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ABSTRACT. In this paper, a collocation method based on Laguerre polynomials is presented to solve the systems of
linear differential equations. The Laguerre polynomials, their derivatives, the system of differential equations and
the conditions are written in the matrix form. Then, by using the constructed matrix forms, the collocation points
and the matrix operations, the system of linear differential equations is transformed into a system of linear algebraic
equations. The solution of this system gives the coefficients of the solutions forms. Thus, the solutions based on
the Laguerre polynomials is found. Also, an error estimation is presented by using residual functions.
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1. INTRODUCTION

Many problems in the fields of engineering and science often involve systems of differential equations. Numerical
methods are used when it is not possible to calculate exact solutions of these equation systems. The differential
transformation method [1], the Bessel polynomial approach [19], the Taylor polynomial approach [13], the Adomian
decomposition method [4], the differential transform method and the Laplace transform method [15], the improvement
of He’s variational iteration method [14] and the exponential Chebyshev collocation method [11] can be given as
example to these numerical methods.

In addition, there are numerical methods for also Fredholm [6-8, 10, 16,20], Fredholm-Volterra [2,5, 18] and integro
[3,9, 12, 17] equation or equation systems.

In this study, we consider the approximate solution of systems of first order linear differential equations

k k
D P+ D 0y () = i), i=1,2,..k (1.1)
j=1 j=1
under the mixed condition
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k
D@ +Byib) = Ay i=1,2,.k (12)
i=1

where P;(x), Q;(x) and gi(x) are the known functions defined on interval 0 <a<x<b; y;(x), i=1,2,..,k
is an unknown function; @;, B; and A; are appropriate real constants.

Our aim in this study is to obtain an approximate solution under conditions (1.2) of system (1.1) expressed in the
truncated Laguerre series form

N

YN = D @ik, i=1,2,.k (1.3)
n=0
where a;, are Laguerre coefficients to be determined and N is any chosen positive integer.

2. FUNDAMENTAL MATRIX DERIVATIVE RELATION

Firstly, we write the approximate solutions in (1.3) in matrix form

yi(x) =LA;, j=1,2,..k 2.1
Here,
Ajz[aj,o aj o ajy ]T, j=1,2,..,k, L(x)=[Lo(x) Li(x) - Ly(x) ]IX(N+1)
and
L(x) = X(x)D” (2.2)
where
G o 0 0
G0 S0 o 0
X(x)=[l x 2 . KN ]1x(N+1)’ D (—01!)0(3) (_1_1‘)1 (%) (—21!)2 (5) 0

Y PO - H

Secondly, let’s find X’(x) that the first derivative of X(x) = [ 1 x
taking the derivative of X(x), we obtain

J(N+DX(N+1)

]1x(N+1)' For this purpose, by

’ = -1 — T
Xx=[0 1 2x NxV ]1X(N+l)—X(x)B
where
010 -~ 0
0 2 - 0
B =|: : : - . (BN’ = Mlw+nxw+1) birim  matris.
000 - N
000 - 0 (N+DX(N+1)

As the third, let’s write y'j(x) that the first derivative of the solution y;(x) in the matrix form. by taking the derivative

of (2.1) and by replacing X (x), we obtain



Laguerre Collocation Method

224
yi(x) =X (x)D"A; = X(0)B'D'A;,  j=1.2, ..k
Thus, the matrices y'(x) can be written as
y (x) = X(x)BDA, (2.3)
where
¥y, (x) Xx) 0 -+ 0 BT 0 --- 0
) ¥, (%) B 0 Xx --- 0 B 0 BT 0
y (x) = : , X(x) = . . . B=| . : ) : ’
ACOI A 0 0 X 0 0 - B,
DT 0 0 Ay
_ 0 D7 0 A,
D= . , A=
: : o :
o 0 - D |, A L
Finally, the system given in (1.1) can be written in matrix form as
P (0)y () + Qo(0y(x) = g(»)
where
Pl P00 P 011 Qi2(® -+ Qi)
Py (x) Pp(x) - Py 0210 02X -+ 0¥
Pi(x) = : : . : s Qolx) = : : . : ,
P () Py(x) o P ik OQri(®)  Qra(x) -+ Q) 1,
@) 21(x)
, Y, (%) 82(x)
yon=| . . g=1 .
ICON 8(x) 1y

3. FUNDAMENTAL MATRIX RELATION BASED ON COLLOCATION POINTS

Now, let’s define the collocation points that we use in the method. The collocation points x, are written as

b-a

Xy =a-+ s, §=0,1,2,...N
N

where

0<a<x<b and a=xy<x; <..<Xx,=hb.

Firstly, if we substitute the collocation points into system given in (1.1), then we obtain the system of matrix
equations

Py (x0)y (x5 + Qo(x,)y(x;) = g(x5),  s=0,1,2,..,N.
or briefly

P,Y +QY=G, s=0,1,2,..,N. (3.1

where
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Pi(x)) 0 - 0 Qo) 0 o0 Y (x0) g(xo)
0 Pi(x) --- 0 0 Qo(x1) - 0 , y (xp) g(x1)

Py = : : - : Qo= : : - : Y = : V= :
0 0 - Prlxw) 0 0 < Qolxn) y (xn) g(xn)

Later, if we substitute the collocation points into (2.3), then we obtain

y (x5) = X(x,)BDA

or briefly
Y = XBDA (3.2)
where
X(x0) X(xy) 0 e 0
X(x1) _ 0 X(x) -~ 0
X= . s X(xy) = . . . . , §=0,1,2,..,N.
X(xn) 0 0 e X(x)

4. THE CoLLOCATION METHOD

Let’s put the relation (3.2) into the relation (3.1) to obtain of the system matrix equation. Thus we obtain the system
matrix equation as

{P1XB]_) + QOXD}A - G. 4.1

When we write the dimensions of the matrices P;, Qp, X, B, D, A and G in system given in (4.1), we obtain
KN+ 1D)XEIN+1),k(N+ 1D XN+ 1), k(N+ 1) XN+ 1), k(N+ 1) Xk(N+ 1), k(N+ 1) Xk(N+1),k(N+1)x1
and k(N + 1) X 1, respectively.

The equation system in (4.1) can be written as

WA =G veya [W;G] 4.2)
where

W= P]XBD + Q()X]_)
Now, by means of the conditions (1.2) and the relations (2.3), we obtain the matrix form for the mixed conditions
(1.2) as

[@oX(a) + BoX(b)|DA = 2

where
Q(lm (2) 0 ﬁtl),o (2) 0 Ao
o = O a(.)’O ) 0 , PBo= O ﬁ(.)’O 0 , A= /l%o ,
0 0 - d, 0 0 - g, "

or briefly, we can write in the form

UA =21 veya [U;4] “4.3)

where

U = [aoX(a) + BoX()]D.



Laguerre Collocation Method 226

Finally for the method, when the rows of the matrices U and A are replaced by the last k rows of the matrices W and
G, respectively, the new augmented matrix is obtained as

Wi,1 wi2 W1 k(N+1) 5 g1(xo)
W21 W2 te W2 k(N+1) 5 g2(x0)
W1 Wk2 ot Wrve) s &k(xo)
Wisl, 1l Wiel2 o0 Wieiave) 5 8&1(x1)
(WG] = ) . ) } . :
WiN1 WiN2 o Winaov+l) 5 8k(xv-1)
u Uip o ULKN+D) s A1
u | Upp  t UDR(N+D) Ao
| U Uga 0 URKN+D) Ao
or briefly, we can write in the form
WA =G. “4.4)

If rankW = rank[W; é] = N + 1, the matrix (4.4) can be written as

A=W)G.
Hence, when this linear system is solved and a; g, a; 1, ....,a;n (i = 1,2, ..., k) is substituted in (1.3), the unknown the
Laguerre coefficients matrix A is determined. Namely, the Laguerre polynomial solutions can be obtained as

N

Vv = Y anla(,  i=1,2,...k
n=0

Furthermore, when~det(W) =0, if rankW = rank[W; é] < N + 1, then a particular solution can be find. Otherwise
if rankW # rank[W; G] < N + 1, then it isn’t a solution.

5. REeSIDUAL ERROR ESTIMATION AND IMPROVEMENT OF SOLUTIONS

The actual error functions are defined as

ein(x) = yi(x) —yin(x), =12,k
where y; and y; y, respectively, represent the exact solutions and the approximate solutions.
Firstly, let’s define the residual function. For this purpose, the Laguerre polynomial solutions are written in system
(1.1) as
k k
Rin(0) = D PiYp (0 + D 000N (0 = gi(0),  i=1,2,...k
j=1 =1
or briefly, we can write as
k k
DL PIY N0+ D 0i(0yn () = Rin(x) + i) (5.1)
=1 =1
Similarly, the Laguerre polynomial solutions are written in condition (1.2) as
k
Z(ai)’i,zv(a) +Byinb) = A, i=12,..k (5.2)
i=1

Secondly, if (5.1) is subtracted from (1.1), then the system of error differential equations is obtained as
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k k
PO =i+ > 00y = yiv()] = —Rin(x)
=1 =1
or briefly, we can write in the form

k k
D Pl @]+ D 0i)ein()] = ~Rin (). (5.3)
j=1 Jj=1

Afterward likewise, if (5.2) is subtracted from (1.2), then we obtain in the form

k
> (@ilyi@) = yin(@] + Bilyib) = yin(B)]) = 4
i=1
or briefly, we can write in the form

k
Z(Uli[ei,N(a)] +Bilein(b)]) = Ai. 5.4
i=1

Consequently, we obtain approximate solutions of the error problem (5.3) and (5.4) in the form

M
einm(®) = D @ L), i= 1,2,k
n=0

Thus, by adding approximate solution and approximate solution of the error problem, we obtain the improved
approximate solution in the form

YiNM = YiN T €iNM-
Finally, we obtain the error function of the improved approximate solution in the form

Einm =Yi—YiNM-
6. ILLUSTRATIVE EXAMPLES

In this section, numerical examples are given to understand that the method is effective. Numerical results are shown
in tables and graphs and are compared with other methods. The values of the exact solutions, the approximate solutions,
the corrected approximate solutions, the absolute error functions, the estimated error function and the corrected error
function, respectively, is represented by y;(x), yin(x), Yinm(X), €; y(X), €; yr(x) and E; y p(x) in tables and figures.

Example 6.1. Firstly, let’s consider the system of first-order variable-coefficient linear differential equations

{ Y1)+ y,(0) + y1(x) + y2(x) = 1
,0<x<1 6.1
Y5 (x) = 2y1(x) = y2(x) = 0
with the conditions
y1(0) =0, »(0) =1 (6.2)

and the exact solutions
X

yix)=e =1 ve yx)=2-e¢"
Here;
k=2, m=1, gix)=1, gx =0, P?,,(x)=1, P?,z(x)zl’ P2».(x)=—2, Pg,z(x)=—1,

Pl(m=1 PLxm=1, PL(x0)=0 P,x-=L
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Now, let’s find solutions truncated Laguerre series expansions in the form
6

V@) = D aialy(), i=1,2

n=0
by using the Laguerre polynomials for N = 6. Here, the set of the collocation points for N = 6 is computed as

1 1 1 2 5
:O’ = -, = =, = =, = =, = -, :1
o=0.x=g.00= 2. X3= 7,4 = 3,% = 2,% = 1}
and thus the system of fundamental matrix equation of the problem is written as
{PoXD + P,XBDJA = G.

The augmented matrix for this system of fundamental matrix equations is calculated from Matlab. The matrix form
of the conditions is also calculated. Then, instead of the last two lines of the augmented matrix, the matrix form of the
conditions is written and so that the new augmented matrix [W; (~}] is obtained. Hence, this system is solved and the
Laguerre coefficient matrix A is obtained. Finally, the matrix A is substituted into the (2.1)

yin() =LWA; j=12
and thus we obtain approximate solutions as

y1.6(x) = 0.000923058514503x5 — 0.00784599737327x° + 0.0414094305812x*
-0.166599241611x> + 0.499992877635x* — x

and

y2.6(x) = —0.000923058514503x5 + 0.00784599737327x° — 0.0414094305812x*
+0.166599241611x> — 0.499992877635x> + x + 1.

Hence, for N = 6 the actual error functions are obtained as

e16(x) = y1(x) — yr6(x)
=e-1- (0.000923058514503)66 —0.00784599737327x°
+0.0414094305812x* — 0.166599241611x> + 0.499992877635x2 — 1.0x)

and
e26(x) = y2(x) — y2,6(x)

=2 - ¢™* - (-0.000923058514503x° + 0.00784599737327x°
—0.0414094305812x* + 0.166599241611x> — 0.499992877635x% + x + 1).

Now, let’s find the R y(x) and R, y(x) residual functions: By writing the approximate solutions for N = 6 into the
system (6.1), the residual functions are defined as

Ri6(x) = ¥, ¢(0) + 5 0(0) + y1,6(0) + y2,6(x) = 1
Ryg(x) = y'z,6(x) = 2y16(x) = y26(x) = 0. (6.3)

(6.3) can also be written as

Ri6(x) + 1 =y, 6(x) + ¥ () + y1.6(4) + y2,6(x)
Ry 6(x) = ¥, 6(%) = 2y1,6(x) = y2,6(x). (6.4)

If (6.4) is subtracted from (6.1), then the system of error differential equations is obtained as
=Ry 6(x) =
—Ry6(x) =

+ [0 = ¥y 6] + 1) = y16(0)] + [y2(3) = y2,6(0)]
=2 [y1(x) = y1.6()] = [y2(x) = y26(0)] -

Y1(0) =y, 6(%)

; ; 6.5
yz(x) - y2’6(x) ( )
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Afterward likewise, since the Laguerre polynomial solutions provides conditions (6.2), we can write as

v1,6(0) =0, ¥6(0)=1. (6.6)
If (6.6) is subtracted from (6.2), then we obtain as
Y1(0) = y16(0) =0, y2(0) = y26(0) = 0. (6.7)

In conclusion, for N = 6 and M = 8, approximate solutions of the error problem (6.5) and (6.7) are obtained as

e168(x) = 0.0000161071982352x% — 0.000185232779705x7 + 0.000454610284555x°
-0.000481675789317x° + 0.000255553792544x* — 0.000067150954037 x>
+0.00000710301019424x% — 2.58608757181e — 37x + 9.99170198199¢ — 38

e265(x) = —0.0000161071982352x% + 0.000185232779705x7 — 0.000454610284555x°
+0.000481675789317x° — 0.000255553792544x* + 0.000067150954037x°
-0.00000710301019424x% + 2.58608757181e — 37x — 9.99170198199¢ — 38.

Hence, approximate solution and approximate solution of the error problem are added and the improved approximate
solution is obtained as

Y1.68(x) = 0.0000161071982352x% — 0.000185232779705x" + 0.00137766879906x°
-0.00832767316259x° + 0.0416649843737x* — 0.166666392565x°
+0.499999980645x% — x + 9.99170198199¢ — 38

y2.68(x) = —0.0000161071982352x® + 0.000185232779705x" — 0.00137766879906x°
+0.00832767316259x° — 0.0416649843737x* + 0.166666392565x°
-0.499999980645x> + x + 1.

Finally, the improved error functions is obtained as

Ej65(x) = —0.0000161071982352x% + 0.000185232779705x — 0.00137766879906x°
+0.00832767316259x° — 0.0416649843737x* + 0.166666392565x°
-0.499999980645x% + x — 1 + ¢

E;65(x) = +0.0000161071982352x% — 0.000185232779705x7 + 0.00137766879906x°
-0.00832767316259x° + 0.0416649843737x* — 0.166666392565x°
+0.499999980645x> — x + 1 — e™*.

Now, the exact solutions, the approximate solutions, the improved approximate solutions and the absolute errors
will be given in tables and graphs and will be compared with other methods available in the literature.

In Table 2, for N = 6 almost the same results are obtained in Laguerre and Bessel methods and better results are
obtained than the other method. The results for N = 10 are better than those for N = 6. From this, it is seen that
approximate solutions are closer to exact solution with increasing N values. When we examine the actual absolute
errors in Table 3, it can be seen that as the N value increases, smaller results are obtained. From this, it is seen that
approximate solutions are closer to exact solution with increasing N values. Looking at the numerical results of actual
and estimated absolute errors, it seems that they are very close to each other. The numerical results of the improved
absolute errors have yielded better results than the actual and estimated absolute errors and have not moved away from
the actual errors. From this, it is seen that the residual error estimation method is effective.

From Figures (1)-(2), it can be seen that approximate solutions are closer to the exact solution with increasing N
values. From Figure 3, it can be seen that for N = 6, the Laguerre and Bessel methods yield almost the same results
and better results than the other method. It can be seen that better numerical results are obtained with increasing N
values in Figures (4)-(5). From Figures (6)-(7)-(8)-(9), it is seen that the method is effective.
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TasLE 1. Comparison numerical results of the exact solutions and approximate solutions with other
methods for N = 6 of Eq. (6.1)

e cle) I N )

1.18126924692
1.32967995396
1.45118836390
1.55067103588
1.63212055882

1.18126927538
1.32967997178
1.45118837657
1.55067106942
1.63211987225

1.18359546667
1.34654720000
1.50568720000
1.68261546667
1.91250000000

1.18126927538
1.32967997178
1.45118837657
1.55067106942
1.63211987225

Exact solutions Bessel [19] DTM [15] Laguerre

661' %1 (x)=e" -1 6\7: 6, y1,6(x1) 6\/ =6, y1,6(x:) 6\/ =6, y1,6(x:)
0.2 -0.18126924692 -0.18126927538 -0.16569377777 -0.18126927538
04 -0.32967995396 -0.32967997178 -0.27847111111 -0.32967997178
0.6 -0.45118836390 -0.45118837657 -0.34969200000 -0.45118837657
0.8 -0.55067103588 -0.55067106942 -0.38436977777 -0.55067106942
1 -0.63212055882 -0.63211987225 -0.39861111111 -0.63211987225
6@' %2(361') =2-e" 11V = 6,y26(x;) JIV = 6,y26(x;) 1]\’ = 6,y26(x;)
0.

0.

0.

0.

1

TaBLE 2. Comparison numerical results of actual errors with other methods for N = 6, 10 and La-
guerre collocation method for N = 12 of Eq. (6.1)

Bessel [19] DTM [15] Laguerre Laguerre Bessel [19] Laguerre
e1,6(x;) e16(x;) e16(x;) eq,10(x;) eq,10(x;) eq,12(x;)
0 0 0 0 0 0
2.8460e-008 1.5575e-002 2.8460e-08 3.0309e-14 2.6645e-014 0
1.7820e-008 5.1209e-002 1.7820e-08 2.5646e-14 2.0650e-014 0
1.2668e-008 1.0150e-001 1.2668e-08 2.0761e-14 3.1530e-014 1.1102e-16
3.3538e-008 1.6630e-001 3.3537e-08 1.2101e-14 7.1498e-014 0
6.8657¢-007 2.3351e-001 6.8658e-07 1.7061e-12 1.5510e-012 1.4988e-15
ex6(x;) ex6(x;) ex6(x;) e2,10(x;) e, 10(x;) e, 12(x;)
0 0 0 0 0 0
2.8460e-008 2.3262e-003 2.8460e-08 3.0309e-14 2.9421e-014 0
1.7820e-008 1.6867e-002 1.7820e-08 2.5646e-14 3.6082e-014 0
1.2668e-008 5.4499e-021 1.2668e-08 2.0761e-14 7.4274e-014 1.1102e-16
3.3538e-008 1.3194e-001 3.3537e-08 1.2101e-14 1.6065e-013 0
6.8657¢-007 2.8038e-001 6.8658e-07 1.7061e-12 1.3884e-012 1.4988e-15
of gy ()
=0 Y,
01r V160
Y1100
02t B
s -0.3
= 0.4
0.5
NC
-0.6 5!
-0.7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Ficure 1. Comparison of y;(x) exact solution and approximate solutions for N = 2,6, 10 of Eq. (6.1)
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TaBLe 3. Comparison of actual, estimated and improved absolute errors for N = 3,5,8 and M =

4,5,6,7,9,10 of Eq. (6.1)

Absolute absolute errors

Estimated absolute errors

Improved absolute errors

X; ler3(xp) le1,3,5(x) |E3.4(x:)|
0 0 0 1.1020e-39
0.2 2.4427e-04 2.4354e-04 1.5250e-05
0.4 2.6599¢-04 2.6570e-04 7.0814e-06
0.6 5.3229¢-05 5.3772e-05 7.2843e-06
0.8 2.4788e-04 2.4818e-04 1.3280e-05
1 3.0146e-03 3.0012e-03 2.0759¢e-04
le1,5(xp)] le1.s.7(x:)] [E7,5,6(x0)]
0 0 4.3714e-38 0
0.2 7.2618e-07 7.2519¢e-07 2.8460e-08
0.4 2.9591e-07 2.9511e-07 1.7820e-08
0.6 5.4324e-07 5.4271e-07 1.2668e-08
0.8 3.0087e-07 3.0095e-07 3.3537e-08
1 1.3335e-05 1.3302e-05 6.8658¢e-07
le1,8(xp)] le1.8,10(x)] [E7,8,0(x)]
0 0 9.1101e-38 0
0.2 3.2050e-11 3.2020e-11 1.0056e-12
0.4 2.7746e-11 2.7720e-11 8.5747e-13
0.6 2.3806e-11 2.3785e-11 7.1331e-13
0.8 2.0218e-11 2.0206e-11 7.1421e-13
1 1.3378e-09 1.3361e-09 5.1067e-11
X; le2,3Cx) le2,3,5(x)] [E53.4(X)]
0 0 0 1.1020e-39
0.2 2.4427e-04 2.4354e-04 1.5250e-05
0.4 2.6599¢-04 2.6570e-04 7.0814e-06
0.6 5.3229¢-05 5.3772e-05 7.2843e-06
0.8 2.4788e-04 2.4818e-04 1.3280e-05
1 3.0146e-03 3.0012e-03 2.0759¢e-04
e2,5(x)] lea.s.7(x:)] [E2,5,6(x:)]
0 0 4.3714e- 0
0.2 7.2618e-07 7.2519e-07 2.8460e-08
0.4 2.9591e-07 2.9511e-07 1.7820e-08
0.6 5.4324e-07 5.4271e-07 1.2668e-08
0.8 3.0087e-07 3.0095e-07 3.3537e-08
1 1.3335e-05 1.3302e-05 6.8658¢e-07
e2,8(xp)] le2.8,10(x)] [E2,8,0(x:)]
0 0 9.1101e- 0
0.2 3.2050e-11 3.2020e-11 1.0056e-12
0.4 2.7746e-11 2.7720e-11 8.5747e-13
0.6 2.3806e-11 2.3785e-11 7.1331e-13
0.8 2.0218e-11 2.0206e-11 7.1421e-13
1 1.3378e-09 1.3361e-09 5.1067e-11

Ficure 2. Comparison of y,(x) exact solution and approximate solutions for N = 2,6, 10 of Eq. (6.1)
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Ficure 3. Comparison numerical results of approximate solutions with other methods for N = 6 of

Eq. (6.1)
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Ficure 6. Comparison numerical results of improved absolute errors for N = 3, M = 4,7 of y;(x)
solution of Eq. (6.1)
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Ficure 7. Comparison numerical results of estimated absolute errors for N = 3, M = 4,7 of y,(x)
solution of Eq. (6.1)
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Figure 9. Comparison numerical results of actual and improved absolute errors for N = 4, M = 5
of y,(x) solution of Eq. (6.1)

Example 6.2. Firstly, let’s consider the system of first-order variable-coefficient linear differential equations

¥, (x) = y3(x) = —cos(x)
Yo (X) = y3(x) = —€* 0<x<1 (6.8)

Y3(X) = y1(x) + y2(x) = 0

with the conditions
y10) =1, »(0)=0, y3(0)=2 (6.9)
and the exact solutions
yix) =e*, y(x) =sin(x) ve y3(x)=e"+cos(x).

Here;
k=3, m=1, g (x)=—-cos(x), g(x)=-e*, g3(x)=0, P(l)’l(x) =0, P(])’z(x) =0, P?S(x) =-1,
ngl(x) =0, ngz(x) =0, Pgﬁ(x) =-1, Pg’l(x) =-1, ngz(x) =1, Pgﬁ(x) =0, P:’l(x) =1,
P},Z(x) =0, P}j(x) =0, Péyl(x) =0, Péyz(x) =1, Péj(x) =0, P;yl(x) =0, Péqz(x) =0, Péj(x) =1.

Now, let’s find solutions truncated Laguerre series expansions in the form
5

i) = Y aiala(x), i=1,2,3

n=0
by using the Laguerre polynomials for N = 5. Here, the set of the collocation points for N = 5 is computed as
1 2 3 4
{xo=0,x = 5= 5= 5 =X = 1}

and thus the system of fundamental matrix equation of the problem is written as
{POXD + PIXBD}A =G.
The augmented matrix for this system of fundamental matrix equations is calculated from Matlab. The matrix form of
the conditions is also calculated. Then, instead of the last~ three lines of the augmented matrix, the matrix form of the
conditions is written thus the new augmented matrix [W; G] is obtained. Hence, this system is solved and the Laguerre
coefficient matrix A is obtained. Finally, the matrix A is substituted into the (2.1)
yin(x) =LA, j=1,23
and thus we obtain approximate solutions as
y15(x) = 0.0125314366248x° + 0.0377210999073x* + 0.168225455271x> + 0.499768584831x% + x + 1,
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y2.5(x) = 0.00764092737182x° + 0.000782824607297x* — 0.16698894934x> + 0.0000453276257103x>
+x — 6.10622663544¢ — 16

and

y3.5(x) = 0.0093438587612x° + 0.0820919229142x* + 0.167226486969x> — 0.0000938977776579x> + x + 2.

Thus, for N = 6 the actual error functions are obtained as

e15(x) = y1(x) — y1.5(x)
=e" — (0.0125314366248)65 +0.0377210999073x* + 0.168225455271x°
+0.499768584831x% + x + 1),

e25(x) = y2(x) — y2,5(x)
= sin(x) — (0.00764092737182x + 0.000782824607297x* — 0.16698894934x3
+0.0000453276257103x% + x — 6.10622663544¢ — 16)
ve
e35(x) = y3(x) = y3.5(x)
= e* + cos(x) — (0.0093438587612x° + 0.0820919229142x*
+0.167226486969x> — 0.0000938977776579x* + x + 2).

The exact solutions, the approximate solutions and the actual absolute errors of Eq. (6.8) for N = 5 are shown in
Table 4. In Table 6, the actual absolute errors of Eq. (6.8) are compared with other method for N = 6. The results for
Laguerre method are better than for other method. The actual absolute errors and the estimated absolute errors of Eq.
(6.8) for N = 5 and M = 7 are compared in Table 5.

In Figures (10)-(11)-(12), the exact solution and approximate solutions are compared for N = 3,5, 10. In Figures
(13)-(14)-(15), actual absolute errors are compared for N = 3,4,5,6,7,8. From figures it can be seen that as the N
value increases, the errors become decrease. In Figures (16)-(17)-(18)-(19), absolute errors are compared for various
N and M. From figures, it is seen that the method is effective.
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Ficure 10. Comparison numerical results of the y; (x) exact solutions and approximate solutions for
N =3,5,10 of Eq. (6.8)
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TaBLE 4. Comparison numerical results of the exact solutions, approximate solutions and actual ab-

solute errors for N = 5 of Eq. (6.8)

Exact solutions

Approximate solutions

Absolute errors

X yi(x) = e* N=35, ys5(x) N=35, es5(x)
0 1 1 0
0.2 1.221402758160170 1.221400910854970 1.847305199862804e-06
0.4 1.491824697641270 1.491823384778939 1.312862331769250e-06
0.6 1.822118800390509 1.822116487937574 2.312452935093101e-06
0.8 2.225540928492467 2.225540191065770 7.374266971753343e-07
1 2.718281828459045 2.718246576634042 3.525182500358197e-05
X y2(x;) = sin(x) N=5, ys(x) N=35, es(x)
0 0 -6.10622663543836e-16 6.106226635438361e-16
0.2 0.198669330795061 0.198669599126442 2.683313805533364¢e-07
0.4 0.389418342308650 0.389418243068613 9.924003740269377e-08
0.6 0.564642473395035 0.56464231746944 1.559255952202472e-07
0.8 0.717356090899523 0.717355091658926 9.992405972177166e-07
1 0.841470984807897 0.841480130265226 9.145457329101270e-06
Xi y3(x;) = e* + cos(x) N=35, y3s5(x) N=35, e3s5(x)
0 2 2 0
0.2 2.20146933600141 2.20146839309611 9.429053016268426¢-07
0.4 2.41288569164416 2.41288470586189 9.857822643174806e-07
0.6 2.64745441530019 2.64745280965224 1.605647951360405e-06
0.8 2.92224763783963 2.9222465140148 1.123824833127563e-06
1 3.25858413432718 3.25856837086643 1.576346075300203e-05
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Figure 11. Comparison numerical results of the y,(x) exact solutions and approximate solutions for
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TaBLE 5. Comparison numerical results of the actual absolute errors and estimated absolute errors

for N =5and M =7 of Eq. (6.8)

Actual absolute errors

Estimated absolute errors

Improved absolute errors

Xi ler,s(x)l le1,s,7(x:) |E1,5,7(x:)|
0 7.4246e-16 2.3882¢e-32 7.4246e-16
0.2 1.8473e-06 1.8438e-06 3.4814e-09
0.4 1.3129¢-06 1.3086e-06 4.2826e-09
0.6 2.3125e-06 2.3075e-06 4.9058e-09
0.8 7.3743e-07 7.3220e-07 5.2255e-09
1 3.5252e-05 3.5165e-05 8.7058e-08
le2,5(x))] le2,5,7(x)I |E2,57(x)I
0 6.1062¢e-16 8.0119¢e-32 6.1062¢e-16
0.2 2.6833e-07 2.6988e-07 1.5476e-09
0.4 9.9240e-08 9.6850e-08 2.3897e-09
0.6 1.5593e-07 1.5267e-07 3.2564e-09
0.8 9.9924e-07 9.9507e-07 4.1675e-09
1 9.1455e-06 9.1704e-06 2.4990e-08
les s (x)l le,s,7(x;) |E3,5,7(x;)|

0 6.9389¢-18 8.3357e-34 6.9389¢-18
0.2 9.4291e-07 9.3830e-07 4.6012e-09
0.4 9.8578e-07 9.8093e-07 4.8527e-09
0.6 1.6056e-06 1.6010e-06 4.6801e-09
0.8 1.1238e-06 1.1200e-06 3.8183e-09
1 1.5763e-05 1.5631e-05 1.3274e-07
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Figure 12. Comparison numerical results of the y3(x) exact solutions and approximate solutions for

N =3,5,10 of Eq. (6.8)
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TaBLE 6. Comparison numerical results of actual errors with other method for N = 6 Eq. (6.8)

Laguerre DTM [15] Laguerre DTM [15] Laguerre DTM [15]
X; le1,6(x:)] le1,6(x))] le2,6(x:) le2,6(x:)] les,6(xi)| les,6(x:)]
0 1.7319e-14 0 5.8398e-14 0 2.7756e-17 0
0.2 8.9691e-08 2.6046e-09 2.6784e-08 2.5383e-09 1.1003e-07 2.6681e-09
0.4 9.4300e-08 3.4209e-07 1.9940e-09 3.2436e-07 1.0917e-07 3.5831e-07
0.6 1.1665¢-07 6.0004e-06 2.9723e-08 5.5266e-06 1.2560e-07 6.4153e-06
0.8 1.9907e-07 4.6173e-05 2.3020e-08 4.1242e-05 2.1407e-07 5.0305e-05
1 1.5209e-06 2.2627e-04 1.1272e-06 1.9568e-04 2.0229e-06 2.5080e-04
le, 4001
10 le 4001
ey
le 4001
le, 001
L, le, 01
% 10°

Ficure 13. Comparison numerical results of actual absolute errors of y;(x) solution for N
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Ficure 15. Comparison numerical results of actual absolute errors of y3(x) solution for N =
3,4,5,6,7,8 of Eq. (6.8)
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Ficure 16. Comparison numerical results of improved absolute errors for N = 4 and M = 5,9 of
y1(x) solution of Eq. (6.8)
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Ficure 17. Comparison numerical results of estimated absolute errors for N = 4 and M = 5,8 of
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Ficure 18. Comparison numerical results of actual and improved absolute errors for N = 4 and
M =5 of y3(x) solution of Eq. (6.8)
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Ficure 19. Comparison numerical results of actual and estimated absolute errors for N = 4 and
M =5 of y;(x) solution of Eq. (6.8)

7. CONCLUSIONS

In this work, systems of first order differential equations are numerically solved by using Laguerre polynomials and
Laguerre polynomial solutions are improved by using residual error estimation technique. Numerical examples are
made for the method and the results are shown in tables and graphs. In addition, numerical results are compared with
other methods. It has been shown that very good results are obtained by using Laguerre collocation method. It seems
from tables and graphs that the errors reduced as N is increased. The numerical results of the method are calculated by
writing codes in matlab program and thus the numerical results are obtained in a short time.
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