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INFLUENCE OF NATURAL CONVECTION ON STABILITY OF
AN INCLINED FRONT PROPAGATION

LOUBNA SALHI, HAMZA ROUAH, AND AHMED TAIK

Abstract. This research work may be considered as a continuation of a series
of investigations concerning the influence of natural convection on stability of
reaction fronts propagation. We consider an inclined propagating polymeriza-
tion front. The governing equations consist of the heat equation, the equation
for the depth of conversion for one-step chemical reaction and of the Navier-
Stokes equations under the Boussinesq approximation. We first perform a
formal asymptotic analysis in the limit of a large activation energy to get an
approximate interface problem. Then, we fulfill the linear stability analysis of
the stationary solution and find the perturbation equations. A meshless collo-
cation method based on multiquadric radial basis functions has been applied
for numerical simulations. The conditions of convective instabilities obtained
are in good agreement with some previous studies. This shows that the pro-
posed approach is accurate and that it helps in describing the influence of the
propagation direction on stability of polymerization fronts.

1. Introduction

Natural convection is a type of heat transport, in which the fluid motion is not
generated by any external source but only by density differences in the fluid occur-
ring due to temperature gradients if it is large enough. Natural convection attracts
a great deal of attention from researchers because of its presence both in nature
and engineering applications. One key issue concerning the heat transfer process
in fluids, is how effi cient it is, if it varies depending on some critical parameters. In
this work, we consider the case when it is produced through a chemical reaction,
that is frontal polymerization. This is a procedure that involves a localized reaction
zone travelling through a monomer solution and converting this monomer into solid
polymer, that is the product. An illustration of an ascending frontal polymerization
is shown in Figure (1). In this case the monomer and the polymer are separated
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Figure 1. Ascending front propagation

Figure 2. Inclined front propagation

by a narrow reaction zone, which is the front, that propagates if the reaction is
exothermic and highly activated.
Most researches in this area, like [1, 2, 3, 5, 10], are concerned with the ascending
and descending fronts. In the present case, we consider the case when the polymer-
ization front is propagating toward an inclined enclosure.
The paper is organized as follows: The governing equations are presented in Section
2. The asymptotic analysis is performed in section 3. The linear stability analysis
is carried out in section 4. Then, the numerical results based on the multiquadric
radial basis function approach are presented in section 5.

2. Governing Equations

The system considered in this work consists of an inclined enclosure with an
inclination angle σ as shown in figure (2). The governing equations consist of
coupling two equations for the temperature and depth of conversion to the Navier-
Stokes equations. The fluid is Newtonian and all the thermophysical properties
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are supposed to be constant, except for the density in the buoyancy term that can
be adequately modelled by the Boussinesq approximation, and that compression
effects and viscous dissipation are neglected. Under these assumptions, the problem
is described in a three-dimensional space (x, y, z), −∞ < x, y, z < +∞, by the
following equations:

∂T

∂t
+ v.∇T = κ∆T + qK(T )φ(α), (1)

∂α

∂t
+ v.∇α = K(T )φ(α), (2)

∂v

∂t
+ v.∇v = −∇p

ρ
+ ν∆v + gβ(T − T0)

 − sinσ
0

cosσ

 , (3)

∇.v = 0, (4)

with the boundary conditions:

T = Ti, α = 0 and v = 0 when z → +∞,
∂T

∂z
= 0, α = 1 and v = 0 when z → −∞.

(5)

Here, T is the temperature, v = (vx, vy, vz) the velocity, α the depth of conversion,
p the pressure, κ the coeffi cient of thermal diffusivity, q is the adiabatic heat release,
ρ is the density, ν the coeffi cient of kinematic viscosity, g the gravity acceleration,
β the coeffi cient of thermal expansion, T0 is the mean value of the temperature
and Ti is an initial temperature while Tb is the temperature of the reacted mixture
given by Tb = Ti + q.
The function K(T ) describes the reaction rate where the temperature depen-

dence is given by the Arrhenius law K(T ) = k0 exp
(
− E
R0T

)
, E is the activation

energy supposed to be large in this problem, R0 is the universal gas constant and
k0 is the pre-exponential factor.
φ(α) is the kinetic function for which we consider the zero order reaction defined

by

φ(α) =

{
1 if α < 1

0 if α = 1
. (6)

The coeffi cient of mass diffusion is supposed to be small comparatively to the ther-
mal diffusivity coeffi cient, so that the diffusion term in the equation for the con-
centration is neglected.
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In an inclined geometry, the differential operators ∆, ∇ and ∇. are expressed
by:

∇ =

 cosσ
0

− sinσ

 ∂

∂x
+

 0
1
0

 ∂

∂y
+

 sinσ
0

cosσ

 ∂

∂z
, ∆ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

and ∇. =

(
cosσ

∂

∂x
+ sinσ

∂

∂z

)
+

∂

∂y
+

(
− sinσ

∂

∂x
+ cosσ

∂

∂z

)
.

(7)

We now introduce the following spatial variables, with a view to obtain the di-
mensionless model:

x′ = xc1/κ, y′ = yc1/κ, z′ = zc1/κ, t′ = tc21/κ,

v′ = v/c1, p′ =
p

c21ρ
and c1 = c/

√
2,

where c gives the stationary propagation front velocity, which can be calculated

asymptotically for large Zeldovich number Z [5], where Z =
qE

R0T 2b
, we have:

c2 =
2k0κ

q

R0T
2
b

E
exp

( −E
R0Tb

)
.

Denoting the dimensionless temperature by θ = (T − Tb)/q and keeping for conve-
nience the same notation for all the other variables, we may re-write system (1)-(4)
as follows:

∂θ

∂t
+ v.∇θ = ∆θ +WZ(θ)φ(α), (8)

∂α

∂t
+ v.∇a = WZ(θ)φ(α), (9)

∂v

∂t
+ v.∇v = −∇p+ P∆v − PR(θ + θ0)

 − sinσ
0

cosσ

 , (10)

∇.v = 0, (11)

with the boundary conditions

θ = −1, α = 0 and v = 0 when z → +∞,
∂θ

∂z
= 0, when z → −∞.

(12)
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Here, WZ(θ) = Z exp
( θ

Z−1 + δθ

)
and φ is the the kinetic function as defined in

(6).

P =
ν

κ
is the Prandtl number, R =

gβqκ2

νc31
the Rayleigh number, Z =

qE

R0T 2b
the

Zeldovich number, δ = R0Tb/E and θ0 = (Tb − T0)/q.

3. Asymptotic analysis

The asymptotic analysis of the problem is carried out based on the Zeldovich
and Frank-Kamenetskii approach [13]. Indeed, most polymerization processes are
exothermic. They are characterized by the fact that the basic chemical transforma-
tion takes place over a narrow temperature interval that is close to the maximum
temperature. This has enabled Zeldovich and Frank-Kamenetskii to propose the
infinitely narrow reaction zone method in which it is assumed that the reaction
zone is concentrated at a point, and outside of this reaction zone, the non-linear
source is set equal to zero. Then, the asymptotic solution can be sought, for large
Zeldovich number Z, in the form of an expansion in a small parameter ε = 1/Z
connected with the width of the reaction zone. This makes it possible, by using the
asymptotic matching principle [9], to replace the non-linear differential equations
by linear equations and algebraic matching conditions across the reaction zone.

3.1. Inner and outer solutions. Let the front be located at z = ζ(x, y, t) and
propagate on the z axis moving direction.
We consider the new independent variable z1 = z − ζ(x, y, t) and introduce new
unknown functions θ1, α1, v1, p1 as defined by:

θ(t, x, y, z) = θ1(t, x, y, z1), α(t, x, y, z) = α1(t, x, y, z1),

v(t, x, y, z) = v1(t, x, y, z1), p(t, x, y, z) = p1(t, x, y, z1).

(13)

Thus, we may re-write the equations (8)-(11) in the form (the index 1 for the inde-
pendent variables is omitted):

∂θ

∂t
− ∂θ

∂z1

∂ζ

∂t
+ v.∇̃θ = ∆̃θ +WZ(θ)φ(α), (14)

∂α

∂t
− ∂α

∂z1

∂ζ

∂t
+ v.∇̃α = WZ(θ)φ(α), (15)

∂v

∂t
− ∂v

∂z1

∂ζ

∂t
+ v.∇̃v = −∇̃p+ P ∆̃v −Q(θ + θ0)

 − sinσ
0

cosσ

 , (16)
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(
∂vx
∂x
− ∂vx
∂z1

∂ζ

∂x

)
cosσ+

∂vx
∂z1

sinσ+
∂vy
∂y
−∂vy
∂z1

∂ζ

∂y
−
(
∂vz
∂x
− ∂vz
∂z1

∂ζ

∂x

)
sinσ+

∂vz
∂z1

cosσ = 0.

(17)

Here, Q = PR and

∆̃ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z21
− 2

∂ζ

∂x

∂2

∂x∂z1
− 2

∂ζ

∂y

∂2

∂y∂z1
+

((∂ζ
∂x

)2
+
(∂ζ
∂y

)2) ∂2

∂z21
−(

∂2ζ

∂x2
+
∂2ζ

∂y2

)
∂

∂z1
,

∇̃ =

 cosσ
0

− sinσ

( ∂

∂x
− ∂ζ

∂x

∂

∂z1

)
+

 0
1
0

( ∂

∂y
− ∂ζ

∂y

∂

∂z1

)
+

 sinσ
0

cosσ

 ∂

∂z1
.

We look for the outer solution of the problem (14)-(17) in the form of expansion

θ = θ0 + εθ1 + ..., α = α0 + εα1 + ...,

v = v0 + εv1 + ..., p = p0 + εp1 + ....
(18)

(θ0, α0,v0) denotes the dimensionless form of the basic solution.

Then, in order to obtain the matching conditions across the reaction zone, we
seek the inner solution using the stretched coordinate η = z1/ε in the form of ex-
pansion:

θ = εθ̃
1

+ ..., α = εα̃1 + ...,

v = ṽ0 + εṽ1 + ..., p = p̃0 + εp̃1 + ..., ζ = ζ0 + εζ1 + ....
(19)

Substituting these expansions into (14)-(17), we obtain the following first-order
inner problem:
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Order ε−2

P
(

1 +
(∂ζ0
∂x

)2
+
(∂ζ0
∂y

)2)∂2ṽ0
∂η2

= 0. (20)

Order ε−1

(
1 +

(∂ζ0
∂x

)2
+
(∂ζ0
∂y

)2)∂2θ̃1
∂η2

+ exp
( θ̃1

1 + δθ̃1

)
φ(α̃0) = 0, (21)

− ∂α̃0
∂η

∂ζ0
∂t

+
∂α̃0
∂η

(
˜v0x

(∂ζ0
∂x

cosσ + sinσ
)
− ˜v0y

∂ζ0
∂y

+ ˜v0z

(∂ζ0
∂x

sinσ − cosσ
))

= exp
( θ̃1

1 + δθ̃1

)
φ(α̃0),

(22)

− ∂ ˜v0x
∂η

(∂ζ0
∂x

cosσ − sinσ
)
− ∂ ˜v0y

∂η

∂ζ0
∂y

+
∂ṽ0z
∂η

(∂ζ0
∂x

sinσ + cosσ
)

= 0. (23)

By using the asymptotic matching principle, we find the matching conditions:

η → +∞ : ṽ0 ∼ v0|z1=+0, θ̃1 ∼ θ1|z1=+0 +
(∂θ0
∂z1

∣∣∣
z1=+0

)
η, α̃0 → 0,

η → −∞ : ṽ0 ∼ v0|z1=−0, θ̃1 ∼ θ1|z1=−0, α̃0 → 1.

(24)

On account of the equation (20) and the boundedness of the solution, we conclude
that ṽ0 does not depend on η. From this conclusion and the matching conditions,
it follows that the first term of the outer expansion of the velocity v0 is continuous
at the front.

We denote
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s = ˜v0x

(∂ζ0
∂x

cosσ − sinσ
)

+ ˜v0y
∂ζ0
∂y
− ˜v0z

(∂ζ0
∂x

sinσ + cosσ
)
. (25)

From (22) it follows that the function s does not depend on η.
We derive next the jump conditions for the temperature from (21) in the same way
as it is given in the references [5, 7].
Since we consider the zero order reaction φ(α̃0) ≡ 1.

From (21), we conclude that
∂2θ̃

1

∂η2
≤ 0, so

∂θ̃
1

∂η
is decreasing from η = −∞ to

η = +∞.

From (24) we have,
∂θ̃

1

∂η
∼ 0 at η = −∞, then ∂θ̃

1

∂η
≤ 0 everywhere, this shows that

θ̃
1
is decreasing too.

Multiplying (21) by
∂θ̃1
∂η

and integrating, we obtain:

(∂θ̃1
∂η

)2∣∣∣
η=+∞

−
(∂θ̃1
∂η

)2∣∣∣
η=−∞

=
2

A

∫ θ1|z1=0+

−∞
exp

( τ

1 + δτ

)
dτ, (26)

Subtracting (21) from (22) and integrating, we have

∂θ̃1
∂η

∣∣∣
∞
−∂θ̃1
∂η

∣∣∣
−∞

= −A−1
(∂ζ0
∂t

+ s
)
. (27)

where A = 1 +
(∂ζ̃0
∂x

)2
+
(∂ζ̃0
∂y

)2
.

Equations (26)-(27) represent the jump conditions for the temperature across the
front.

Using the matching conditions (24) and truncating the expansion in the same way
as that of the reference [7]:

θ0 ≈ θ, θ1|z1=−0 ≈ Zθ|z1=+0, ζ0 ≈ ζ and v0 ≈ v. (28)

We may rewrite the jump conditions as follows :
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( ∂θ
∂z1

)2∣∣∣
z1=+0

−
( ∂θ
∂z1

)2∣∣∣
z1=−0

=

2Z
(

1 +
(∂ζ
∂x

)2
+
(∂ζ
∂y

)2)−1∫ θ1|z1=−0

−∞
exp

( τ

1 + δτ

)
dτ,

(29)

∂θ

∂z1

∣∣∣
z1=+0

− ∂θ

∂z1

∣∣∣
z1=−0

= −
(

1 +
(∂ζ
∂x

)2
+
(∂ζ
∂y

)2)−1
×

(∂ζ
∂t

+
(
vx

(∂ζ
∂x

cosσ − sinσ
)

+ vy
∂ζ

∂y
− vz

(∂ζ
∂x

sinσ + cosσ
)∣∣∣
z1=+0

)
.

(30)

3.2. Interface problem. We present the formulation of the interface problem
which approximates the original system (8)-(11) as follows:

z > ζ (in the unreacted medium):

∂θ

∂t
+ v.∇θ = ∆θ, (31)

α = 0, (32)

∂v

∂t
+ (v.∇)v = −∇p+ P∆v +Q(θ + θ0)

 − sinσ
0

cosσ

 , (33)

∇.v = 0. (34)

z < ζ (in the reacted medium):

∂θ

∂t
= ∆θ, (35)

α = 1, (36)

v = 0. (37)

Where ∇ and ∆ are defined by (7).
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The jump conditions at the interface z = ζ have the form:

θ|ζ−0 = θ|ζ+0, (38)

∂θ

∂z

∣∣∣
ζ−0
−∂θ
∂z

∣∣∣
ζ+0

=
(

1 +
(∂ζ
∂x

)2
+
(∂ζ
∂y

)2)−1 ∂ζ
∂t
, (39)

(∂θ
∂z

)2∣∣∣
ζ−0
−
(∂θ
∂z

)2∣∣∣
ζ+0

= −2Z
(

1 +
(∂ζ
∂x

)2
+
(∂ζ
∂y

)2)−1 ∫ θ|ζ

−∞
exp

( τ

1 + δτ

)
dτ,

(40)

vx = vy = vz = 0. (41)

To complete the problem we should specify also the conditions at infinity :
z = −∞ : θ = 0, v = 0,

z = +∞ : θ = −1, v = 0.
(42)

4. Linear stability analysis

In this section, we perform the linear stability analysis of the steady-state solu-
tion for the interface problem. In the case of vertical propagation front, previous
studies like [5, 12], have shown that the interface problem has a travelling wave
solution. However, in the case of the inclined propagation, the explicit form of the
stationary solution is unknown. We propose to find this solution numerically by
using the multiquadric radial basis functions collocation (MQ-RBF) method.

4.1. MQ-RBF method for finding the numerical stationary solution. Ra-
dial basis functions methods are generally means to approximate multivariable func-
tions, which are too diffi cult to evaluate and only known at a finite number of points,
called centers, by linear combinations of terms based on a single basis function.
The general principle is that we consider M collocation points xi, i = 1, 2, . . . ,M
on which we would like to interpolate a given function f . The method is applied
in 2 dimensional Euclidean space which is fitted with the Euclidean norm ‖.‖2.
There are N points in this space at which the function f is known, called centers
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xci , i = 1, 2, . . . , N , where xci = (xci , y
c
i ). These points are usually assumed to be

all different from each other, otherwise the problem will become singular when in-
terpolation is used.

Given this information, we create the sought approximant by a sum

s(xi) =

N∑
j=1

αjϕ(‖xi − xcj ‖), (43)

where s(xi) is the interpolant of f at the collocation point xi = (xi, yi), the ϕ is
a univariate, normally continuous function ϕ : R+ −→ R, namely the radial basis
function.
The expansion coeffi cients αj , j = 1, 2, . . . , N are chosen in such a way as to enforce
the following interpolation conditions at all the centers;

s(xcj ) = f(xcj ). (44)

In this work, the multiquadric radial basis function (MQ-RBF) is used due to its
popularity in many applications and its good approximation properties [11]. The
multiquadric is representive of the class of RBFs that are global, infinitely diffeten-
tiable, and that contain a shape parameter ε 6= 0 which plays an important role for
the accuracy of the method. The MQ-RBF is radially symmetric about its center,
x ∈ R2, and its argument r = ‖x‖2 is dependent on the node location.
The MQ-RBF is defined by

ϕ(r, ε) =
√
r2 + ε2. (45)

So, for each collocation point x = (x, y) ∈ R2, the MQ-RBF can be described by

ϕ(‖x− xcj ‖, ε) =
√

(x− xcj)2 + (y − ycj)2 + ε2, (46)

and therefore, the MQ-RBF interpolant takes the form

s(xi) =

N∑
j=1

αjϕ(‖xi − xcj ‖, ε). (47)

Enforcing the interpolation conditions (44) at the N centers results in a N × N
linear system

Bα = F, (48)

to be solved for the expansion coeffi cients α = [α1, α2, . . . , αN ]
T .

The matrix B is called the interpolation matrix and its entries are given by the
formula

Bij = ϕ(‖xci − xcj ‖, ε) =
√

(xci − xcj)2 + (yci − ycj)2 + ε2, i, j = 1, . . . , N. (49)
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The system (48) is equivalent to a matrix equation of the form

ϕ11 ϕ12 · · · · · · ϕ1N
ϕ21 ϕ22 · · · · · · ϕ2N
...

...
. . .

...
...

...
. . .

...
ϕN1 ϕN2 · · · · · · ϕNN





α1
α2
...
...
αN

 =



f1
f2
...
...
fN

 . (50)

If ϕ(x) is a strictly positive definite function on a linear space, then the eigenvalues
of B are positive and its determinant is positive. Therefore we can use a linear
combination translation of ϕ(x) for interpolation [4]. The multiquadric is a strictly
positive definite function, this means that for any set of distinct collocation points,
the matrix Bij = ϕ(‖xci − xcj ‖, ε) is strictly positive definite, non-singular and
invertible [8].
The multiquadric expansion coeffi cient α is given by

α = B−1F. (51)

To evaluate the interpolant atM points xi using (47), theM×N evaluation matrix
is constructed with the elements

Φij = ϕ(‖xi − xcj ‖2, ε), i = 1, . . . ,M and j = 1, . . . , N. (52)

Then, the interpolant is evaluated at the M points by the matrix multiplication

S = Φ×α. (53)

To deal with the diffusion part of the interface problem we consider the implicit
scheme for the time derivative, and assume that the stationary solution (θn, αn,
vn) is known at a given time t = n∆t so that it can be approximated in this way:

θs
n '

N∑
j=1

αnj ϕ(‖xi − xj
c‖2, ε), αs

n '
∑N
j=1 β

n
j ϕ(‖xi − xj

c‖2, ε),

vs
n '

N∑
j=1

γnj ϕ(‖xi − xj
c‖2, ε).

If we substitute these expressions in (31)-(37), we can find numerically the station-
ary solution.

4.2. Perturbation equations. We now consider the moving coordinate frame
z2 = z− ut and introduce small perturbations (θ̃, p̃, ṽ) to the stationary solution in
the form of

θ = θs + θ̃, p = ps + p̃, v = vs + ṽ, (54)
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where

θ̃(t, x, y, z2) = θi(z2)e
ωt+j(k1x+k2y), i = 1, 2

ṽz(t, x, y, z2) = vzi(z2)e
ωt+j(k1x+k2y), i = 1, 2

z2 = y − ζ(t, x) = y − ut− ξ(t, x),

with ξ(t, x) = ε1e
ωt+j(k1x+k2y).

(55)

Here, the number u stands for the stationary front velocity that can be easily found
from the jump conditions at the interface. j2 = −1, i = 1 corresponds to z2 < ξ
and i = 2 to z2 > ξ, ω is the frequency, ki, i = 1, 2 are the wave numbers and ε1
the perturbation amplitude.
Substituting (54) in (31)-(37), we obtain for the first-order terms:
z2 > ξ:

∂θ̃

∂t
= ∆θ̃ + u

∂θ̃

∂z2
− cos(σ)ṽzθ

′
s, (56)

∂ṽ

∂t
= −∇p̃+ P∆ṽ + u

∂ṽ

∂z2
+Qθ̃

− sinσ
0

cosσ

 , (57)

∇.ṽ = 0. (58)

z2 < ξ:

∂θ̃

∂t
= ∆θ̃ + u

∂θ̃

∂z2
. (59)

We linearize system (56)-(59) about the stationary solution and apply the rot
rot transformation to equation (57). This allows us to eliminate the pressure and
to consider only the velocity component vz.
Next, we replace θ̃ and ṽz with its expressions as in (55), we find the perturbation

equations for z > 0:

ω(v ′′ − k2v)− u(v ′′′ − k2v ′) = P (v ′′′′ − 2k2v ′′ + k4v)

−Q
[
(k21 cos(2σ) + k22) cos(σ)θ − sin(2σ) sin(σ)θ ′′

]
,

(60)

Qk1(1− 4 cos2(σ)) sin(σ)θ ′ = 0, (61)

ωθ − uθ ′ + cos(σ)vθ ′s = θ ′′ − k2θ, (62)

with k2 = k21 + k22.
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In order to linearize the jump conditions (38)-(41), we use the Taylor formula
at the position of the reaction zone z = z2:

θ|ξ=±0 = θs(±0) + ξθ
′

s(±0) + θ̃(±0),

∂θ

∂z

∣∣∣∣
ξ=±0

= θ
′

s(±0) + ξθ
′′

s (±0) +
∂θ̃

∂z

∣∣∣∣
ξ=±0

.

For the highest order the jump conditions become:

[θ] = uξ, (63)

[θ ′] = −u2ξ − ξ ′, (64)

− u(u2ξ + θ ′2(0)) = Zθ1(0), (65)

ṽz = 0, cos(σ)
∂ṽz
∂z

= 0, (66)

with

[θ] = θ2(0)− θ1(0), [θ ′] = θ ′2(0)− θ ′1(0), θ ′i (0) =
∂θi
∂z2

∣∣∣∣
z2=0

and ξ ′ =
dξ

dt
.

The problem (60)-(62) subject to the jump conditions (63)-(66) is an eigenvalue
problem with time-dependent coeffi cients. Again, we solve it numerically by using
the multiquadric radial basis functions approximation with an implicit scheme to
determine the stability boundaries.

5. Numerical results

In this section, we present the stability boundaries of the propagating polymer-
ization front. There are basically two types of instabilities: the oscillatory instability
and the cellular instability. In the first case a pair of complex conjugate eigenvalues
cross the imaginary axis resulting in a Hopf bifurcation. In the second case, which
we consider here, an eigenvalue crosses the imaginary axis through zero. This cor-
responds to the case where the frequency ω is assumed equal to zero.
For propagating fronts, the exothermic chemical reaction heats the liquid reactants
from below. Then, under some conditions a convective motion of the liquid can
appear. These critical conditions can be expressed in the form R > Rac(P, u, σ, k),
this means that the frontal Rayleigh number should exceed a critical value which
depends on the Prandtl number, on the front velocity, on the inclination angle and
on the wave number. Figure (3) shows the stable and the unstable critical areas
which are found by drawing the critical Rayleigh number Rac as a function of the
wave number k for different values of the Prandtl number P and the front veloc-
ity u. In this case, the reaction front is propagating upward, this means that the
inclination angle σ is assumed equal to zero. We remark that when we increase
the Prandtl number and the front velocity, the stationary front loses its stability.
These results are in good agreement with the results which were obtained in [5].
Likewise, the curves in Figure (4) separates the stable and the unstable regions but
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Figure 3. Stability boundaries for the upward propagating front.
Left: u =

√
2, P = 0.1 (1), P = 0.5 (2), P = 2 (3), P = 30 (4).

Right : P = 0.99, u = 1 (1), u = 1.25 (2), u =
√
2 (3), u = 1.75 (4),

u = 2 (5), u = 2.5 (6).

now, in the case of the inclined propagating front. These show that, for fixed values
of the front velocity and the Prandtl number, the stability conditions depend on
the angle of inclination. If its value is greater, the front becomes more stable.

6. Conclusion

Natural convection can have an essential influence on the thermal instability of
reaction fronts in the case where the product of the reaction is solid. In this work,
a polymerization front problem is studied in situations where the fluid enclosure
inclination is changing. The Prandtl number, the front velocity and the inclina-
tion angle are considered to be the critical parameters. In the case of an inclined
medium, the instability grows extensively by decreasing the value of the inclination
angle. Then, natural convection makes inclined propagating front more stable than
without inclination and ascending fronts less stable.
It would be interesting to study the oscillatory instability which corresponds to
the case where the frequency is a complex value. From the linear stability analysis
of the stationary solution, we obtain complex valued perturbation equations that
are very complicated and should be solved numerically. The next step is to study
polymerization fronts problems in inclined porous media using the same approach.
In this case, the mathematical formulation consists of a nonlinear reaction-diffusion
equation coupled to Darcy’s law.
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Figure 4. Stability boundaries for the inclined propagating front for
u =

√
2 and P = 2.1. Left: σ = 0.2 (1), σ = 5.3 (2), σ = 10.4 (3),

σ = 20 (4). Right: σ = 30 (1), σ = 45 (2).
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