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1. INTRODUCTION

There is a connection between topology and order. A topological space defines an preordered (reflexive and tran-
sitive) relation and given a preordered relation on a set one can get a topology (see [14, 19]). Domain theory which
can be considered as a branch of order theory studies special kinds of partially ordered sets, namely, directed complete
partial orders of a domain, i.e., of a non-empty subset of the order in which each two elements have some upper bound
that is an element of this subset has a least upper bound. The primary motivation for the study of domains, which was
initiated by Dana Scott in the late 1960s, was the search for a denotational semantics of the lambda calculus, especially
for functional programming languages in computer [15, 16, 18,23-26].

In 1991, Baran [2], introduced a local T, object in a topological category which was used to define the notion of
strongly closed subobject of an object in a topological category [3] and it is shown, in [7-9], and [11] that they form
appropriate closure operators in the sense of Dikranjan and Giuli [13] in the category convergence spaces [14,21] limit
spaces [14,21], and semi uniform convergence spaces [22]. The other use of a local T property is to define the notion
of local completely regular and local normal objects [6] in set-based topological categories.

In this paper, we characterize local T preorderd spaces and investigate some invariance properties of them.

2. PRELIMINARIES

The category Prord of preordered sets has as objects the pairs (B, R), where B is a set and R is reflexive and transitive
relation on B and has as morphisms (B, R) — (Bj, R;) those functions f : B — Bj such that if aRb, then f(a)R, f(b)
forall a,b € B.

Recall, [1,21], that a functor U : & — B is said to be topological or that & is a topological category over B if U is
concrete (i.e., faithful and amnestic (i.e., if U(f) = id and f is an isomorphism, then f = id )), has small (i.e., sets)
fibers, and for which every U-source has an initial lift or, equivalently, for which each U-sink has a final lift. Note that
a topological functor U : & — B is said to be normalized if constant objects, i.e., subterminals, have a unique structure.
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Note also that U has a left adjoint called the discrete functor D. Recall, in [1,21] that an object X € & is discrete if and
only if every map U(X) — U(Y) lift to map X — Y for each object Y € &.
Note that Prord is a topological category over Set, the category of sets and functions [20] and [21].

2.1. A source {f; : (B,R) — (B;,R;),i € I} is initial in Prord if and only if for all a, b € B, aRb if and only if f;aR; f;b
forall i € I [20] and [21].

2.2. An epimorphism f : (B,R) — (Bj, Ry) is final in Prord if and only if for all a, b € B}, aRb if and only if there
exists a sequence a; € By,i = 1,2, ..n with a = a;Ra;R a3R;...R1a, = b such that foreach k = 1,2, ...n — 1, there is a
pair Ck» Ck+1 € B such that f(cr) = ag, f(ck+1) = ar1 and cxRer4q [20].

2.3. The discrete structure R on B in Prord is given by aRb if and only if a = b, for a, b € B.

3. LocaL T; PREORDERED SPACES

In this section, we characterize T preordered spaces at a point p and give some invariance properties of them.

Let B be set and p € B. Let BV, B be the wedge at p [2], i.e., two disjoint copies of B identified at p, or in
other words, the pushout of p : 1 — B along itself (where 1 is the terminal object in Set, the category of sets). More
precisely, if ij and i» : B — BV, B denote the inclusion of B as the first and second factor, respectively, then i;p = i, p
is the pushout diagram. A point x in B Vv, B will be denoted by x;(x;) if x is in the first (resp. second) component of
BV, B. Note that p; = p.

The skewed p—axis map, S, : BV, B — B? is defined by Sp(x1) = (x,x) and S ,(x2) = (p, x) and the fold map at p,
V,:BV,B— Bisgivenby v,(x;) = xfori=1,2[2].

Definition 3.1. Let (X, 7) be a topological space and p € X. For each point x distinct from p, there exists a neighbor-
hood of p missing x and there exists a neighborhood of x missing p, then (X, 7) is said to be T at p [2,5].

Theorem 3.2. Let (X, 7) be a topological space and p € X. Then (X,7) is Ty at p if and only if the initial topology
induced by (S, : XV, X — (X?,1,) and V,: XV, X — (X, P(X))} is discrete, where 7. is the product topology on X2

Proof. The proof is given in [5]. m|
Let U : & — Set be a topological functor, X an object in & with U(X) = B and p be a point in B.

Definition 3.3. If the initial lift of the U-source {S, : B\, B — UX?) = B* and V,:B\V,B - UD(B) = B}is
discrete, then X is called T at p, where D is the discrete functor which is a left adjoint to U.

Theorem 3.4. A preordered space (B,R) is T at p if and only if for x € B, if xRp or pRx, then x = p.
Proof. Suppose (B,R) is T} at p. If x € B and xRp, then

718 p(x, p)Rm1S p(p, x) = xRp,

8 p(x, p)Rm>S ,(p, x) = xRx
and

Vp(x, p) = x = V,(p, x)

where 7; : B> — B, i = 1,2, are the projection maps. Since (B, R) is T at p, it follows from 2.1, 2.3, and Definition
3.3 that (x, p) = (p, x),i.e, x = p. Similarly, if pRx, then

718 p(p, X)Rm1S p(x, p) = pRx,

8 p(x, p)Rm>S ,(p, x) = xRx.

Since (B, R) is T at p, it follows that (x, p) = (p, x),i.e,x = p.

Conversely, suppose that for x € B, if xRp or pRx, then x = p. We show that (B,R) is T| at p. By 2.1, 2.3, and
Definition 3.3, we need to show that for each pair u and v in the wedge B Vv, B, 7S ,(u)Rm1S ,(v), 128 ,(w)Rm2S ,(v),
and V,(u) = V,(v) if and only if u = v. If u = v, then 7S ,(u)Rm1S ,(v), 128 ,(W)Rm,S ,(v), and V,(u) = V,(v) since R
is reflexive. Suppose that 7S , ()RS ,(v), 728 , ()RS ,(v), and V,(u) = V,(v). It follows that u and v have the form
(x, p) or (p, x) for some x € B. If u = (x, p) and v = (p, x), then

m1S p,(wRm S ,(v) = xRp,
28 ()RS ,(v) = xRx
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and
Vpu) = x=V,(v).
By the assumption, we have x = p, i.e., u = v.
Ifu = (p,x)and v = (x, p), then
w18 p(WRm S ,(v) = pRx,
28 ,(WRmyS ,(v) = xRx
and
Vpu) = x = V,(v).

By the assumption, we have x = p, and consequently, u = v. Hence, (B, R) is T at p. m]
Theorem 3.5. If (B, R) preordered space is T at p and M C B with p € M, then M is Ty at p.

Proof. Let Ry be the initial structure on M induced by the inclusion map i : M C B and for x € M, xRy p or pRyx.
If xRy p, then by 2.1, i(x)Ri(p) = xRp and by Theorem 3.4, x = p since (B,R) is T at p. If pRyx, then by 2.1,
i(p)Ri(x) = pRx and consequently, x = p since (B, R) is T at p. Hence, (M, Ry;) is T at p. |

Theorem 3.6. For alli € I and p; € B, (B;,R;) Ty at p; If and only if (B = [1;1, R) is Ty at p, where R is the product
structure on B and p = (p1, p2, ...).

Proof. Suppose that (B = [];;, R) is T at p. Since each (B, R;) is isomorphic to a subspace of (B = [],;, R), it follows
from Theorem 3.5 that (B;,R;) T at p; for all i € I and p; € B;.

Suppose that (B;,R;) T at p; for all i € I, p; € B; and for x € B xRp. By 2.1, m;(x)R;m;(p) = x;R;p; for all i € I.
Since (B;, R;) T at p;, by Theorem 3.4, x; = p; and consequently, x = p. If pRx, then by 2.1, m;(p)R;m;(x) = p;R;x; for
alli € I. Since (B;,R;) T at p;, by Theorem 3.4, x; = p; and consequently, x = p. Hence, by Theorem 3.4, (B,R) is T
at p. O

Theorem 3.7. If (B;,R;) Ty at p; for all i € I and p; € B, then (B = [l;,R) is T\ at (i, p), where R is the coproduct
structure on B and (i, p) € B.

Proof. Suppose that (B;,R;) T| at p; for all i € I, p; € B; and for (j,x) € B, (j,x)R(i, p). Note that by 2.2, for
(i,x),(j,¥) € B, (i, x)R(j,y) if and only if i = j and xR;y with x,y € B;, where (i, x) means x; € B;. Since (j, x)R(i, p),
it follows that i = j and xR;p. (B;,R;) T} at p; implies that by Theorem 3.4, x; = p; and consequently, (j, x) = (i, x) =
(i, p). Similarly, if (i, p)R(j, x) for (j, x) € B, then by the same argument (j, x) = (i, x) = (i, p). Hence, (B,R) is T at
p. O

Remark 3.8. In a topological category, T at p and T at p objects may be equivalent, see [10, 17] and all objects may
be T at p, for example, it is shown, in [6], that all prebornogical spaces are T at p. Moreover, T; at p objects could
be only discrete objects, see [12].
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