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1. Introduction

There is a connection between topology and order. A topological space defines an preordered (reflexive and tran-
sitive) relation and given a preordered relation on a set one can get a topology (see [14, 19]). Domain theory which
can be considered as a branch of order theory studies special kinds of partially ordered sets, namely, directed complete
partial orders of a domain, i.e., of a non-empty subset of the order in which each two elements have some upper bound
that is an element of this subset has a least upper bound. The primary motivation for the study of domains, which was
initiated by Dana Scott in the late 1960s, was the search for a denotational semantics of the lambda calculus, especially
for functional programming languages in computer [15, 16, 18, 23–26].

In 1991, Baran [2], introduced a local T1 object in a topological category which was used to define the notion of
strongly closed subobject of an object in a topological category [3] and it is shown, in [7–9], and [11] that they form
appropriate closure operators in the sense of Dikranjan and Giuli [13] in the category convergence spaces [14,21] limit
spaces [14, 21], and semi uniform convergence spaces [22]. The other use of a local T1 property is to define the notion
of local completely regular and local normal objects [6] in set-based topological categories.

In this paper, we characterize local T1 preorderd spaces and investigate some invariance properties of them.

2. Preliminaries

The category Prord of preordered sets has as objects the pairs (B,R), where B is a set and R is reflexive and transitive
relation on B and has as morphisms (B,R) → (B1,R1) those functions f : B → B1 such that if aRb, then f (a)R1 f (b)
for all a, b ∈ B.

Recall, [1, 21], that a functor U : E → B is said to be topological or that E is a topological category over B if U is
concrete (i.e., faithful and amnestic (i.e., if U( f ) = id and f is an isomorphism, then f = id )), has small (i.e., sets)
fibers, and for which every U-source has an initial lift or, equivalently, for which each U-sink has a final lift. Note that
a topological functor U : E → B is said to be normalized if constant objects, i.e., subterminals, have a unique structure.
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Note also that U has a left adjoint called the discrete functor D. Recall, in [1,21] that an object X ∈ E is discrete if and
only if every map U(X)→ U(Y) lift to map X → Y for each object Y ∈ E.
Note that Prord is a topological category over Set, the category of sets and functions [20] and [21].

2.1. A source { fi : (B,R)→ (Bi,Ri), i ∈ I} is initial in Prord if and only if for all a, b ∈ B, aRb if and only if fiaRi fib
for all i ∈ I [20] and [21].

2.2. An epimorphism f : (B,R)→ (B1,R1) is final in Prord if and only if for all a, b ∈ B1, aR1b if and only if there
exists a sequence ai ∈ B1, i = 1, 2, ...n with a = a1R1a2R1a3R1...R1an = b such that for each k = 1, 2, ...n − 1, there is a
pair ck, ck+1 ∈ B such that f (ck) = ak, f (ck+1) = ak+1 and ckRck+1 [20].

2.3. The discrete structure R on B in Prord is given by aRb if and only if a = b, for a, b ∈ B.

3. Local T1 Preordered Spaces

In this section, we characterize T1 preordered spaces at a point p and give some invariance properties of them.
Let B be set and p ∈ B. Let B ∨p B be the wedge at p [2], i.e., two disjoint copies of B identified at p, or in

other words, the pushout of p : 1 → B along itself (where 1 is the terminal object in Set, the category of sets). More
precisely, if i1 and i2 : B→ B ∨p B denote the inclusion of B as the first and second factor, respectively, then i1 p = i2 p
is the pushout diagram. A point x in B ∨p B will be denoted by x1(x2) if x is in the first (resp. second) component of
B ∨p B. Note that p1 = p2.

The skewed p−axis map, S p : B∨p B→ B2 is defined by S p(x1) = (x, x) and S p(x2) = (p, x) and the fold map at p,
5p : B ∨p B→ B is given by 5p(xi) = x for i = 1, 2 [2].

Definition 3.1. Let (X, τ) be a topological space and p ∈ X. For each point x distinct from p, there exists a neighbor-
hood of p missing x and there exists a neighborhood of x missing p, then (X, τ) is said to be T1 at p [2, 5].

Theorem 3.2. Let (X, τ) be a topological space and p ∈ X. Then (X, τ) is T1 at p if and only if the initial topology
induced by {S p : X ∨p X → (X2, τ∗) and ∇p : X ∨p X → (X, P(X))} is discrete, where τ∗ is the product topology on X2.

Proof. The proof is given in [5]. �

LetU : E → Set be a topological functor, X an object in E withU(X) = B and p be a point in B.

Definition 3.3. If the initial lift of the U-source {S p : B
∨

p B → U(X2) = B2 and ∇p : B
∨

p B → UD(B) = B} is
discrete, then X is called T1 at p, whereD is the discrete functor which is a left adjoint toU.

Theorem 3.4. A preordered space (B,R) is T1 at p if and only if for x ∈ B, if xRp or pRx, then x = p.

Proof. Suppose (B,R) is T1 at p. If x ∈ B and xRp, then

π1S p(x, p)Rπ1S p(p, x) = xRp,

π2S p(x, p)Rπ2S p(p, x) = xRx
and

5p(x, p) = x = 5p(p, x)
where πi : B2 → B, i = 1, 2, are the projection maps. Since (B,R) is T1 at p, it follows from 2.1, 2.3, and Definition
3.3 that (x, p) = (p, x), i.e, x = p. Similarly, if pRx, then

π1S p(p, x)Rπ1S p(x, p) = pRx,

π2S p(x, p)Rπ2S p(p, x) = xRx.
Since (B,R) is T1 at p, it follows that (x, p) = (p, x), i.e, x = p.

Conversely, suppose that for x ∈ B, if xRp or pRx, then x = p. We show that (B,R) is T1 at p. By 2.1, 2.3, and
Definition 3.3, we need to show that for each pair u and v in the wedge B ∨p B, π1S p(u)Rπ1S p(v), π2S p(u)Rπ2S p(v),
and 5p(u) = 5p(v) if and only if u = v. If u = v, then π1S p(u)Rπ1S p(v), π2S p(u)Rπ2S p(v), and 5p(u) = 5p(v) since R
is reflexive. Suppose that π1S p(u)Rπ1S p(v), π2S p(u)Rπ2S p(v), and 5p(u) = 5p(v). It follows that u and v have the form
(x, p) or (p, x) for some x ∈ B. If u = (x, p) and v = (p, x), then

π1S p(u)Rπ1S p(v) = xRp,

π2S p(u)Rπ2S p(v) = xRx
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and
5p(u) = x = 5p(v).

By the assumption, we have x = p, i.e., u = v.
If u = (p, x) and v = (x, p), then

π1S p(u)Rπ1S p(v) = pRx,
π2S p(u)Rπ2S p(v) = xRx

and
5p(u) = x = 5p(v).

By the assumption, we have x = p, and consequently, u = v. Hence, (B,R) is T1 at p. �

Theorem 3.5. If (B,R) preordered space is T1 at p and M ⊂ B with p ∈ M, then M is T1 at p.

Proof. Let RM be the initial structure on M induced by the inclusion map i : M ⊂ B and for x ∈ M, xRM p or pRM x.
If xRM p, then by 2.1, i(x)Ri(p) = xRp and by Theorem 3.4, x = p since (B,R) is T1 at p. If pRM x, then by 2.1,
i(p)Ri(x) = pRx and consequently, x = p since (B,R) is T1 at p. Hence, (M,RM) is T1 at p. �

Theorem 3.6. For all i ∈ I and pi ∈ Bi, (Bi,Ri) T1 at pi If and only if (B =
∏

i∈I ,R) is T1 at p, where R is the product
structure on B and p = (p1, p2, ...).

Proof. Suppose that (B =
∏

i∈I ,R) is T1 at p. Since each (Bi,Ri) is isomorphic to a subspace of (B =
∏

i∈I ,R), it follows
from Theorem 3.5 that (Bi,Ri) T1 at pi for all i ∈ I and pi ∈ Bi.

Suppose that (Bi,Ri) T1 at pi for all i ∈ I, pi ∈ Bi and for x ∈ B xRp. By 2.1, πi(x)Riπi(p) = xiRi pi for all i ∈ I.
Since (Bi,Ri) T1 at pi, by Theorem 3.4, xi = pi and consequently, x = p. If pRx, then by 2.1, πi(p)Riπi(x) = piRixi for
all i ∈ I. Since (Bi,Ri) T1 at pi, by Theorem 3.4, xi = pi and consequently, x = p. Hence, by Theorem 3.4, (B,R) is T1
at p. �

Theorem 3.7. If (Bi,Ri) T1 at pi for all i ∈ I and pi ∈ Bi, then (B =
∐

i∈I ,R) is T1 at (i, p), where R is the coproduct
structure on B and (i, p) ∈ B.

Proof. Suppose that (Bi,Ri) T1 at pi for all i ∈ I, pi ∈ Bi and for ( j, x) ∈ B, ( j, x)R(i, p). Note that by 2.2, for
(i, x), ( j, y) ∈ B, (i, x)R( j, y) if and only if i = j and xRiy with x, y ∈ Bi, where (i, x) means xi ∈ Bi. Since ( j, x)R(i, p),
it follows that i = j and xRi p. (Bi,Ri) T1 at pi implies that by Theorem 3.4, xi = pi and consequently, ( j, x) = (i, x) =

(i, p). Similarly, if (i, p)R( j, x) for ( j, x) ∈ B, then by the same argument ( j, x) = (i, x) = (i, p). Hence, (B,R) is T1 at
p. �

Remark 3.8. In a topological category, T1 at p and T0 at p objects may be equivalent, see [10,17] and all objects may
be T1 at p, for example, it is shown, in [6], that all prebornogical spaces are T1 at p. Moreover, T1 at p objects could
be only discrete objects, see [12].
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