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Abstaract−Ordered semigroups (OSGs) is a significant algebraic structure having partial ordered
with associative binary operation. OSGs have broad applications in various fields such as coding
theory, automata theory, fuzzy finite state machines and computer science etc. In this manuscript
we investigate the notion of generalized roughness for fuzzy ideals in OSGs on the basis of isotone
and monotone mappings. Then the notion of approximation is boosted to the approximation of
fuzzy bi-ideals, approximations fuzzy interior ideals and approximations fuzzy quasi-ideals in OSGs
and investigate their related properties. Furthermore (∈,∈ ∨q)-fuzzy ideals are the generalization
of fuzzy ideals. Also the generalized roughness for (∈,∈ ∨q)-fuzzy ideals, fuzzy bi-ideals and fuzzy
interior ideals have been studied in OSGs and discuss the basic properties on the basis of isotone
and monotone mappings.

Keywords − Fuzzy sets, Rough sets, Approximations of fuzzy ideals, Approximations of (∈,∈ ∨q)-
fuzzy ideals.

1 Introduction

In real life, there exist some possible scenario in which the objects of a set are arrange
through a specific order. For example the cost of certain commodities in a market
can be debated by a terms such as very costly, costly, affordable, cheap and very
cheap. We see that exist an order among these items and commodities. So it is clear
that these commodities can be characterized through an order among their prices.
This can be study in an algebraic structure called ordered semigroups (OSGs). OSGs
is a set having partial ordered with associative binary operation. OSGs have broad
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applications in various fields such as coding theory, automata theory and computer
science etc.

The paradigm of fuzzy set was originally initiated by Zadeh [36]. This theory has
strong points of view to tackle with uncertainty. With the passage of time fuzzy set
become the rich research area among the scholars. The model of fuzzy set has been
generalized in several direction by different authors. The concept of fuzzy algebraic
model was initiated by Rosenfeld [27] and presented the study of fuzzy subgroups.
Kuroki [19] originated the theory of fuzzy semigroups. The theory of fuzzy ordered
groupoids and OSGs was investigated by Kehayopulu and Tsingelis in [14, 15] and
studied the concepts of fuzzy ideals and fuzzy filters in ordered groupoids. Bhakat
and Das in [3, 4, 5] investigated the concepts of (α, β)-fuzzy subgroups in his pioneer
work and the concept of (∈,∈ ∨q)-fuzzy subgroups attracted more attention of the
scholar towards the study of (α, β) structure. Concept of (∈,∈ ∨q)-fuzzy subgroup is
based on quasi-coincidence of fuzzy points. This notion is introduced in [24]. In alge-
braic structures the most significant topic fuzzy ideals (FIds) attract the attention of
many scholars. In semigroups Kuroki [18] presented the ideas of FIds, fuzzy bi-ideals
(FBIds) and study some of the fundamental properties of these ideals. Moreover in
semigroups Kuroki [20] explored the notion of fuzzy quasi-ideals (FQIds) and fuzzy
semiprime quasi-ideals and study some of the basic properties related to these ideals.
Jun et al. [9] initiated the standpoints of (∈,∈ ∨q)-FBIds of OSGs and given some
characterizations Theorems. In semigroups the concepts of FQIds was studied by
Ahsan [1]. The study of general form of fuzzy interior ideals (FIIds) and (α, β)-FIIds
is initiated by Jun and Song [8] in semigroups. In semigroups the generalization of
(α, β)-FIds of hemirings is presented by Jun et al. [10], and for more detail see
[28, 29, 30].

Pawlak [23] is the pioneer who for the first time investigated the rudimentary con-
cept of rough set. The fundamental concept of Pawlak rough set depend upon the
equivalence relation. So due to confined knowledge about the objects of a certain set,
it is too complicated to made the equivalence relation among the elements of a set.
Here the authors are restricted by the properties of equivalence relation and many
applications of Pawlak rough set have been reported. So different scholars studied
the different structures for rough set with less constraint. The prototypes of fuzzy
set and rough set are different but both of them have the ability to tackle with uncer-
tainty. Both of these theories are combine very successfully by Dubois and Prade in
[7]. The study of generalized rough sets was initiated by Davvaz [6]. In generalized
rough set a set valued function play a vital role to define the approximations rather
than equivalence relation of a set. Several authors presented the approximation of
a set in different algebraic structure, such as in semigroups and fuzzy semigroups
Kuroki [21] initiated the idea of roughness and in the same structure this idea is
extended to the prime ideals in [31]. In OSGs rough approximations as proposed
in [21] can be considered as a better idea. Rehman et al. initiated the concept
of roughness in LA-semigroups. Qurashi and Shabir [25] presented the generalized
roughness in quantales. The concepts of rough bipolar Γ-hyperideals was initiated
by Yaqoob et al. [35] and for the detail study of roughness also see [33, 34, 37].
The rough study of ternary semigroups was presented by Yaqoob et al. [32]. As
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OSGs is the relation of partial ordered and semigroups that is why to find the non-
trivial equivalence relations for such a structure are difficult. Therefore in OSGs
the study of generalized roughness was originated by Mahmood et al. [22] in fuzzy
filters and fuzzy ideals with thresholds by defining the set valued homomorphisms.
Furthermore they have studied the approximation of generalized structure of fuzzy
filters and fuzzy ideals with thresholds in OSGs. In OSGs Ali et al. [2] initiated the
rough study of (∈,∈ ∨qk)-fuzzy filters and they also studied the approximation of
generalization of fuzzy filters. Here in this manuscript we will originate the study of
generalized roughness of fuzzy ideals in OSGs. Instead of equivalence relation the
set valued maps will play a vital role to introduce this new concept of generalized
roughness in fuzzy ideals of OSGs and these mapping will be in the form of isotone
or monotone order. The order of the paper is as follows.

This paper is organized as, in Section 2, we will briefly recall some fundamental
concepts related to OSGs, fuzzy sets, rough sets, FIds and their generalization which
is the key for onward concepts. In Section 3, we will originate the approximations
of FIds, FBIds, FIIds and FQIds of OSGs on the basis of isotone and monotone
mapping. It is clear that these two mappings play a significant role for investigating
the approximation of FIds in OSGs. Moreover in Section 4, the idea of approximation
is generalized to (∈,∈ ∨q)-FIds, FBIds, FIIds and FQIds. The final Section 5, consist
of the conclusion of the proposed manuscript.

2 Preliminary

This section consist of brief and rudimentary standpoints about OSGs, fuzzy set,
and rough set which will provide the key for onward concepts.

Let S be a nonempty set. OSGs (S, ·,≤) is the relation of partial ordered and
semigroups in which S under multiplication is a semigroup and S under ≤ is a
partially ordered set (po-set) and holds the following

(∀z, z1, z2 ∈ S)(z1 ≤ z2 → z1z ≤ z2z and zz1 ≤ zz2).

An ordered subsemigroup S1 is a nonempty subset of S if it holds S2
1 ⊆ S1.

For S1 ⊆ S, we denote (S1] := {z1 ∈ S/z1 ≤ z2 for some z2 ∈ S1}. If S1 = {a},
then instead of ({a}] we write (a]. For subsets S1 6= φ and S2 6= φ of S, we represent
S1S2 = {z1z2/z1 ∈ S1, z2 ∈ S2} .

In onward work the symbol S stands for an OSGs.

Definition 2.1. [13] Consider a nonempty subset I of S is known as a left (resp.
right) ideal of S having the following conditions:

(I1) SI ⊆ I(resp. IS ⊆ I)
(I2) if z1 ∈ S and z2 ∈ I such that z1 ≤ z2, then z1 ∈ I.
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So the set I is known to be an ideal of S if it is both a left and a right ideal.

Next we are going to define the generalized structure of ideals that is interior
ideals, bi-ideals and quasi ideals in OSGs.

Definition 2.2. [16] A subset I 6= φ of S is known to be a bi-ideal of S if it satisfies
(I2) and

(I3) ISI ⊆ I
(I4) I2 ⊆ I.

Definition 2.3. [12] An interior ideal I is a nonempty subset of OSG S if it satisfies
(I2) , (I4) and

(I5) SIS ⊆ I.

Definition 2.4. [17] A quasi ideal Q 6= φ is a subset of S if it satisfy (I2) and

(I6) (QS] ∩ (SQ] ⊆ Q

The paradigm of fuzzy set was originally initiated by Zadeh [36] and become the
rich research area among the scholars. The model of fuzzy set has been generalized
in several direction by different authors. Here in onward work we will present the
combine study of fuzzy set with ideals that is FIds and their generalization.

Definition 2.5. [36] A fuzzy subset (FSS) µ is a mapping from S to [0, 1].

Consider two FSSs µ1 and µ2 of S. Then µ1 ⊆ µ2 ⇐⇒ µ1 (z) ≤ µ2 (z) ∀ z ∈ S.
Next (µ1 ∩ µ2) (z) = min {µ1(z), µ2(z)} and (µ1 ∪ µ2) (z) = max {µ1(z), µ2(z)} .

Definition 2.6. A FSS µ of S of the form and for any z1 ∈ S

µ(z) =

{
t(t 6= 0) if z = z1,

0 if z 6= z1.

then the fuzzy point is represented by (z1)t with value t support by z1. A fuzzy point
(z1)t ‘belong to’ FSS µ represented as (z1)t ∈ µ, if µ(z1) ≥ t, and a fuzzy point (z1)t

‘quasi-coincident’ to FSS µ represented by (z1)t qµ, if µ(z1) + t > 1.

Definition 2.7. [15] A FSS µ is called a fuzzy ordered subsemigroup of S if

(FI1) (∀z1, z2 ∈ S) (µ(z1z2) ≥ min {µ(z1), µ(z2)}) .

Definition 2.8. [15] A FSS µ is known to be a fuzzy left (resp. right) ideals of S if
it holds

(FI2) (∀z1, z2 ∈ S)(z1 ≤ z2 this implies µ(z1) ≥ µ(z2))
(FI3) (∀z1, z2 ∈ S)(µ(z1z2) ≥ µ(z2)(resp. µ(z1z2) ≥ µ(z1))).

A FSS µ of OSG S is said to be fuzzy ideal (FId), if µ is both sided ideal of S,
that is a fuzzy left ideal (FLId) and as well as a fuzzy right ideal (FRId).



Journal of New Theory 26 (2019) 32-53 36

From this definition we can also conclude the following

Definition 2.9. A FSS µ is known to be FId of OSG S if it satisfy (FI2) and

(FI4) (∀z1, z2 ∈ S)(µ(z1z2) ≥ max {µ (z1) , µ(z2)}).
Proposition 2.10. Let µ1 and µ2 are the FLIds (resp. FRIds) of S. Then

i) (µ1 ∩ µ2) and

ii) (µ1 ∪ µ2) are FLIds (resp. FRIds) of S.

Proof. Proofs are straightforward.

Definition 2.11. [12] A FSS µ is known as fuzzy interior ideal (FIId) of OSG S if
it holds (FI1) , (FI2) and

(FI5) (∀z1, z2, z3 ∈ S) (µ (z1z3z2) ≥ µ (z3)) .

Definition 2.12. [16] A FSS µ is known as fuzzy bi-ideal (FBId) of OSG S if it
satisfies (FI1) , (FI2) and

(FI6) (∀z1, z2, z3 ∈ S)(µ(z1z2z3) ≥ min {µ(z1), µ(z3)}).
Definition 2.13. Let X 6= φ be a subset of S, then we define a set Xz1 by

Xz1 = {(z2, z3) ∈ S × S/z1 ≤ z2z3} .

Let us consider the two fuzzy subsets µ1 and µ2 of S. Then we define
µ1 ◦ µ2 : S → [0, 1] , as

z1 → µ1 ◦ µ2(z1) =

{
V(z2,z3)∈Xz1

min{µ1(z2), µ2(z3)} if Xz1 6= φ

0 if Xz1 = φ.
(1)

µ1 ≤ µ2 means µ1 (z) ≤ µ2 (z) .

Pawlak [23] is the pioneer who for the first time investigated the rudimentary
notion of rough set. The fundamental concept of Pawlak rough set depend upon the
equivalence relation.

Consider the equivalence relation ξ on the initial universal set U . Then (U, ξ) is
said to be the approximation space. Let φ 6= X ⊆ U, so in this case the set X is
called a definable subset of U if it is the collection of some equivalence classes of a
universal set U else it is called not definable. Then the set X is approximated in the
form of upper and lower approximations which are given as:

App (X) =
{

z1 ∈ U : [z1]ξ ∩X 6= φ
}

App (X) =
{

z1 ∈ U : [z1]ξ ⊆ X
}



Journal of New Theory 26 (2019) 32-53 37

Then the rough set is a pair
(
AppX, AppX

)
, if AppX 6= AppX. The set X is a

definable set if AppX = AppX.

In the following we will further generalized the concepts of upper and lower
approximations to a FSS as well.

Definition 2.14. [11] Consider the approximation space (U, ξ), and for any z1 ∈ U,
the upper and lower approximations of a FSS µ is defined as

App (µ) (z1) = ∨
z2∈[z1]ξ

µ (z2) and App (µ) (z1) = ∧
z2∈[z1]ξ

µ (z2)

The pair
(
App (µ) , App (µ)

)
is said to be a rough fuzzy subset if App (µ) 6= App (µ) .

Definition 2.15. Consider the OSGs S1 and S2. Then the set-valued homomor-
phism (SV H)is a mapping F : S1 −→ P ∗(S2) if it satisfied:

(h1) F (z1)F (z2) = F (z1z2)

Where P ∗(S2) 6= φ represents the collection of all subsets of S2.

Definition 2.16. Let S1 and S2 be two OSGs. Then the set-valued monotone ho-
momorphism (SV MH) is a mapping F : S1 −→ P ∗(S2) if it satisfy the condition
(h1) of Definition 2.15, and

(h2) if z1 ≤ z2 this implies F (z1) ⊆ F (z2) for each z1, z2 ∈ S1.

Definition 2.17. Let S1 and S2 be two OSGs. Then the set-valued isotone homo-
morphism (SV IH) is a mapping F : S1 −→ P ∗(S2) if it satisfy condition (h1) of
Definition 2.15, and

(h3) z1 ≤ z2 then F (z2) ⊆ F (z1) for each z1, z2 ∈ S1.

Definition 2.18. Consider that a SV IH or SV MH is a function F : S −→ P ∗(S).
Then the generalized upper and lower approximations for any z1 ∈ S, of a FSS µ
with respect to the given mapping F is defined as

F (µ) (z1) = ∨
z2∈F (z1)

µ (z2) and F (µ) (z1) = ∧
z2∈F (z1)

µ (z2)

The rough fuzzy subset is a pair
(
F (µ) , F (µ)

)
if F (µ) 6= F (µ) .

3 Approximations of FIds in OSGs

In this section study of roughness of FIds in OSGs is being presented on the bases
of SV IH or SV MH. Thus we will start from the following.

Theorem 3.1. Suppose that F : S → P ∗ (S) be a SV IH or SV MH and a FSS
µ be a fuzzy ordered subsemigroup of S. Then the upper approximation F (µ) is a
fuzzy ordered subsemigroup of S.
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Proof. For any z1, z2 ∈ S. Consider

F (µ) (z1z2) = ∨
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∨
z
′
2z
′
3∈F (z1)F (z2)

µ
(
z
′
2z

′
3

) (
as z

′
1 = z

′
2z

′
3 such that z

′
2 ∈ F (z1)

and z
′
3 ∈ F (z2)

)

= ∨
z
′
2∈F (z1)

z
′
3∈F (z2)

µ
(
z
′
2z

′
3

)

≥ ∨
z
′
2∈F (z1)

z
′
3∈F (z2)

min
{

µ
(
z
′
2

)
, µ

(
z
′
3

)}

= min

{
∨

z
′
2∈F (z1)

µ
(
z
′
2

)
, ∨
z
′
3∈F (z2)

µ
(
z
′
3

)}

implies

F (µ) (z1z2) ≥ min
{
F (µ) (z1) , F (µ) (z2)

}

Therefore F (µ) is a fuzzy ordered subsemigroup of S.

Theorem 3.2. Suppose that a FSS µ be a fuzzy ordered subsemigroup of S and
F : S → P ∗ (S) be a SV IH or SV MH. Then F (µ) is a fuzzy ordered subsemigroup
of OSG S.

Proof. Similarly as above Theorem 3.1.

In onward discussion the study of roughness of FIds in OSGs is being presented.

Theorem 3.3. Consider the SV MH F : S → P ∗ (S) and a FSS µ be a FLId (resp.
FRId) of OSG S. Then F (µ) is a FLId (resp. FRId) of S.

Proof. For each z1, z2 ∈ S with z1 ≤ z2, then F (z1) ⊆ F (z2) . Now we may consider
the following

F (µ) (z1) = ∧
z
′
1∈F (z1)

µ
(
z
′
1

)

≥ ∧
z
′
2∈F (z2)

µ
(
z
′
2

)

implies

F (µ) (z1) ≥ F (µ) (z2)
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Next

F (µ) (z1z2) = ∧
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∧
z
′
2z
′
3∈F (z1)F (z2)

µ
(
z
′
2z

′
3

) (
as z

′
1 = z

′
2z

′
3 such that z

′
2 ∈ F (z1)

and z
′
3 ∈ F (z2)

)

= ∧
z
′
2∈F (z1)

z
′
3∈F (z2)

µ
(
z
′
2z

′
3

)

≥ ∧
z
′
3∈F (z2)

µ
(
z
′
3

)

implies

F (µ) (z1z2) ≥ F (µ) (z2)

Hence F (µ) is a FLId of S. Analogously, we can prove that F (µ) is a FRId of S.

Here by counter example it is shown that upper approximation F (µ) does not
hold in general for a FId µ, when F is a SV MH.

Example 3.4. Let us suppose a set S = {ã1, ã2, ã3, ã4, ã5, ã6} with the following
multiplication table and order relation “≤”.

Multiplication table for S
· ã1 ã2 ã3 ã4 ã5 ã6

ã1 ã1 ã1 ã1 ã1 ã1 ã1

ã2 ã1 ã2 ã2 ã4 ã2 ã2

ã3 ã1 ã2 ã3 ã4 ã5 ã5

ã4 ã1 ã1 ã4 ã4 ã4 ã4

ã5 ã1 ã2 ã3 ã4 ã5 ã5

ã6 ã1 ã2 ã3 ã4 ã5 ã6

Table 1

and ≤:={(ã1, ã1), (ã2, ã2), (ã3, ã3), (ã4, ã4), (ã5, ã5), (ã6, ã6), (ã1, ã4) , (ã1, ã5) , (ã4, ã5) ,
(ã2, ã6) , (ã3, ã5) , (ã3, ã6) , (ã2, ã5) , (ã6, ã5)}. Then (S, ·,≤) is an OSG. Right ideals
of S are {ã1, ã4} , {ã1, ã2, ã4} and S. Left ideals of S are {ã1} , {ã1, ã2} , {ã1, ã4} ,
{ã1, ã2, ã4} , {ã1, ã2, ã3, ã4} , {ã1, ã2, ã4, ã5, ã6} and S. Define a FSS µ : S → [0, 1] by
µ(ã1) = 0.8, µ(ã2) = 0.5, µ(ã4) = 0.6 and µ(ã3) = µ(ã5) = µ(ã6) = 0.4. Then FSS µ
is a FId of S.

Next suppose that a SV MH F : S → P ∗ (S) i.e.

(i) F (ã1) F (ã2) = F (ã1ã2)
(ii) if ã1 ≤ ã2 → F (ã1) ⊆ F (ã2) .
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Where P ∗ (S) consist of all non-empty subset of S. Now if F (ã5) = {ã2, ã3, ã4, ã5, ã6}
and F (ã6) = {ã3, ã6} , as ã6 ≤ ã5 → F (ã6) ⊆ F (ã5) but F (µ) (ã6) � F (µ) (ã5) .
Hence in SV MH it is prove that F (µ) is not a FId of S.

Theorem 3.5. Suppose that a FSS µ be a FLId (resp. FRId) of S and F : S →
P ∗ (S) be a SV IH. Then F (µ) is a FLId (resp. FRId) of OSG S.

Proof. For each z1, z2 ∈ S such that z1 ≤ z2, then F (z2) ⊆ F (z1) . Now consider the
following

F (µ) (z1) = ∨
z
′
1∈F (z1)

µ
(
z
′
1

)

≥ ∨
z
′
2∈F (z2)

µ
(
z
′
2

)

implies

F (µ) (z1) ≥ F (µ) (z2)

Next

F (µ) (z1z2) = ∨
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∨
z
′
2z
′
3∈F (z1)F (z2)

µ
(
z
′
2z

′
3

) (
as z

′
1 = z

′
2z

′
3 such that z

′
2 ∈ F (z1)

and z
′
3 ∈ F (z2)

)

= ∨
z
′
2∈F (z1)

z
′
3∈F (z2)

µ
(
z
′
2z

′
3

)

≥ ∨
z
′
3∈F (z2)

µ
(
z
′
3

)

implies

F (µ) (z1z2) ≥ F (µ) (z2)

Hence this prove that F (µ) is a FLId (resp. FRId) of S.

Here by counter example it is shown that upper approximation F (µ) does not
hold in general for a FId µ, when F is a SV IH.

Example 3.6. Suppose a FId µ of OSG S as shown in example 3.4. Now consider
a SV IH F : S → P ∗ (S) i.e.

(i) F (ã1) F (ã2) = F (ã1ã2)
(ii) if ã1 ≤ ã2 ⇒ F (ã2) ⊆ F (ã1) .

Now if F (ã6) = {ã1, ã2, ã4} and F (ã5) = {ã1, ã4} , as ã6 ≤ ã5 ⇒ F (ã5) ⊆ F (ã6)
but F (µ) (ã6) � F (µ) (ã5) . Hence in SV IH it is prove that F (µ) is not a FId of S.
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Theorem 3.7. Suppose that F : S → P ∗ (S) be SV MH and a FSS µ be a FIId of
OSG S. Then F (µ) is a FIId of S.

Proof. From Theorem 3.3, we have z1 ≤ z2, implies F (z1) ⊆ F (z2) , for each z1, z2 ∈
S, then F (µ) (z1) ≥ F (µ) (z2). Next consider

F (µ) (z1z2) = ∧
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∧
z
′
2z
′
3∈F (z1)F (z2)

µ
(
z
′
2z

′
3

) (
as z

′
1 = z

′
2z

′
3, where z

′
2 ∈ F (z1)

and z
′
3 ∈ F (z2)

)

= ∧
z
′
2∈F (z1)

z
′
3∈F (z2)

µ
(
z
′
2z

′
3

)

≥ ∧
z
′
2∈F (z1)

z
′
3∈F (z2)

min
{

µ
(
z
′
2

)
, µ

(
z
′
3

)}

= min

{
∧

z
′
2∈F (z1)

µ
(
z
′
2

)
, ∧
z
′
3∈F (z2)

µ
(
z
′
3

)}

implies

F (µ) (z1z2) ≥ min {F (µ) (z1) , F (µ) (z2)}

Consider

F (µ) (z1z3z2) = ∧
z
′
1∈F (z1z3z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z3)F (z2)

µ
(
z
′
1

)

= ∧
tuv∈F (z1)F (z3)F (z2)

µ (tuv)

(
as z

′
1 = tuv where t ∈ F (z1) ,

u ∈ F (z3) and v ∈ F (z2)

)

= ∧
t∈F (z1)
u∈F (z3)
v∈F (z2)

µ (tuv)

≥ ∧
u∈F (z3)

µ (u)

implies

F (µ) (z1z3z2) ≥ F (µ) (z3)

Therefore, F (µ) satisfies all the conditions of FIId, so F (µ) is a FIId of OSG S.

Theorem 3.8. Consider a FSS µ be a FIId of OSG S and F : S → P ∗ (S) be a
SV IH. Then F (µ) is a FIId of OSG S.
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Proof. From Theorems 3.1 and 3.5, if z1 ≤ z2 implies F (z2) ⊆ F (z1) for each z1, z2 ∈
S, then F (µ) (z1) ≥ F (µ) (z2) and F (µ) (z1z2) ≥ min

{
F (µ) (z1) , F (µ) (z2)

}
. Next

we may consider the following

F (µ) (z1z3z2) = ∨
z
′
1∈F (z1z3z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z3)F (z2)

µ
(
z
′
1

)

= ∨
tuv∈F (z1)F (z3)F (z2)

µ (tuv)

(
as z

′
1 = tuv where t ∈ F (z1) ,

u ∈ F (z3) and v ∈ F (z2)

)

= ∨
t∈F (z1)
u∈F (z3)
v∈F (z2)

µ (tuv)

≥ ∨
u∈F (z3)

µ (u)

implies

F (µ) (z1z3z2) ≥ F (µ) (z3)

Therefore, it is prove that F (µ) is a FIId of S.

Theorem 3.9. Suppose that F : S → P ∗ (S) be a SV MH and a FSS µ be a FBId
of OSG S. Then F (µ) is a FBId of S.

Proof. From Theorem 3.7, we have for each z1, z2 ∈ S, such that z1 ≤ z2, implies
F (z1) ⊆ F (z2) , then F (µ) (z1) ≥ F (µ) (z2) , and also

F (µ) (z1z2) ≥ min {F (µ) (z1) , F (µ) (z2)}
Next for each z1, z2, z3 ∈ S, consider the following

F (µ) (z1z2z3) = ∧
z
′
1∈F (z1z2z3)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)F (z3)

µ
(
z
′
1

)

= ∧
tuv∈F (z1)F (z2)F (z3)

µ (tuv)

(
as z

′
1 = tuv where t ∈ F (z1) ,

u ∈ F (z2) and v ∈ F (z3)

)

= ∧
t∈F (z1)
u∈F (z2)
v∈F (z3)

µ (tuv)

≥ ∧
t∈F (z1)
v∈F (z3)

min {µ (t) , µ (v)}

= min

{
∧

t∈F (z1)
µ (t) , ∧

v∈F (z3)
µ (v)

}

implies

F (µ) (z1z2z3) ≥ min {F (µ) (z1) , F (µ) (z3)}
Hence F (µ) satisfies all the conditions of a FBId of S, so F (µ) is a FBId of S.
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Theorem 3.10. Suppose that a FSS µ be a FBId of S and F : S → P ∗ (S) be a
SV IH. Then we have to prove that F (µ) is a FBId of OSG S.

Proof. From Theorem 3.8, for each z1, z2 ∈ S such that z1 ≤ z2, implies F (z2) ⊆
F (z1) , then F (µ) (z1) ≥ F (µ) (z2) and also F (µ) (z1z2) ≥ min

{
F (µ) (z1) , F (µ) (z2)

}
.

Next for each z1, z2, z3 ∈ S, we consider

F (µ) (z1z2z3) = ∨
z
′
1∈F (z1z2z3)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)F (z3)

µ
(
z
′
1

)

= ∨
tuv∈F (z1)F (z2)F (z3)

µ (tuv)

(
as z

′
1 = tuv where t ∈ F (z1) ,

u ∈ F (z2) and v ∈ F (z3)

)

= ∨
t∈F (z1)
u∈F (z2)
v∈F (z3)

µ (tuv)

≥ ∨
t∈F (z1)
v∈F (z3)

min {µ (t) , µ (v)}

= min

{
∨

t∈F (z1)
µ (t) , ∨

v∈F (z3)
µ (v)

}

implies

F (µ) (z1z2z3) ≥ min
{
F (µ) (z1) , F (µ) (z3)

}

Hence F (µ) satisfies all the conditions of a FBId, so F (µ) is a FBId of S.

Theorem 3.11. Let us suppose that F : S → P ∗ (S) be a SV MH and a FSS µ be
a FQId of S and . Then we have to prove that F (µ) is a FQId of S.

Proof. As F (µ) is a FLId (resp. FRId) of OSG S, therefore by Theorem 3.3, for each
z1, z2 ∈ S such that z1 ≤ z2, implies F (z1) ⊆ F (z2) , then F (µ) (z1) ≥ F (µ) (z2).
Next consider

F (µ) (z1) = ∧
ā∈F (z1)

µ (ā)

≥ ∧
ā∈F (z1)

((µ ◦ 1) ∧ (1 ◦ µ)) (ā)

= F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1)

implies

F (µ) (z1) ≥ F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1)

Hence from the proof it is clear that F (µ) is a FQId of OSG S.

Theorem 3.12. Suppose that a SV IH F : S → P ∗ (S) and a FSS µ be a FQId of
OSG S. Then F (µ) is a FQId of OSG S.
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Proof. As we know from Theorem 3.5 that F (µ) is a FLId (resp. FRId) of S,
therefore for each z1, z2 ∈ S such that z1 ≤ z2 implies F (z2) ⊆ F (z1) , then
F (µ) (z1) ≥ F (µ) (z2). Next consider

F (µ) (z1) = ∨
ā∈F (z1)

µ (ā)

≥ ∨
ā∈F (z1)

((µ ◦ 1) ∧ (1 ◦ µ)) (ā)

= F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1)

implies

F (µ) (z1) ≥ F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1)

Hence from the proof it is clear that F (µ) is a FQId of S.

4 Approximations of ( ∈,∈ ∨q)-FIds in OSGs

In this section, roughness of ( ∈,∈ ∨q)-FIds is being studied on the bases of SV IH
and SIMH.

Definition 4.1. A FSS µ of OSG S is known as an (∈,∈ ∨q)-fuzzy ordered sub-
semigroup of OSG S if:

(FI8) (for each z1, z2 ∈ S) (for all t1, t2 ∈ (0, 1])

(
(z1)t1

, (z2)t2
∈ µ implies

(z1z2)min{t1,t2} ∈ ∨qµ

)

Definition 4.2. A FSS µ is known as (∈,∈ ∨q)-FLId (resp. FRId) of S if the
following conditions are holds:

(FI9) (for all z1, z2 ∈ S) (for all t1 ∈ (0, 1])

(
z1 ≤ z2, then (z2)t1

∈ µ implies
(z1)t1

∈ ∨qµ

)

(FI10) (for all z1, z2 ∈ S) (for all t1 ∈ (0, 1])

(
(z2)t1

∈ µ implies (z1z2)t1
∈ ∨qµ(

resp. (z2z1)t1
∈ ∨qµ

)
)

A FSS µ is known as (∈,∈ ∨q)-FId of S, if it is both (∈,∈ ∨q)-FLId and (∈,∈ ∨q)-
FRId of S.

Definition 4.3. [12] A FSS µ is known to be an (∈,∈ ∨q)-FIId of OSG S if it holds
(FI8) , (FI9) and

(FI11) (for all z1, z2, z3 ∈ S) (for all t1 ∈ (0, 1])
(
(z3)t1

∈ µ implies (z1z3z2)t1
∈ ∨qµ

)

Definition 4.4. A FSS µ is said to be an (∈,∈ ∨q)-FBId of OSG S if holds
(FI8) , (FI9) and

(FI12) (for all z1, z2, z3 ∈ S) (for all t1, t2 ∈ (0, 1])

(
(z1)t1

, (z3)t2
∈ µ implies

(z1z2z3)min{t1,t2} ∈ ∨qµ

)

Definition 4.5. A FSS µ is known as (∈,∈ ∨q)-FQId of S if it holds (FI9) and

(FI13) (for all z1 ∈ S) (for all t1 ∈ (0, 1])
(
(z1)t1

∈ (µ ◦ 1) ∧ (1 ◦ µ) implies (z1)t1
∈ ∨qµ

)
.
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Lemma 4.6. [12] A FSS µ is known as (∈,∈ ∨q)-FLId (resp. FRId) of OSG S ⇔
it holds

(FI14) (for all z1, z2 ∈ S) (z1 ≤ z2, µ (z1) ≥ min {µ (z2) , 0.5}) ,
(FI15) (for all z1, z2 ∈ S) (µ (z1z2) ≥ min {µ (z2) , 0.5})

(resp. µ (z1z2) ≥ min {µ (z1) , 0.5}) .

Lemma 4.7. [12] A FSS µ is said to be an (∈,∈ ∨q)-FBId of OSG S ⇔ it holds
(FI14) of lemma 4.6 and

(FI16) (for all z1, z2 ∈ S) (µ (z1z2) ≥ min {µ (z1) , µ (z2) , 0.5})
(FI17) (for all z1, z2, z3 ∈ S) (µ (z1z2z3) ≥ min {µ (z1) , µ (z3) , 0.5})

Lemma 4.8. [12] µ is known as (∈,∈ ∨q)-FIId of S ⇔ it holds (FI14) , (FI16) of
lemmas 4.6 and 4.7 and

(FI18) (for all z1, z2 ∈ S) (µ (z1z3z2) ≥ min {µ (z3) , 0.5})
Lemma 4.9. A FSS µ is said to be an (∈,∈ ∨q)-FQId of OSG S ⇔ it holds (FI14)
of lemma 4.6 and

(FI19) (for all z1, z2 ∈ S) (µ (z1) ≥ min {((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5})
Theorem 4.10. Suppose that FSS µ be an (∈,∈ ∨q)-fuzzy ordered subsemigroup
of S and F : S → P ∗ (S) be a SV MH or SV IH. Then F (µ) is an (∈,∈ ∨q)-fuzzy
ordered subsemigroup of S.

Proof. To prove this theorem we have to see that, F (µ) satisfies (FI16) . If for each
z1, z2 ∈ S, now consider

F (µ) (z1z2) = ∧
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∧
ab∈F (z1)F (z2)

µ (ab)

(
as z

′
1 = ab such that a ∈ F (z1) ,

and b ∈ F (z2)

)

= ∧
a∈F (z1)
b∈F (z2)

µ (ab)

≥ ∧
a∈F (z1)
b∈F (z2)

min {µ (a) , µ (b) , 0.5}

= min

{
∧

a∈F (z1)
µ (a) , ∧

b∈F (z2)
µ (b) , 0.5

}

implies

F (µ) (z1z2) ≥ min {F (µ) (z1) , F (µ) (z2) , 0.5}

Hence F (µ) is an (∈,∈ ∨q)-fuzzy ordered subsemigroup of OSG S.
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Theorem 4.11. Consider that a FSS µ be (∈,∈ ∨q)-fuzzy ordered subsemigroup of
S and F : S → P ∗ (S) be a SV MH or SV IH and. Then F (µ) is an (∈,∈ ∨q)-fuzzy
ordered subsemigroup of S.

Proof. Straightforward as Theorem 4.10.

Theorem 4.12. Consider that a FSS µ be (∈,∈ ∨q)-FLId (resp. FRId) of S and
F : S → P ∗ (S) be a SV MH. Then F (µ) is (∈,∈ ∨q)-FLId (resp. FRId) of S.

Proof. To prove this theorem, we have to see that F (µ) satisfies (FI14) and (FI15) .
If for each z1, z2 ∈ S with z1 ≤ z2, implies F (z1) ⊆ F (z2) . Now consider

min {F (µ) (z2) , 0.5} = min

{
∧

z
′
2∈F (z2)

µ
(
z
′
2

)
, 0.5

}

= ∧
z
′
2∈F (z2)

min
{

µ
(
z
′
2

)
, 0.5

}

≤ ∧
z
′
1∈F (z1)

µ
(
z
′
1

)

implies

min {F (µ) (z2) , 0.5} ≤ F (µ) (z1)

Next consider

F (µ) (z1z2) = ∧
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∧
ab∈F (z1)F (z2)

µ (ab)

(
as z

′
1 = ab such that a ∈ F (z1) ,

b ∈ F (z2)

)

= ∧
a∈F (z1)
b∈F (z2)

µ (ab)

≥ ∧
b∈F (z2)

min {µ (b) , 0.5}

= min

{
∧

b∈F (z2)
µ (b) , 0.5

}

implies

F (µ) (z1z2) ≥ min {F (µ) (z2) , 0.5}

Therefore it is clear that F (µ) is an (∈,∈ ∨q)-FLId (resp. FRId) ideal of S.

Theorem 4.13. Consider that F : S → P ∗ (S) be a SV IH and a FSS µ be
(∈,∈ ∨q)-FLId (resp. FRId) of S. Then F (µ) is (∈,∈ ∨q)-FLId (resp. FRId) of
S.
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Proof. To prove this theorem, we have to see that F (µ) satisfies (FI14) and (FI15) . If
for each z1, z2 ∈ S with z1 ≤ z2, implies F (z2) ⊆ F (z1) . Next suppose the following

min
{
F (µ) (z2) , 0.5

}
= min

{
∨

z
′
2∈F (z2)

µ
(
z
′
2

)
, 0.5

}

= ∨
z
′
2∈F (z2)

min
{

µ
(
z
′
2

)
, 0.5

}

≤ ∨
z
′
1∈F (z1)

µ
(
z
′
1

)

implies

min
{
F (µ) (z2) , 0.5

} ≤ F (µ) (z1)

Next consider

F (µ) (z1z2) = ∨
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∨
ab∈F (z1)F (z2)

µ (ab)

(
as z

′
1 = ab such that a ∈ F (z1) ,

b ∈ F (z2)

)

= ∨
a∈F (z1)
b∈F (z2)

µ (ab)

≥ ∨
b∈F (z2)

min {µ (b) , 0.5}

= min

{
∨

b∈F (z2)
µ (b) , 0.5

}

implies

F (µ) (z1z2) ≥ min
{
F (µ) (z2) , 0.5

}

Therefore F (µ) is an (∈,∈ ∨q)-FLId of S. Similarly, we can prove that F (µ) is an
(∈,∈ ∨q)-FRId of S.

Theorem 4.14. Suppose that a FSS µ be (∈,∈ ∨q)-FIId of S and F : S → P ∗ (S)
be a SV MH. Then F (µ) is (∈,∈ ∨q)-FIId of S.

Proof. From Theorems 4.10 and 4.12,we see that F (µ) satisfies (FI14) and (FI16) .
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Next we consider the following for each z1, z2, z3 ∈ S.

F (µ) (z1z3z2) = ∧
z
′
1∈F (z1z3z2)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z3)F (z2)

µ
(
z
′
1

)

= ∧
acb∈F (z1)F (z3)F (z2)

µ (acb)

(
as z

′
1 = acb such that a ∈ F (z1) ,
c ∈ F (z3) and b ∈ F (z2)

)

= ∧
a∈F (z1)
c∈F (z3)
b∈F (z2)

µ (acb)

≥ ∧
c∈F (z3)

min {µ (c) , 0.5}

= min

{
∧

z
′
3∈F (z3)

µ
(
z
′
3

)
, 0.5

}

implies

F (µ) (z1z3z2) ≥ min {F (µ) (z3) , 0.5}

Hence it is proved that F (µ) is (∈,∈ ∨q)-FIId of S.

Theorem 4.15. Let us consider that F : S → P ∗ (S) be a SV IH and a FSS µ be
(∈,∈ ∨q)-FIId of S. Then F (µ) is (∈,∈ ∨q)-FIId of S.

Proof. From Theorem 4.13, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z2) ⊆
F (z1) . Then min

{
F (µ) (z2) , 0.5

} ≤ F (µ) (z1) , Next let for each z1, z2 ∈ S,

F (µ) (z1z2) = ∨
z
′
1∈F (z1z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)

µ
(
z
′
1

)

= ∨
ab∈F (z1)F (z2)

µ (ab)

(
as z

′
1 = ab where a ∈ F (z1)

and b ∈ F (z2)

)

= ∨
a∈F (z1)
b∈F (z2)

µ (ab)

≥ ∨
z
′
1∈F (z1)

z
′
2∈F (z2)

min
{

µ
(
z
′
1

)
, µ

(
z
′
2

)
, 0.5

}

= min

{
∨

z
′
1∈F (z1)

µ
(
z
′
1

)
, ∨
z
′
2∈F (z2)

µ
(
z
′
2

)
, 0.5

}

implies

F (µ) (z1z2) ≥ min
{
F (µ) (z1) , F (µ) (z2) , 0.5

}



Journal of New Theory 26 (2019) 32-53 49

Next consider

F (µ) (z1z3z2) = ∨
z
′
1∈F (z1z3z2)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z3)F (z2)

µ
(
z
′
1

)

= ∨
acb∈F (z1)F (z3)F (z2)

µ (acb)

(
as z

′
1 = acb where a ∈ F (z1) ,

c ∈ F (z3) and b ∈ F (z2)

)

= ∨
a∈F (z1)
c∈F (z3)
b∈F (z2)

µ (acb)

≥ ∨
c∈F (z3)

min {µ (c) , 0.5}

= min

{
∨

c∈F (z3)
µ (c) , 0.5

}

implies

F (µ) (z1z3z2) ≥ min
{
F (µ) (z3) , 0.5

}

Therefore, it is prove that F (µ) is (∈,∈ ∨q)-FIId of S.

Theorem 4.16. Suppose that a FSS µ be (∈,∈ ∨q)-FBId of S and F : S → P ∗ (S)
be a SV MH. Then F (µ) is (∈,∈ ∨q)-FBId of S.

Proof. From Theorem 4.14, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z1) ⊆
F (z2) . Then min {F (µ) (z2) , 0.5} ≤ F (µ) (z1) , and also F (µ) (z1z2) ≥

min {F (µ) (z1) , F (µ) (z2) , 0.5} . Next let for each z1, z2, z3 ∈ S,

F (µ) (z1z2z3) = ∧
z
′
1∈F (z1z2z3)

µ
(
z
′
1

)

= ∧
z
′
1∈F (z1)F (z2)F (z3)

µ
(
z
′
1

)

= ∧
abc∈F (z1)F (z3)F (z2)

µ (abc)

(
as z

′
1 = abc where a ∈ F (z1) ,

b ∈ F (z2) and c ∈ F (z3)

)

= ∧
a∈F (z1)
c∈F (z3)
b∈F (z2)

µ (acb)

≥ ∧
a∈F (z1)
c∈F (z3)

min {µ (a) , µ (c) , 0.5}

= min

{
∧

a∈F (z1)
µ (a) , ∧

c∈F (z3)
µ (c) , 0.5

}

implies

F (µ) (z1z2z3) ≥ min {F (µ) (z1) , F (µ) (z3) , 0.5}
Hence F (µ) satisfies all the conditions of (∈,∈ ∨q)-FBId of S. Therefore F (µ) is an
(∈,∈ ∨q)-FBId of S.
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Theorem 4.17. Let us consider that F : S → P ∗ (S) be a SV IH and a FSS µ be
(∈,∈ ∨q)-FBId of OSG S. Then F (µ) is (∈,∈ ∨q)-FBId of S.

Proof. From Theorem 4.15, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z2) ⊆
F (z1) . Then min

{
F (µ) (z2) , 0.5

} ≤ F (µ) (z1) , and also F (µ) (z1z2) ≥
min{F (µ) (z1) , F (µ) (z2) , 0.5}. Next we consider the following for each z1, z2, z3 ∈

S,

F (µ) (z1z2z3) = ∨
z
′
1∈F (z1z2z3)

µ
(
z
′
1

)

= ∨
z
′
1∈F (z1)F (z2)F (z3)

µ
(
z
′
1

)

= ∨
abc∈F (z1)F (z3)F (z2)

µ (abc)

(
as z

′
1 = abc where a ∈ F (z1) ,

b ∈ F (z2) and c ∈ F (z3)

)

= ∨
a∈F (z1)
c∈F (z3)
b∈F (z2)

µ (acb)

≥ ∨
a∈F (z1)
c∈F (z3)

min {µ (a) , µ (c) , 0.5}

= min

{
∨

a∈F (z1)
µ (a) , ∨

c∈F (z3)
µ (c) , 0.5

}

implies

F (µ) (z1z2z3) ≥ min
{
F (µ) (z1) , F (µ) (z3) , 0.5

}

Hence F (µ) satisfies all the conditions of (∈,∈ ∨q)-FBId of S. Therefore F (µ) is
(∈,∈ ∨q)-FBId of S.

Theorem 4.18. Let us suppose that a FSS µ be (∈,∈ ∨q)-FQId of S and F : S →
P ∗ (S) be a SV MH. Then we have to prove that F (µ) is (∈,∈ ∨q)-FQId of S.

Proof. From Theorem 4.12, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z1) ⊆
F (z2) . Then min {F (µ) (z2) , 0.5} ≤ F (µ) (z1) , Next let for each z1 ∈ S,

min {F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5} = min

{
∧

z
′
1∈F (z1)

((µ ◦ 1) ∧ (1 ◦ µ))
(
z
′
1

)
, 0.5

}

= ∧
z
′
1∈F (z1)

min
(
((µ ◦ 1) ∧ (1 ◦ µ))

(
z
′
1

)
, 0.5

)

≤ ∧
z
′
1∈F (z1)

µ
(
z
′
1

)

implies

min {F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5} ≤ F (µ) (z1)

Hence F (µ) is an (∈,∈ ∨q)-FQId of S.
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Theorem 4.19. Let a FSS µ be (∈,∈ ∨q)-FQId of S and consider that F : S →
P ∗ (S) be a SV IH. Then we have to prove that F (µ) is (∈,∈ ∨q)-FQId of S.

Proof. From Theorem 4.13, we have for each z1, z2 ∈ S, if z1 ≤ z2 implies F (z2) ⊆
F (z1) . Then min

{
F (µ) (z2) , 0.5

} ≤ F (µ) (z1) , Next let for each z1 ∈ S,

min
{
F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5

}
= min

{
∨

z
′
1∈F (z1)

((µ ◦ 1) ∧ (1 ◦ µ))
(
z
′
1

)
, 0.5

}

= ∨
z
′
1∈F (z1)

min
{

((µ ◦ 1) ∧ (1 ◦ µ))
(
z
′
1

)
, 0.5

}

≤ ∨
z
′
1∈F (z1)

µ
(
z
′
1

)

implies

min
{
F ((µ ◦ 1) ∧ (1 ◦ µ)) (z1) , 0.5

} ≤ F (µ) (z1)

Hence it is proved that F (µ) is an (∈,∈ ∨q)-FQId of S.

5 Conclusion

OSGs is a significant algebraic structure having partial ordered with associative
binary operations. OSGs have broad applications in various fields such as coding
theory, automata theory and computer science etc. In this manuscript we have
originated the approximations of FIds, FBIds, FIIds and FQIds of OSGs on the
basis of isotone and monotone mapping. It is clear that these two mappings play
a significant role for investigating the approximation of FIds in OSGs. Moreover in
the idea of approximation is generalized to (∈,∈ ∨q)-FIds, FBIds, FIIds and FQIds.
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