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A Quantitative Estimate for the Sampling Kantorovich Series
in Terms of the Modulus of Continuity in Orlicz Spaces
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ABSTRACT. In the present paper we establish a quantitative estimate for the sampling Kantorovich operators with
respect to the modulus of continuity in Orlicz spaces defined in terms of the modular functional. At the end of the
paper, concrete examples are discussed, both for what concerns the kernels of the above operators, as well as for some
concrete instances of Orlicz spaces.
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1. INTRODUCTION

The sampling Kantorovich operators Sw have been introduced by Bardaro, Butzer, Stens and
Vinti in [8], in order to study an L1-version of the so-called generalized sampling operators
([12, 32, 14]). The main peculiarity of the sampling Kantorovich operators is that they revealed
to be suitable in order to reconstruct not necessarily continuous signals ([2]).

Indeed, in the original paper [8] the authors proved the modular convergence of the opera-
tors Sw in the general setting of Orlicz spaces, which include, as a special case, the Lp-spaces.

Later on, the operators Sw have been studied under different aspects, both from theoretical
([17, 5, 23]) and applications point of view ([6, 7]). For instance, in [6, 7] some applications
to energy engineering have been developed applying an algorithm for image reconstruction
and enhancement based on the multivariate version of the operators Sw for the processing of
thermographic images.

The order of approximation for the sampling Kantorovich operators has been also studied
in [21]; this has been done assuming the function f in suitable Lipschitz classes, both in the
space of uniformly continuous and bounded functions (i.e., in C(R)) and in Orlicz spaces (i.e.,
in Lϕ(R)). For other results concerning the order of approximation for the above operators,
see, e.g., [31, 11].

The above problem has been faced in C(R) also from the quantitative point of view in [9],
by using the modulus of continuity of the function being approximated.

Currently, the study of quantitative estimates in the setting of Orlicz spaces in terms of the
modulus of continuity is still an open problem.

For the latter reason, in this paper we establish the quantitative rate of convergence for the
sampling Kantorovich operators; in order to do this we firstly recall the notion of the modulus
of continuity in Lϕ(R) which is based on the modular functional of the space ([10]).
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At the end of the paper, several examples of kernels and concrete cases of Orlicz spaces are
recalled. For instance, the Lp-spaces, with 1 ≤ p < +∞, are included in the present general
theory, together with other well-known examples of Orlicz spaces.

2. NOTATION AND PRELIMINARIES

We begin this section by recalling some basic facts concerning Orlicz spaces.
A function ϕ : R+

0 → R+
0 is said to be a ϕ-function if it satisfies the following conditions:

(Φ1) ϕ is a non decreasing and continuous function;
(Φ2) ϕ(0) = 0, ϕ(u) > 0 if u > 0 and limu→+∞ ϕ(u) = +∞.

Let us now consider the functional Iϕ associated to the ϕ-function ϕ and defined by

Iϕ[f ] :=

∫
R
ϕ(|f(x)|) dx,

for every f ∈ M(R), i.e., for every (Lebesgue) measurable function f : R → R. As it is well-
known, Iϕ is a modular functional (see e.g. [29, 10]), and the Orlicz space generated by ϕ is
defined by

Lϕ(R) := {f ∈M(R) : Iϕ[λf ] <∞, for some λ > 0} .
A notion of convergence in Orlicz spaces, called modular convergence, was introduced in [30].

We will say that a net of functions (fw)w>0 ⊂ Lϕ(R) is modularly convergent to f ∈ Lϕ(R),
if there exists λ > 0 such that

(2.1) Iϕ[λ(fw − f)] =

∫
R
ϕ(λ|fw(x)− f(x)|) dx −→ 0, w → +∞.

Moreover we recall, for the sake of completeness, that in Lϕ(R) it can be also given a strong
notion of convergence, i.e. the Luxemburg-norm convergence, see e.g. [29, 10]. We will say that
a net of functions (fw)w>0 ⊂ Lϕ(R) is convergent to f ∈ Lϕ(R) with respect to the Luxemburg
norm if (2.1) holds for every λ > 0. Definition (2.1) induces a topology in Lϕ(R), called modular
topology. Obviously, the modular convergence and the Luxemburg norm convergence coincide
if and only if the well-known ∆2-condition on ϕ is satisfied, see, e.g., [29, 10].

Now, we recall the definition of the modulus of continuity in Orlicz spaces Lϕ(R), with
respect to the modular Iϕ. For any fixed f ∈ Lϕ(R), and for a suitable λ > 0, we denote:

(2.2) ω(f, δ)ϕ := sup
|t|≤δ

Iϕ [λ (f(·+ t)− f(·))] ,

with δ > 0.
For general references concerning Orlicz spaces and some of their generalizations, see, e.g.,

[28, 1, 24, 25, 18].
In order to define the considered operators, we need some additional notions.
Let Π = (tk)k∈Z be a sequence of real numbers such that −∞ < tk < tk+1 < +∞ for every

k ∈ Z, limk→±∞ tk = ±∞ and there are two positive constants ∆, δ such that δ ≤ ∆k :=
tk+1 − tk ≤ ∆, for every k ∈ Z.
In what follows, a function χ : R→ R will be called a kernel if it satisfies the following proper-
ties:

• (χ1) χ ∈ L1(R) and is bounded in a neighborhood of 0;
• (χ2) for every u ∈ R ∑

k∈Z
χ(u− tk) = 1;
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• (χ3) for some β > 0,

mβ,Π(χ) := sup
u∈R

∑
k∈Z
|χ(u− tk)| · |u− tk|β < +∞.

Then, the sampling Kantorovich operators Sw for a given kernel χ are defined by:

(2.3) (Swf)(x) :=
∑
k∈Z

χ(wx− tk)

[
w

∆k

∫ tk+1/w

tk/w

f(u) du

]
(x ∈ R),

where f : R → R is a locally integrable function such that the series is convergent for every
x ∈ R.

There holds the following lemma.

Lemma 2.1 ([8]). Under the assumptions (χ1) and (χ3) on the kernel χ, it turns out:

m0,Π(χ) := sup
u∈R

∑
k∈Z
|χ(u− tk)| < +∞.

Note that, it is easy to see that the discrete absolute moment m0,Π(χ) > 0.

3. THE MAIN RESULT

We can prove the following quantitative estimate for the sampling Kantorovich operators
by using the modulus of continuity in Orlicz spaces.

Theorem 3.1. Let ϕ be a convex ϕ-function. Suppose that, for any fixed 0 < α < 1, we have:

(3.4) w

∫
|y|>1/wα

|χ(wy)| dy ≤ M w−γ , as w → +∞,

for suitable positive constants M , γ depending on α and χ. Then, for f ∈ Lϕ(R), and λ > 0 there
holds:

Iϕ[λ (Swf − f)] ≤ ‖χ‖1
2 δ m0,Π(χ)

ω

(
2m0,Π(χ) f,

1

wα

)
ϕ

+
M Iϕ [4λm0,Π(χ) f ]

2 δ m0,Π(χ)
w−γ +

∆

2 δ
ω

(
2m0,Π(χ) f,

1

w

)
ϕ

,

for every sufficiently large w > 0, where m0,Π(χ) < +∞ in view of Lemma 2.1. In particular, if λ > 0
is sufficiently small, the above inequality implies the modular convergence of the sampling Kantorovich
operators Swf to f .

Proof. Let λ > 0 be fixed. Using the convexity of ϕ, and since ϕ is non decreasing, we can write
what follows:

Iϕ[λ (Swf − f)]

≤ 1

2

{∫
R
ϕ

(
2λ

∣∣∣∣∣(Swf)(x)−
∑
k∈Z

χ(wx− tk)
w

∆k

∫ tk+1/w

tk/w

f(u+ x− tk/w) du

∣∣∣∣∣
)
dx

+

∫
R
ϕ

(
2λ

∣∣∣∣∣∑
k∈Z

χ(wx− tk)
w

∆k

∫ tk+1/w

tk/w

f(u+ x− tk/w) du − f(x)

∣∣∣∣∣
)
dx

}
=: I1 + I2,



A quantitative estimate for the sampling Kantorovich series in terms of the modulus of continuity in Orlicz spaces 11

w > 0. We estimate I1. By using the Jensen inequality (see, e.g., [19]) twice, and the change of
variable y = x− tk/w, we obtain:

2 I1 ≤
∫
R
ϕ

(
2λ
∑
k∈Z
|χ(wx− tk)| w

∆k

∫ tk+1/w

tk/w

|f(u)− f(u+ x− tk/w)| du

)
dx

≤ 1

m0,Π(χ)

∫
R

∑
k∈Z
|χ(wx− tk)|ϕ

(
2λm0,Π(χ)

w

∆k

∫ tk+1/w

tk/w

|f(u)− f(u+ x− tk/w)| du

)
dx

≤ 1

m0,Π(χ)

∫
R

∑
k∈Z
|χ(wx− tk)| w

∆k

∫ tk+1/w

tk/w

ϕ (2λm0,Π(χ)|f(u)− f(u+ x− tk/w)|) du dx

≤ δ−1

m0,Π(χ)

∫
R
|χ(wy)| w

∑
k∈Z

∫ tk+1/w

tk/w

ϕ (2λm0,Π(χ)|f(u)− f(u+ y)| ) du dy

=
δ−1

m0,Π(χ)

∫
R
|χ(wy)| w

∫
R
ϕ (2λm0,Π(χ)|f(u)− f(u+ y)|) du dy

=
δ−1

m0,Π(χ)

∫
R
w |χ(wy)| Iϕ [2λm0,Π(χ)(f(·)− f(·+ y))] dy =: J,

w > 0. Let now 0 < α < 1 be fixed. Thus we can split the above integral J as follows:

J :=
w δ−1

m0,Π(χ)
×{∫

|y|≤1/wα
+

∫
|y|>1/wα

}
|χ(wy)| Iϕ [2λm0,Π(χ)(f(·)− f(·+ y))] dy =: J1 + J2.

For J1, we have:

J1 ≤
w δ−1

m0,Π(χ)

∫
|y|≤1/wα

|χ(wy)| ω (2m0,Π(χ) f, |y|)ϕ dy

≤ ω (2m0,Π(χ) f, 1/wα)ϕ
w δ−1

m0,Π(χ)

∫
|y|≤1/wα

|χ(wy)| dy

≤ ω (2m0,Π(χ) f, 1/wα)ϕ
δ−1 ‖χ‖1
m0,Π(χ)

,

w > 0. Moreover, by using the convexity of ϕ, for J2 we can obtain:

J2 ≤
w δ−1

m0,Π(χ)

∫
|y|>1/wα

|χ(wy)| 1

2
{ Iϕ [4λm0,Π(χ)f ]

+ Iϕ [4λm0,Π(χ)f(·+ y)] } dy.
Obviously, it is easy to see that:

Iϕ [4λm0,Π(χ)f ] = Iϕ [4λm0,Π(χ)f(·+ y)] ,

for every y. Then, by exploiting assumption (3.4), we finally obtain:

J2 ≤
w δ−1

m0,Π(χ)

∫
|y|>1/wα

|χ(wy)| Iϕ [4λm0,Π(χ)f ] dy

≤ δ−1

m0,Π(χ)
Iϕ [4λm0,Π(χ)f ] M w−γ ,

for w > 0 sufficiently large.
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Now, we can estimate I2. Using Jensen inequality twice (as above), the change of variable
y = u− tk/w, and Fubini-Tonelli theorem, we have:

2 I2

≤ 1

m0,Π(χ)

∫
R

∑
k∈Z
|χ(wx− tk)| w

∆k

∫ tk+1/w

tk/w

ϕ (2λm0,Π(χ)|f(u+ x− tk/w)− f(x)| ) du dx

≤ δ−1

m0,Π(χ)

∫
R

∑
k∈Z
|χ(wx− tk)|w

∫ ∆/w

0

ϕ (2λm0,Π(χ)|f(x+ y)− f(x)| ) dy dx

≤ δ−1

∫
R
w

∫ ∆/w

0

ϕ (2λm0,Π(χ)|f(x+ y)− f(x)| ) dy dx

≤ δ−1w

∫ ∆/w

0

Iϕ [2λm0,Π(χ) (f(·+ y)− f(·))] dy

≤ δ−1 ω(2m0,Π(χ) f, 1/w)ϕ w

∫ ∆/w

0

dy = δ−1 ∆ω(2m0,Π(χ) f, 1/w)ϕ,

w > 0. This completes the proof. �

Remark 3.1. Note that, it is easy to show that for any kernels such that χ(u) = O(|u|−θ), as
|u| → +∞, for θ > 1, we have that assumption (3.4) is satisfied for some constant M > 0 and
γ = (1− α)(θ − 1) > 0, for every fixed 0 < α < 1.

4. EXAMPLES

Examples of convex ϕ-functions generating remarkable Orlicz spaces, where the above re-
sult is valid are:
ϕp(u) := up, 1 ≤ p < ∞, ϕα,β := uα logβ(u + e), for α ≥ 1, β > 0 and ϕγ(u) = eu

γ − 1, for
γ > 0, u ≥ 0. It is well-known that ϕp generates the Lp(R)-space and the corresponding convex
modular functional is given by Iϕp [f ] := ‖f‖pp, while ϕα,β and ϕγ generate the Lα logβ L-spaces
(or Zygmund spaces), largely used, e.g., in the theory of partial differential equations, and the
exponential spaces respectively, e.g., used for embedding theorems between Sobolev spaces.
The convex modular functionals corresponding to ϕα,β and ϕγ are

Iϕα,β [f ] :=

∫
R
|f(x)|α logβ(e+ |f(x)|) dx, (f ∈M(R)),

and

Iϕγ [f ] :=

∫
R

(e|f(x)|γ − 1) dx, (f ∈M(R)),

respectively.
Now, we give a brief list of some well-known and important class of kernels which satisfy

the above assumptions (χ1)− (χ3), and for which Theorem 3.1 holds.
First of all, we recall the definition of the well-known central B-spline of order N (see e.g.,

[33, 3, 4]):

(4.5) βN (x) :=
1

(N − 1)!

N∑
i=0

(−1)i
(
N

i

)(
N

2
+ x− i

)N−1

+

, x ∈ R.

It is well-known that βN have compact support, then (3.4) is obviously satisfied for every γ > 0.
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Other important (band-limited) kernels are given by the so-called Jackson type kernels of
order N , defined by:

(4.6) JN (x) := cN sinc2N
( x

2Nπα

)
, x ∈ R,

with N ∈ N, α ≥ 1, and cN is a non-zero normalization coefficient, given by:

cN :=

[∫
R

sinc2N
( u

2Nπα

)
du

]−1

.

For JN , assumption (3.4) turns out to be satisfied in view of what has been observed in Re-
mark 3.1. For the sake of completeness, we recall that the well-known (above mentioned)
sinc-function is that defined as sin(πx)/πx, if x 6= 0, and 1 if x = 0, see e.g., [26, 27]. For other
examples of kernels, see, e.g., [13, 20, 15, 22, 16].
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