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Quantitative Estimates for Lp-Approximation by
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Distorted Lebesgue Measures
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ABSTRACT. For the univariate Bernstein-Kantorovich-Choquet polynomials written in terms of the Choquet inte-
gral with respect to a distorted probability Lebesgue measure, we obtain quantitative approximation estimates for the
Lp-norm, 1 ≤ p < +∞, in terms of a K-functional.
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1. INTRODUCTION

Recently, in a series of papers we have started the study of the approximation properties of
some nonlinear integral operators obtained from the linear ones by replacing the classical
Lebesgue integral by its nonlinear extension called Choquet integral with respect to a mono-
tone and submodular set function. Thus, qualitative and quantitative results of approximation
by Bernstein-Durrmeyer-Choquet polynomials written in terms of Choquet integrals with re-
spect to monotone and submodular set functions were obtained in the papers [7], [9], [10],
[14]. Qualitative and quantitative approximation results for other Choquet integral operators
obtained by using a Feller kind scheme (and including discrete Bernstein-Choquet operators
and Picard-Choquet operators) were obtained in [8]. For large classes of functions, all these
nonlinear operators give better estimates of approximation than their classical correspondents.
Quantitative results of uniform and pointwise approximation by Bernstein-Kantorovich-
Choquet polynomials, better in large classes of functions than those obtained by their classical
correspondents, were obtained in the very recent paper [11]. Also, shape preserving properties
of some Kantorovich-Choquet type operators were considered in [13].
It is worth to mention that implications of the concept of Choquet integral in other topics of
mathematical analysis were obtained in the papers [12], [15], [16].
The aim of the present paper is to to obtain quantitative estimates for Lp-approximation, 1 ≤
p < +∞, by Bernstein-Kantorovich-Choquet polynomials.
Section 2 contains some preliminaries on the Choquet integral. In Section 3, in the case when
the Choquet integral is taken with respect to the so called distorted Lebesgue measures, quan-
titative estimates in terms of aK-functional for the Lp approximation, 1 ≤ p <∞, are obtained.
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2. PRELIMINARIES

In this section we present some concepts and results on the Choquet integral which will be
used in the main section.

Definition 2.1. Let Ω be a nonempty set and C be a σ-algebra of subsets in Ω.
(i) (see, e.g., [21], p. 63) Let µ : C → [0,+∞]. If µ(∅) = 0 and A,B ∈ C, with A ⊂ B, implies
µ(A) ≤ µ(B), then µ is called a monotone set function (or capacity). Also, if

µ(A
⋃
B) + µ(A

⋂
B) ≤ µ(A) + µ(B), for all A,B ∈ C,

then µ is called submodular. If µ(Ω) = 1, then µ is called normalized.
(ii) (see [5], or [21], p. 233, or [19]) Let µ be a normalized, monotone set function on C.
If f : Ω → R is C-measurable, i.e. for any Borel subset B ⊂ R we have f−1(B) ∈ C, then for any
A ∈ C, the Choquet integral is defined by

(C)

∫
A

fdµ =

∫ +∞

0

µ(Fβ(f)
⋂
A)dβ +

∫ 0

−∞
[µ(Fβ(f)

⋂
A)− µ(A)]dβ,

where Fβ(f) = {ω ∈ Ω; f(ω) ≥ β}. If (C)
∫
A
fdµ ∈ R, then f is called Choquet integrable on A.

Notice that if f ≥ 0 on A, then in the above formula we get
∫ 0

−∞ = 0.
If µ is the Lebesgue measure, then the Choquet integral (C)

∫
A
fdµ reduces to the Lebesgue integral.

In what follows, we list some known properties of the Choquet integral.

Remark 2.1. If µ : C → [0,+∞] is a monotone set function, then the following properties hold :
(i) For all a ≥ 0 we have (C)

∫
A
afdµ = a · (C)

∫
A
fdµ (if f ≥ 0 then see, e.g., [21], Theorem 11.2, (5),

p. 228 and if f is of arbitrary sign, then see, e.g., [6], p. 64, Proposition 5.1, (ii)).
(ii) For all c ∈ R and f of arbitrary sign, we have (see, e.g., [21], pp. 232-233, or [6], p. 65)

(C)

∫
A

(f + c)dµ = (C)

∫
A

fdµ+ c · µ(A).

If µ is submodular too, then for all f, g of arbitrary sign and lower bounded we have (see, e.g., [6], p. 75,
Theorem 6.3)

(C)

∫
A

(f + g)dµ ≤ (C)

∫
A

fdµ+ (C)

∫
A

gdµ,

that is the Choquet integral is sublinear.
(iii) If f ≤ g on A then (C)

∫
A
fdµ ≤ (C)

∫
A
gdµ (see, e.g., [21], p. 228, Theorem 11.2, (3) if f, g ≥ 0

and p. 232 if f, g are of arbitrary sign).
(iv) Let f ≥ 0. By the definition of the Choquet integral, it is immediate that if A ⊂ B then

(C)

∫
A

fdµ ≤ (C)

∫
B

fdµ

and if, in addition, µ is finitely subadditive, then

(C)

∫
A

⋃
B

fdµ ≤ (C)

∫
A

fdµ+ (C)

∫
B

fdµ.

(v) By the definition of the Choquet integral, it is immediate that

(C)

∫
A

1 · dµ(t) = µ(A).

(vi) The formula µ(A) = γ(M(A)), where γ : [0, 1] → [0, 1] is an increasing and concave function,
with γ(0) = 0, γ(1) = 1 and M is a probability measure (or only finitely additive) on a σ-algebra on Ω
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(that is, M(∅) = 0, M(Ω) = 1 and M is countably additive), gives simple examples of monotone and
submodular set functions (see, e.g., [6], pp. 16-17, Example 2.1). Such of set functions µ are also called
distorsions of normalized and countably additive measures (or distorted measures).

3. Lp-APPROXIMATION

Denoting by B[0,1] the sigma algebra of all Borel measurable subsets in P([0, 1]), everywhere in
this section, (Γn,x)n∈N,x∈[0,1], will be a collection of families Γn,x = {µn,k,x}nk=0, of monotone,
submodular and strictly positive set functions µn,k,x on B[0,1]. Note here that a set function
on B[0,1] is called strictly positive, if for any open subset A ⊂ R with A ∩ [0, 1] 6= ∅, we have
µ(A ∩ [0, 1]) > 0.
Suggested by the classical form of the linear and positive operators of Bernstein-Kantorovich
(see, e.g., [17]), we can introduce the following.

Definition 3.2. The Bernstein-Kantorovich-Choquet polynomials with respect to Γn,x = {µn,k,x}nk=0,
are defined by the formula

Kn,Γn,x(f)(x) =

n∑
k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dµn,k,x(t)

µn,k,x([k/(n+ 1), (k + 1)/(n+ 1)])
,

where pn,k(x) =
(
n
k

)
xk(1− x)n−k.

In order to be well defined these operators, it is good enough if, for example, we suppose that
f : [0, 1]→ R+ is a B[0,1]-measurable function, bounded on [0, 1].

Remark 3.2. It is clear that if µn,k,x = M , for all n, k and x, where M is the Lebesgue measure, then
the above polynomials become the classical ones.
Also, if µn,k,x = δk/n (the Dirac measures), since k/n ∈ (k/(n+1), (k+1)/(n+1)), it is immediate that
Kn,Γn,x(f)(x) become the Bernstein polynomials. This fact shows the great flexibility of the formulas of
these operators. More exactly, we can generate very many kinds of approximation operators, by choosing
for some µn,k,x the Lebesgue measure, for some others µn,k,x, the Dirac measures and for the others
µn,k,x, some Choquet measures.

Note that pointwise and uniform approximation by Kn,Γn,x(f)(x) were studied in [11].
In this section we study quantitative Lp-approximation results, 1 ≤ p < ∞, for the Bernstein-
Kantorovich-Choquet polynomials Kn,Γn,x(f)(x) when Γn,x = {µ}. In this case, we denote
them by Kn,µ.
But as in the case of Bernstein-Durrmeyer-Choquet polynomials studied in [10], even in the
simple case when, for example p = 1, for f ∈ L1

µ (meaning that f is B[0,1]-measurable and
‖f‖L1

µ
= (C)

∫ 1

0
|f(t)|dµ(t) <∞), considering for example the operator Kn,µ, we easily get

‖Kn,µ(f)‖L1
µ
≤

n∑
k=0

(C)

∫ 1

0

pn,k(x)dµ(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dµ(t)

µ([k/(n+ 1), (k + 1)/(n+ 1)])

≤
n∑
k=0

(C)

∫ (k+1)/(n+1)

k/(n+1)

f(t)dµ(t) ≤ (n+ 1) · ‖f‖L1
µ
.

This is due to the fact that (C)
∫ 1

0
fdµ is not, in general, additive as function of f (it is only

subadditive).
Therefore, quantitative estimates for Lp-approximation by Bernstein-Kantorovich-Choquet
polynomials, remain, for the general case, an open question.
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However, in what follows, for a large class of distorted Lebesgue measures (see Remark 2.1,
(vi)), we will be able to prove Lp-approximation results.
If µ : B[0,1] → [0,+∞) is a monotone set function and 1 ≤ p < +∞, then we make the following
notations :

Lpµ[0, 1] = {f : [0, 1]→ R; f is B[0,1]-measurable and (C)

∫ 1

0

|f(t)|pdµ(t) < +∞},

Lpµ,+[0, 1] = Lpµ[0, 1]
⋂
{f : [0, 1]→ R+},

C1
+[0, 1] = {g : [0, 1]→ [0,+∞); g is differentiable on [0, 1]},
K (f ; t)Lpµ[0,1] = inf

g∈C1
+[0,1]

{‖f − g‖Lpµ + t‖g′‖C[0,1]},

where ‖F‖Lpµ[0,1] =

(∫ 1

0

|F (t)|pdµ(t)

)1/p

, ‖F‖C[0,1] = sup{|F (t)|; t ∈ [0, 1]},

IC[0, 1] = {g : [0, 1]→ [0, 1] : g(0) = 0, g(1) = 1, g is concave and strictly

increasing on [0, 1] and there exists g′(0) < +∞}.
Also, denote by D(B[0,1]) the class of all set functions µ : B[0,1] → [0,+∞) of the form µ(A) =
g(M(A)), for all A ∈ B[0,1], where g ∈ IC[0, 1] and M is the Lebesgue measure on B[0,1]. In the
words of Remark 2.1, (vi), any such a µ is a distorted Lebesgue measure.

Remark 3.3. According to Remark 2.1, (vi), any µ ∈ D(B[0,1]) is a normalized, monotone, strictly
positive and submodular set function. Simple examples of µ ∈ D(B[0,1]) are µ(A) = sin[M(A)]/ sin(1)

or µ(A) = g[M(A)], for all A ∈ B[0,1], where M denotes the Lebesgue measure and g(x) = 2x
1+x .

We can state the following.

Theorem 3.1. Let 1 ≤ p <∞. If µ ∈ D(B[0,1]), then for all f ∈ Lpµ,+[0, 1], n ∈ N, we have

‖f −Kn,µ(f)‖Lpµ ≤ cp ·K
(
f ;

1

2
√
n+ 1

)
Lpµ

,

where cp = 1 + g′(0)(p+1)/p.

Proof. Let µ(A) = g[M(A)] with µ ∈ D(B[0,1]). The main ideas used several times in the proof
are that the Choquet integral with respect to m reduces to the classical Lebesgue integral and
that if µ and ν are two monotone set functions satisfying µ(A) ≤ c · ν(A) for all A, with c > 0 a
constant independent of A, then (C)

∫ 1

0
Fdµ ≤ c · (C)

∫ 1

0
Fdν, for any F ≥ 0.

Firstly, by g(0) = 0, g(1) = 1 and by the concavity of g, we immediately obtain the inequalities

(3.1) x ≤ g(x) ≤ g′(0)x, for all x ∈ [0, 1],

which clearly implies

(3.2) M(A) ≤ µ(A) ≤ g′(0)M(A), for all A ∈ B[0,1].

Indeed, the inequalities in (3.1) hold since all the points of the segment passing through the
points (0, g(0)) and (1, g(1)) are below the graph of g and since all the points of the tangent to
the graph of g at (0, g(0)) are above the graph of g.
We make the proof in three steps.
Step 1. For f ∈ Lpµ,+[0, 1] we obtain

(3.3) ‖Kn,µ(f)‖Lpµ ≤ [g′(0)](p+1)/p · ‖f‖Lpµ .
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Indeed, by ‖Kn,M (f)‖LpM ≤ ‖f‖LpM (see, e.g. [3]) combined with (3.2), it follows ‖f‖LpM ≤
‖f‖Lpµ and

(3.4) ‖Kn,M (f)‖LpM ≤ ‖f‖Lpµ .

On the other hand, by (3.2), we obtain

‖Kn,M (f)‖LpM

=

∫ 1

0

 n∑
k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dM(t)

M([k/(n+ 1), (k + 1)/(n+ 1)])

p dM(x)

1/p

≥ 1

g′(0)1/p
·

(C)

∫ 1

0

 n∑
k=0

pn,k(x) ·
(C)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dM(t)

M([k/(n+ 1), (k + 1)/(n+ 1)])

p dµ(x)

1/p

≥ 1

g′(0)1/p

·

(C)

∫ 1

0

 n∑
k=0

pn,k(x) · 1

g′(0)
·

(C)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dµ(t)

µ([k/(n+ 1), (k + 1)/(n+ 1)])

p dµ(x)

1/p

=
1

[g′(0)](p+1)/p
· ‖Kn,µ(f)‖Lpµ ,

which combined with (3.4), implies (3.3).
Step 2. For n ∈ N and 0 ≤ k ≤ n arbitrary fixed, let us define Tn,k : Lpµ,+[0, 1]→ R+ by

Tn,k(f) = (C)

∫ (k+1)/(n+1)

k/(n+1)

f(t)dµ(t), f ∈ Lpµ,+([0, 1]).

From LpM,+[0, 1] ⊂ L1
M,+[0, 1] and since from (3.2) we clearly have f ∈ LpM,+[0, 1] if and only if

f ∈ Lpµ,+[0, 1], it follows that Lpµ,+[0, 1] ⊂ L1
µ,+[0, 1], for all 1 ≤ p < +∞.

Also, 0 ≤ (C)
∫ (k+1)/(n+1)

k/(n+1)
fp(t)dµ(t) ≤ (C)

∫ 1

0
fp(t)dµ(t) <∞, for any f ∈ Lpµ,+[0, 1].

Based on the Remark 3.3 and Remark 2.1, (i), (ii), (iii), by similar reasonings with those in the
proof of Lemma 3.1 in [7], we obtain |Tn,k(f) − Tn,k(g)| ≤ Tn,k(|f − g|). Also, since Tn,k is
positively homogeneous, sublinear and monotonically increasing, it is immediate that Kn,µ

keeps the same properties, Consequently, it follows

(3.5) |Kn,µ(f)(x)−Kn,µ(g)(x)| ≤ Kn,µ(|f − g|)(x), f, g ∈ Lpµ,+[0, 1],

Kn,µ(λf) = λKn,µ(f), Kn,µ(f + g) ≤ Kn,µ(f) + Kn,µ(g) and that f ≤ g on [0, 1] implies
Kn,µ(f) ≤ Kn,µ(g) on [0, 1], for all λ ≥ 0, f, g ∈ Lpµ,+[0, 1], n ∈ N.
Now, from (3.5) we get

(3.6) ‖Kn,µ(f)−Kn,µ(g)‖Lpµ ≤ ‖Kn,µ(|f − g|)‖Lpµ .

Step 3. Let f, g ∈ Lpµ,+[0, 1]. We will apply the Minkowski’s inequality in the Choquet integral
(see. e.g., Theorem 3.7 in [20] or Theorem 2 in [4]). It is worth mentioning that the proof of
Minkowski’s inequality in [20] or [4] is based on the Hölder’s inequality

(C)

∫
|fg| ≤

(
(C)

∫
|f |dµ

)1/p

·
(

(C)

∫
|g|dµ

)1/q

, 1/p+ 1/q = 1,
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where the proof is performed under the supposition that (C)
∫
|f |dµ 6= 0 and (C)

∫
|g|dµ 6=

0. But from (3.2), it easily follows that the Hölder’s inequality immediately holds even if
(C)

∫
|f |dµ = 0 or (C)

∫
|g|dµ = 0. Therefore, under the hypothesis of the theorem, the

Minkowski’s inequality holds in its full generality.
So, we get

‖f −Kn,µ(f)‖Lpµ = ‖(f − g) + (g −Kn,µ(g)) + (Kn,µ(g)−Kn,µ(f))‖Lpµ

(3.7) ≤ ‖f − g‖Lpµ + ‖g −Kn,µ(g)‖Lpµ + ‖Kn,µ(g)−Kn,µ(f)‖Lpµ .

By (3.6) and (3.3), we obtain

(3.8) ‖Kn,µ(g)−Kn,µ(f)‖Lpµ ≤ [g′(0)](p+1)/p · ‖f − g‖Lpµ .

Now, let us estimate ‖g−Kn,µ(g)‖Lpµ for g ∈ C1
+[0, 1]. Thus, by (3.5) and Kn,µ(e0)(x) = e0(x) =

1, we get

|g(x)−Kn,µ(g)(x)| = |Kn,µ(g(x))(x)−Kn,µ(g(t))(x)| ≤ Kn,µ(|g(x)− g(·)|)(x).

Since for g ∈ C1
+[0, 1] and x, t ∈ [0, 1], it follows (see, e.g., [18], formula (2.5), or [2])

|g(x)− g(t)| ≤ ‖g′‖C[0,1] · |x− t| = ‖g′‖C[0,1] · ϕx(t),

applying Kn,µ, which is subadditive as function of f , it follows Kn,µ(|g(x) − g(·)|)(x) ≤
‖g′‖C[0,1]Kn,µ(ϕx).
Taking to the power p and integrating above with respect to x and µ, we obtain

(3.9) ‖g −Kn,µ(g)‖Lpµ ≤ ‖g
′‖C[0,1] · ‖Kn,µ(ϕx)‖Lpµ .

Denoting cp = 1 + g′(0)(p+1)/p, from (3.8) and (3.9) replaced in (3.7), it follows

‖f −Kn,µ(f)‖Lpµ ≤ cp
(
‖f − g‖Lpµ + ‖g′‖C[0,1] ·∆n,p/cp

)
,

where ∆n,p := ‖Kn,µ(ϕx)‖Lpµ , ϕx(t) = |x− t| for x, t ∈ [0, 1].
Finally, the reasonings from Step 1 lead to the estimate

∆n,p/cp ≤
[g′(0)](p+1)/p

cp
· ‖Kn,M (ϕx)‖LpM ≤

[g′(0)](p+1)/p

cp
· ‖Kn,M (ϕx)‖C[0,1]

≤ [g′(0)](p+1)/p

cp
· 1

2
√
n+ 1

≤ 1

2
√
n+ 1

.

(we have used above the inequality in, e.g., [1], p. 334, |Kn,M (ϕx)(x)| ≤
√

(n−1)x(1−x)

n+1 ).
This immediately proves the required conclusion. �

Remark 3.4. Note that the order of Lp-approximation K
(
f ; 1

2
√
n+1

)
Lpµ

in Theorem 3.1 is, in some

sense, similar with the order of Lp-approximation for the classical Bernstein-Kantorovich operators,
τ
(
f ; 1√

n+1

)
p
, where τ(f ; δ)p is the Lp-averaged modulus of smoothness of Sendov-Popov (see, e.g.,

[3], p. 279).

Remark 3.5. For f of arbitrary sign and lower bounded on [0, 1] with f(x)−m ≥ 0, for all x ∈ [0, 1],
Theorem 3.1 still take place for the slightly modified operator

K∗n,µ(f)(x) = Kn,µ(f −m)(x) +m.
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Indeed, we have K∗n,µ(f)(x)− f(x) = Kn,µ(f −m)(x)− (f(x)−m) and since we may consider here
that m < 0, we immediately get

K(f −m; t)Lpµ = inf
g∈C1

+[0,1]
{‖f − (g +m)‖Lpµ + t‖∇g‖C[0,1]}

= inf
g∈C1

+[0,1]
{‖f − (g +m)‖Lpµ + t‖∇(g +m)‖C[0,1]}

= inf
h∈C1[0,1], h≥m

{‖f − h‖Lpµ + t‖∇h‖C[0,1]}.
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