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Abstract: In this paper, we define and study two different residual life random variables corresponding to
a single unit system equipped with a cold standby unit. We obtain the conditional survival functions when
the lifetimes of active and standby units are dependent. Some properties of the associated mean residual life
functions are also investigated. Graphical illustrations are presented to observe time dependent behaviors of
associated mean residual life functions.
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1. Introduction
Although the concept of residual life has been well studied in the literature under active redun-

dancy ([1], [2],[5],[6],[8],[10],[3],[13],[14],[16]), it has not been considered for a system with a standby
unit. In the case of cold standby redundancy, the standby redundant component neither degrade
nor fail while in standby. Levitin et al. [11] have studied the optimal loading cold standby sys-
tems. Eryilmaz [4] analyzed the distribution and the expected value of warm standby components
for general coherent systems. Eryilmaz [9] investigated a k-out-of-n system with a single warm
standby and obtained an explicit expression for the system reliability. Some recent contributions
on reliability analysis of systems under cold standby redundancy are in [7],[18],[17].

Consider a single unit system equipped with a cold standby unit. Let Y andX denote respectively
the lifetimes of active and inactive (standby) units. It is clear that the lifetime of the entire system
corresponds to the random variable T = Y +X. The usual residual life of the system is then defined
by

{Y +X − t | Y +X > t} , (1.1)

for t > 0. The conditional random variable defined by (1.1) implies only the survival of the system
at time t, but no information is included about which unit survives at time t. Define the following
conditional random variables:

{Y +X − t | Y ≤ t,X > t} , (1.2)

and

{Y +X − t | Y > t} . (1.3)

The condition in (1.3) may be changed to {Y > t,X > t} since in the case of cold standby
redundancy P {Y > t}> 0 implies P {X > t}= 1 for t > 0. The conditional random variable defined
by (1.2) represents the residual life of the system given that the active unit has failed before time t
but the system works at time t with standby unit. Similarly, (1.3) represents the residual life of the
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system under the condition that the system works at time t with the active component. Obviously,
the definitions (1.2) and (1.3) are more informative than (1.1).

In the present paper, we study the conditional random variables defined by (1.2) and (1.3) when
the lifetimes of the units are dependent. In Section 2, we obtain survival and mean residual life
functions corresponding to (1.2) and (1.3). Section 3 includes some graphical illustrations for the
mean residual life functions.

2. Conditional survival functions and mean residual lifetimes
Let X and Y be dependent lifetime random variables with the joint cumulative distribution

function (c.d.f.) H(x, y) = P {X ≤ x,Y ≤ y} , and marginal distributions G(y) = P {Y ≤ y} and
F (x) = P {X ≤ x} , for x, y > 0.

In the following, we derive the survival function of the conditional random variable (1.2).

Theorem 1. The conditional survival function of Y +X given {Y ≤ t,X > t} is

P {Y +X > s | Y ≤ t,X > t}

=
1

G(t)−H(t, t)

 s−t∫
0

P {X > s− y | Y = y}dG(y)

+

t∫
s−t

P {X > t | Y = y}dG(y)

 ,
for t≤ s < 2t, and

P {Y +X > s | Y ≤ t,X > t}

=
1

G(t)−H(t, t)

 t∫
0

P {X > s− y | Y = y}dG(y)

 ,
for s≥ 2t.

Proof. By conditioning on Y ,

P {Y +X > s,Y ≤ t,X > t}

=

∫
y≤t

P {X > s− y,X > t | Y = y}dG(y)

=

∫
y≤t,s−y>t

P {X > s− y | Y = y}dG(y) +

∫
y≤t,s−y<t

P {X > t | Y = y}dG(y)

=

min(t,s−t)∫
0

P {X > s− y | Y = y}dG(y) +

t∫
s−t

P {X > t | Y = y}dG(y).

Thus the required result is obtained considering the cases s− t < t and s− t≥ t, and noting that

P {Y ≤ t,X > t}= P {Y ≤ t}−P {X ≤ t, Y ≤ t}
=G(t)−H(t, t).�

The expected value of random variable (1.2) represents the mean residual life of the system and
it can be computed from Theorem 1 as

m(t) =E(Y +X − t | Y ≤ t,X > t)

=

∞∫
0

P {Y +X > t+u | Y ≤ t,X > t}du.
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Corollary 1. If X and Y are independent, then

P {Y +X > s | Y ≤ t,X > t}

=


1

G(t)F̄ (t)

[∫ s−t
0

F̄ (s− y)dG(y) +
∫ t
s−tF̄ (t)dG(y)

]
, if t≤ s < 2t

1
G(t)F̄ (t)

∫ t
0
F̄ (s− y)dG(y), if s≥ 2t.

Corollary 2. If X and Y are independent, then

m(t) = t−
t∫

0

G(x)

G(t)
dx+

∞∫
t

F̄ (x)

F̄ (t)
dx.

Proof. If X and Y are independent, then

m(t) =E(Y | Y ≤ t) +E(X − t |X > t).

It is clear that

P {Y > x | Y ≤ t}=
G(t)−G(x)

G(t)
,

for x≤ t, and

E(Y | Y ≤ t) =

t∫
0

G(t)−G(x)

G(t)
dx= t−

t∫
0

G(x)

G(t)
dx.

On the other hand,

E(X − t |X > t) =
1

F̄ (t)

∞∫
0

F̄ (t+x)dx.

Thus the proof is completed.�
The function defined by

αG(t) =E(t−Y | Y ≤ t) =

t∫
0

G(x)

G(t)
dx

is called the mean inactivity time (MIT). G1 is said to be smaller than G2 in the mean inactivity
time order (denoted by G1 ≤MIT G2) if αG1

(t) ≥ αG2
(t) for all t > 0. See, e.g. [12] for the mean

inactivity time order.
Let βF (t) = E(X − t | X > t) denote the MRL function corresponding to the distribution F .

F1 is said to be smaller than F2 in the mean residual life time order (denoted by F1 ≤MRL F2) if
βF1(t)≤ βF2(t) for all t > 0. The reader is referred to Shaked and Shanthikumar [15] for the details
of various stochastic orderings.

Let mG|F (t) denote the MRL function of the system composed of an active unit with its dis-
tribution function G and a standby unit with its distribution F , respectively. If X and Y are
independent, then from Corollary 2 we have

mG|F (t) = t−αG(t) +βF (t). (2.1)

The proofs of the following results are immediate from (2.1).

Proposition 1. Suppose that X and Y are independent. Then,
(a) if G1 ≤MIT G2, then mG1|F (t)≤mG2|F (t) for all t > 0.
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(b) if F1 ≤MRL F2, then mG|F1(t)≤mG|F2(t) for all t > 0.

Proposition 2. Suppose that X and Y are independent. If F is IMRL (increasing mean resid-
ual life) and G is DMIT (decreasing mean inactivity time), then mG|F (t) is nondecreasing in t.

In the following, we derive the survival function of the conditional random variable defined by
(1.3).

Theorem 2. The conditional survival function of Y +X given {Y > t} is

P {Y +X > s | Y > t}

=
1

Ḡ(t)

Ḡ(s) +

s∫
t

P {X > s− y | Y = y}dG(y)

 ,
for s > t.

Proof. For s > t, one can write

P {Y +X > s,Y > t}=

∫
y>t

P {X > s− y | Y = y}dG(y)

=

∫
y>t,s−y<0

dG(y) +

∫
y>t,s−y>0

P {X > s− y | Y = y}dG(y)

= Ḡ(s) +

s∫
t

P {X > s− y | Y = y}dG(y).

Thus the result follows.�

Define
u(t) =E(Y +X − t | Y > t).

Using Theorem 2,

u(t) =

∞∫
0

P {Y +X > t+ z | Y > t}dz

=

∞∫
0

Ḡ(t+ z)

Ḡ(t)
dz+

1

Ḡ(t)

∞∫
0

t+z∫
t

P {X > t+ z− y | Y = y}dG(y)dz

=E(Y − t | Y > t) +
1

Ḡ(t)

∞∫
0

t+z∫
t

P {X > t+ z− y | Y = y}dG(y)dz.

Corollary 3. If X and Y are independent, then

u(t) =E(Y − t | Y > t) +E(X).

The proofs of the following results are immediate from Corollary 3.

Proposition 3. Suppose that X and Y are independent. Then,
(a) if G1 ≤MRL G2, then uG1|F (t)≤ uG2|F (t) for all t > 0.
(b) if F1 ≤ST F2, then uG|F1(t)≤ uG|F2(t) for all t > 0.

Proposition 4. Suppose that X and Y are independent. If G is IMRL (DMRL), then uG|F (t)
is nondecreasing (nonincreasing) in t.
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3. Graphical illustrations
For an illustration, let

H(x, y) = (1− e−λx)(1− e−λy)
{

1 + θe−λxe−λy
}
,

for x, y≥ 0 and −1≤ θ≤ 1. That is, the joint distribution of X and Y is modeled by FGM (Farlie-
Gumbel-Morgenstern) type bivariate exponential distribution. This model includes both positive
dependence (for θ≥ 0) and negative dependence (for θ≤ 0). The case of independence is obtained
when θ= 0. Then, the conditional probability density function of X given Y = y is

h(x | y) = λe−λx
{

1 + θ(2e−λx− 1)(2e−λy − 1)
}
,

and hence

P {X > t | Y = y}=

∞∫
t

h(x | y)dx

= e−λt
{

1 + θ(1− e−λt)(1− 2e−λy)
}
.

Under these assumptions, the functions m(t) and u(t) are found to be

m(t) =
e−λt [(4 + 5θ− 6θe−λt + 2θe−2λt) + 2λt(1 + θ− 2θe−λt + θe−2λt)]− 4− θ

2λ(e−λt + θe−λt− 2θe−2λt + θe−3λt− 1)
,

u(t) =
1

2λ

(
θ− θe−λt + 4

)
,

In Figures 1-6, we plot the functions m(t) =E(Y +X − t | Y ≤ t,X > t) and u(t) =E(Y +X − t |

Y > t) for various values of dependence parameter θ when λ= 1. As expected, the function m(t)
is greater than u(t) for all t > 0. From the figures, we see that the more dependence between X
and Y , the more apart from the independence case. One can also observe from Figures 1-3 that
the statement of Proposition 2 is not generally true when X and Y are dependent.

For θ= 0, the random variables X and Y are independent and each have an exponential distri-
bution. Therefore E(Y − t | Y > t) is independent of t, and hence u(t) is constant when θ= 0.

Figure 1. Plot of m(t) for various values of θ.
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Figure 2. Plot of m(t) for various values of θ.

Figure 3. Plot of m(t) for various values of θ.
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Figure 4. Plot of u(t) for various values of θ.

Figure 5. Plot of u(t) for various values of θ.
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Figure 6. Plot of u(t) for various values of θ.

4. Concluding Remarks
In this paper, we have introduced two different residual life functions for a single unit system

equipped with a cold standby unit. We have presented the corresponding conditional survival
functions when the lifetimes of active and standby units are dependent, and investigated some
properties of MRL function under independence. The results of this paper can be generalized to a
system equipped with k standby units.

If a system is equipped with k standby units with respective lifetimes X1, ...,Xk, then a more
general residual life can be defined as

{Y +X1 + ...+Xk− t | Y ≤ t,X1 ≤ t, ...,Xi ≤ t,Xi+1 > t} ,

for i = 0,1, ..., k − 1. If the random variables Y,X1, ...,Xk are independent with Fj(x) =
P {Xj ≤ x} , j = 1, ..., k, then

mk(t) =E (Y +X1 + ...+Xk− t | Y ≤ t,X1 ≤ t, ...,Xi ≤ t,Xi+1 > t) ,

=E(Y | Y ≤ t) +
i∑

j=1

E(Xj |Xj ≤ t) +
k∑

j=i+2

E(Xj) +E(Xi+1− t |Xi+1 > t)

= (i+ 1)t−αG(t)−
i∑

j=1

αFj (t) +βFi+1
(t) +

k∑
j=i+2

E(Xj),

for i = 0,1, ..., k − 1, where αFj (t) and βFj (t) denote respectively the MIT and MRL functions
corresponding to the c.d.f. Fj.

As a possible future work, the residual lifetime of a system with a warm standby unit can also
be studied.
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