2.1. [1] Let (G,∆) be a transitive permutation group. (G,∆) is primitive if and only if Gα,the stabilizer of
α ∈ ∆, is a maximal subgroup of G for each α ∈ ∆.

From the above lemma we see that whenever, for some α, Gα � H � G, then Ω admits some G-invariant equivalence
relation other than the trivial cases. Because of the transitivity, every element of Ω has the form g(α) for some g ∈ G.
Thus one of the non-trivial G-invariant equivalence relation on Ω is given as follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

Lemma 2.2 ( [9]). The elements of NP(Γ) consist of the following form :(
aik bik

cik dik

)
such that a, b, c, d ∈ Z and k = 0, 1.

If we set G = NP(Γ), ∆ = Q̂, H = Γ̄0(N) =

{(
aik bik

cik dik

)
∈ NP(Γ)| c ≡ 0 mod(N)

}
. and Gα = NP(Γ)∞, then we clearly

see that NP(Γ)∞ � Γ̄0(N) � NP(Γ).
We define the following NP(Γ) invariant equivalence relation “ ≈

N
” on Q̂. Since NP(Γ) acts transitively on Q̂, every

element of Q̂ has the form g(∞) for some g ∈ NP(Γ). So, it is easily seen that,

g(∞) ≈
N

g′(∞)⇐⇒ g′ ∈ gNP(Γ)

gives a NP(Γ)−invariant imprimitive equivalence relation.
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Theorem 2.3 ( [9] Block condition). Let v = r
s , w = x

y ∈ Q̂. Then v ≈
N

w if and only if ry − sx ≡ 0(modN) or

sx − ry ≡ 0(modN).

Let (G,∆) be a transitive permutation group. Then G acts on ∆×∆ by g(α, β) = (g(α), g(β)), (g ∈ G , α, β ∈ ∆). The
orbits of this action are called suborbitals of G .

In this study, G is NP(Γ) and ∆ is Q̂. We now consider the suborbital graphs for the action NP(Γ) on Q̂. Since NP(Γ)
acts transitively on Q̂, each suborbital contains a pair (∞, u/N) for some u/N ∈ Q̂ such that (u,N) = 1. We denote this
suborbital by Ō(u,N) and corresponding suborbital graph Ḡ(u,N) by Ḡu,N .

Theorem 2.4 ( [9] Edge condition). [9] r/s −→ x/y is an edge in Ḡu,N if and only if

(i) x ≡ ur (modN), y ≡ us (modN), ry − sx = N or
(ii) x ≡ −ur (modN), y ≡ −us (modN), ry − sx = −N or

(iii) x ≡ ur (modN), y ≡ us (modN), ry − sx = −N or
(iv) x ≡ −ur (modN), y ≡ −us (modN), ry − sx = N.

Corollary 2.5. If uv ≡ ±1 (mod N), then the suborbital graph Ḡu,N is paired with Ḡv,N .

Proof. We suppose that uv ≡ 1 (mod N). By using Theorem 2.4, we have

Case 1: It is obtained that x ≡ ur (mod N), y ≡ us (mod ) and ry − sx = N. Since vx ≡ vur (mod N) and vy ≡ vus
(mod N), we have r ≡ vx (mod N), s ≡ vy (mod N) and sx − ry = −N. By Theorem 2.4, x

y →
r
s is an edge in

Ḡv,N . Therefore Ḡu,N is paired with Ḡv,N .
Case 2: It is obtained that x ≡ −ur (mod N), y ≡ −us (mod ) and ry − sx = −N. Since vx ≡ −vur (mod N) and

vy ≡ −vus (mod N), we have r ≡ −vx (mod N), s ≡ −vy (mod N) and sx − ry = N. By Theorem [?], x
y →

r
s

is an edge in Ḡv,N . Therefore Ḡu,N is paired with Ḡv,N .
Case 3: It is obtained that x ≡ ur (mod N), y ≡ us (mod ) and ry − sx = −N. Since vx ≡ vur (mod N) and vy ≡ vus

(mod N), we have r ≡ vx (mod N), s ≡ vy (mod N) and sx − ry = N. By Theorem 2.4, x
y →

r
s is an edge in

Ḡv,N . Therefore Ḡu,N is paired with Ḡv,N .
Case 4: It is obtained that x ≡ −ur (mod N), y ≡ −us (mod ) and ry − sx = N. Since vx ≡ −vur (mod N) and

vy ≡ −vus (mod N), we have r ≡ −vx (mod N), s ≡ −vy (mod N) and sx − ry = −N. By Theorem [?],
x
y →

r
s is an edge in Ḡv,N . Therefore Ḡu,N is paired with Ḡv,N .

We suppose that uv ≡ −1 (mod N). By using Theorem 2.4, we have

Case 1: It is obtained that x ≡ ur (mod N), y ≡ us (mod ) and ry − sx = N. Since vx ≡ vur (mod N) and vy ≡ vus
(mod N), we have r ≡ −vx (mod N), s ≡ −vy (mod N) and sx− ry = −N. By Theorem 2.4, x

y →
r
s is an edge

in Ḡv,N . Therefore Ḡu,N is paired with Ḡv,N .
Case 2: It is obtained that x ≡ −ur (mod N), y ≡ −us (mod ) and ry − sx = −N. Since vx ≡ −vur (mod N) and

vy ≡ −vus (mod N), we have r ≡ vx (mod N), s ≡ vy (mod N) and sx − ry = N. By Theorem 2.4, x
y →

r
s is

an edge in Ḡv,N . Therefore Ḡu,N is paired with Ḡv,N .
Case 3: It is obtained that x ≡ ur (mod N), y ≡ us (mod ) and ry − sx = −N. Since vx ≡ vur (mod N) and vy ≡ vus

(mod N), we have r ≡ −vx (mod N), s ≡ −vy (mod N) and sx − ry = N. By Theorem 2.4, x
y →

r
s is an edge

in Ḡv,N . Therefore Ḡu,N is paired with Ḡv,N .
Case 4: It is obtained that x ≡ −ur (mod N), y ≡ −us (mod ) and ry − sx = N. Since vx ≡ −vur (mod N) and

vy ≡ −vus (mod N), we have r ≡ vx (mod N), s ≡ vy (mod N) and sx − ry = −N. By Theorem 2.4, x
y →

r
s

is an edge in Ḡv,N . Therefore Ḡu,N is paired with Ḡv,N .

�

Corollary 2.6. Ḡu,N is self-paired if and only if u2 ≡ ±1 (mod N).

Proof. Assume that Ḡu,N is self-paired. There exists a transformation T ∈ NP(Γ) such that(
∞,

u
N

)
T
−→

( u
N
,∞

)
.
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Thus, T is in the form of
(

u −b
N −u

)
or

(
ui −bi
Ni −ui

)
for an integer b. Indeed(

u −b
N −u

) (
1
0

)
=

(
u
N

)
and

(
u −b
N −u

) (
u
N

)
=

(
1
0

)
.

Since detT = 1, we have u2 ≡ −1 (mod N). Or,(
ui −bi
Ni −ui

) (
1
0

)
=

(
ui
Ni

)
and

(
ui −bi
Ni −ui

) (
u
N

)
=

(
1
0

)
.

Since detT = 1, we have u2 ≡ 1 (mod N).
Conversely, let u2 ≡ 1 (mod N). There exists an integer b such that −u2 + bN = −1. Thus the transformation(

ui −bi
Ni −ui

)
is in NP(Γ), and sends∞ to u

N and u
N to∞. This means that Ḡu,N is self-paired.

On the other hand, let u2 ≡ −1 (mod N). There exists an integer b such that −u2 + bN = 1. Thus the transformation(
u −b
N −u

)
is in NP(Γ), and sends∞ to u

N and u
N to∞. This means that Ḡu,N is self-paired. �
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