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Abstract: Using Chebyshev’s inequality, we provide a probabilistic proof of the uniform convergence for
continuous functions on a closed interval by Schoenberg’s variation diminishing spline operator. Furthermore,
we introduce a unimodal density estimator based on this spline operator and thus generalize that of Bernstein
polynomials and beta density. The advantage of this method is the local property. That is, refining the knots
while keeping the degree fixed of B-splines yields better estimates. We also give a numerical example to
verify our results.
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1. Introduction
Although the Bernstein polynomials have been generalized in many different ways, see for exam-

ple [5], [14], [13], the most striking one is the B–spline. Univariate spline functions are piecewise
polynomials that are joined with certain continuity at their breakpoints. For nearly fifty years,
spline functions have been so influential that not only they have played a central role in approxima-
tions but also provide an essential tool for mathematical sciences, such as computer aided geometric
design and manufacturing see [8].

This work’s contribution splits into two parts. First we amend the proofs of uniform convergence
given by [15] which was based on the uniform knot sequence and that of [12] which relied on
the Bohman-Korovkin’s Theorem. In other words we provide a probabilistic view for the uniform
convergence problem using the Schoenberg spline operator. A similar approach for the Bernstein
polynomials was initiated in [2]. Secondly, we introduce a unimodal density estimator based on
the Schoenberg spline operator to generalize both the Bernstein polynomials given by [16] and the
beta density. We note that the classical approach for the problem of uniform convergence using
spline functions employs the modulus of continuity to measure the maximum distance between the
function and its approximation.

Schoenberg [15] introduced the following piecewise polynomial a variation diminishing operator
as a generalization of the Bernstein operator,

Sk(f ;x) =
n−1∑
j=−k

f(xj,k)Nj,k(x), (1.1)
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with positive integers n, k and a non-decreasing (extended) knot sequence

Tn,k = (x−k = · · ·= x0 = 0<x1 < · · ·<xn = · · ·= xn+k = 1), (1.2)

and xj,k = (xj+1 + · · ·+xj+k)/k. The set of functions

{Nj,k(x) : 0≤ x≤ 1, j =−k,−k+ 1, . . . , n− 1}

is the B-spline basis for the space of splines of degree k defined recursively by the de Boor algorithm,
see [8],

Nj,0(x) =

{
1, if x∈ [xj, xj+1)
0, otherwise,

Nj,k(x) =
x−xj

xj+k−xj
Nj,k−1(x) +

xj+k+1−x
xj+k+1−xj+1

Nj+1,k−1(x). (1.3)

Note that the basis functions Nj,k heavily depend on the knot sequence.
The operator Skf is positive, reproduces linear functions and is variation diminishing, and thus

preserves and mimics the shape of f see for example [3, 9]. It is also proved in [12] that Skf
converges to f uniformly for a continuous function on [a, b] if and only if

‖ Tn,k ‖
k

→ 0, where ‖ Tn,k ‖= max
j

(xj+1−xj).

The B-splines possess remarkable properties such as compact support, partition of unity, unimodal-
ity, refinability (breaking into simpler components) see [8, 1, 9, 11]. Bernstein–Bézier polynomials
and B-splines have exerted a great influence over the development of geometric modelling and
accelerated research in the analytical sciences.

The following identity attributed to Marsden, see [12], relates the monomial basis and the B-
spline basis:

(t−x)k =
∞∑

j=−∞

(t−xj+1) . . . (t−xj+k)Nj,k(x), (1.4)

where an empty product on the right denotes one.

2. Uniform convergence
We now proceed to the proof of uniform convergence of Skf to f ∈C[a, b] as k→∞. For clarity

we take the interval [0,1]. Consider ξn,k as a sum of k independent random variables by ξn,k =
xj+1 + · · ·+ xj+k having probability mass function (PMF) Nj,k(x) for j =−k, . . . , n− 1. Then the
expectation E of ξn,k is

E(ξn,k) =

n−1∑
j=−k

ξn,kNj,k(x).

It follows from Marsden’s identity by comparing the coefficients of t on both sides of (1.4) that
E(ξn,k) = kx. Furthermore the variance of the random variable ξn,k is

Var(ξn,k) =
n−1∑
j=−k

(ξn,k− kx)2Nj,k(x).

To find it, we write

Var(ξn,k) = k2{Sk(t2;x)− 2xSk(t;x) +x2Sk(1;x)}.
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We then obtain from (1.4) that

Var(ξn,k) =
1

k− 1

∑
j+1≤r<s≤j+k

(xs−xr)2 ≤
k

2
max
0≤j≤n

(xj+k−xj)2.

To estimate the distance between Sk(f ;x) and f(x), let us examine

|Sk(f ;x)− f(x)| ≤
∑

j:|
ξn,k
k −x|<δ

|f(
ξn,k
k

)− f(x)|Nj,k(x)

+
∑

j:|
ξn,k
k −x|≥δ

|f(
ξn,k
k

)− f(x)|Nj,k(x) := S1 +S2

From the uniform continuity of f(x) on [0,1] we can take δ so small that

|f(
ξn,k
k

)− f(x)| ≤ ε

2
whenever |ξn,k

k
−x|< δ.

Thus the first summation above satisfies S1 ≤ ε
2
. Since f is bounded on [0,1], there is a positive

constant M such that |f(x)| ≤M . Then

S2 ≤ 2M
∑

j:|
ξn,k
k −x|≥δ

Nj,k(x).

Notice that the sum on the right side of the last inequality is equal to the following probability
with parameter x with respect to PMF of B-splines:∑

j:|
ξn,k
k −x|≥δ

Nj,k(x) = Px(|
ξn,k
k
−x| ≥ δ).

By the Chebyshev inequality, see [6], the above probability satisfies

Px(|
ξn,k
k
−x| ≥ δ)≤

Var
(
ξn,k
k

)
δ2

=
Var(ξn,k)

k2δ2
≤ M

kδ2
≤ ε.

Finally choose N ≥ M
δ2ε

such that M
kδ2
≤ ε.

We have thus proved the uniform convergence of sequences of Schoenberg operators:

Theorem 1. Given ε > 0 and f ∈C[0,1], there exists an integer N such that

‖Sk(f ;x)− f(x)‖ ≤ ε

for all k≥N and all x∈ [0,1].

Let us mention an important consequence of the theorem. First we recall the probabilistic inter-
pretation of Jensen’s inequality, see [6]. For a convex function f and a random variable X with a
finite expectation E(X), we have

f(E(X))≤E(f(X)).

Replacing X = xj,k with probabilities Nj,k(x) yields

f(E(X)) = f

(
n−1∑
j=−k

xj,kNj,k(x)

)
= f(x)
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and

E(f(X)) =
n−1∑
j=−k

f(xj,k)Nj,k(x) = Sk(f ;x).

Hence we obtain the following Corollary.

Corollary 1. The approximation to a convex function f(x) by Sk(f ;x) is one-sided, that is

f(x)≤ Sk(f ;x) for all x∈ [0,1] and for each k≥ 1.

3. Unimodal estimator
The work [16] introduced a method of unimodal density estimation via Bernstein polynomials

and beta density. We generalize their approach using the Schoenberg operator which replaces
polynomials by B-splines. An important advantage of the latter is their local control property
and refinement. In practice, for data or continuous approximation purposes while the degree of
B-splines is fixed, we refine knot sequences at each stage until a desired outcome is attained. Cubic
B-splines and uniform (equally spaced) knot sequences are common choices.

To establish a probability density function based on the B-splines, we require the following
important fact about their integration (see for example [8]):∫ +∞

−∞
Nj,k(x)dx=

1

k+ 1
(xj+k+1−xj).

Now for each non-negative integer k, a positive integer n, and a given non-decreasing extended knot
sequence similar to (1.2) and a function f on [a, b], we define a new probability density function by

gn,k(f,x) =

n−1∑
j=−k

k+ 1

xj+k+1−xj
f(xj,k)Nj,k(x)/

(
n−1∑
j=−k

f(xj,k)

)
. (3.1)

It is easy to verify that ∫ +∞

−∞
gn,k(f,x)dx=

∫ b

a

gn,k(f,x)dx= 1.

This allows us to construct a family of unimodal density estimates

hn,k(x,w) =

n−1∑
j=−k

wj
k+ 1

xj+k+1−xj
Nj,k(x), (3.2)

when weights satisfy the following properties:

1. wj ≥ 0 for each j and
n−1∑
j=−k

wj=1,

2. w is unimodal, i.e. there exists an integer m such that
w−k ≤w−k+1 ≤ · · · ≤wm ≥wm+1 ≥ · · · ≥wn−1.
The equations (3.1) and (3.2) generalize the method given by [16] based on the Bernstein polyno-
mials.
Special case: When n= 1, Nj,k(x) with the knot sequence
Tn,k = (0, . . . ,0,1, . . . ,1) in which both 0 and 1 repeat k+1 times yields Bernstein basis polynomials
of degree k on [0,1], (

k

j

)
xj(1−x)k−j, j = 0,1, . . . , k

or the Binomial distribution.
It follows that the density in (3.1) reduces to
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gn,k(f,x) =
k∑
j=0

(k+ 1)f(j/k)

(
k

j

)
xj(1−x)k−j /

(
k∑
j=0

f(j/k)

)
,

the beta density function with shape parameters k and j. Therefore the functions on the right
of (3.2), (k+ 1)/(xj+k+1−xj)Nj,k(x) whose shape depend on j, k and a knot sequence T may be
viewed as a generalization of the beta density.

Meanwhile we want to emphasize three references in a similar scope. The work [7] investigates
urn models arising from the B-splines at non-negative integer knots and Karlins classic book on
total positivity [10] has a blend of variation diminishing kernels, and the paper [4] focuses on
optimality of B-splines.

4. Numerical examples
In this section, we present an example using simulated data to investigate the performance of

proposed unimodal density estimation method. We explore this by generating data from Beta
distribution with parameters 2 and 5 for the sample size 100. Then we choose weights wj to
construct the estimated density. The software R is used to carry out computations. The results
compare the Bernstein polynomials estimation given by [16] and the proposed estimation with the
beta density. In both methods, the Bernstein polynomials and B-splines keep the degree k fixed
here we take k = 3. Since the uniform knot sequence has been the most influential and widely
implemented choice, Tn,k is selected to be (−0.6,−0.4,−0.2,0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6).

Figure 1. Comparison of unimodal distributions

In the Figure 1, we display the plot of Beta(2, 5), proposed estimator and Bernstein polynomials
estimator of density function for the distribution. The graphs between true and estimated density
functions show that the proposed estimator for the density function presents impressively smooth
curve in the approximation of true distribution. MISE values of the proposed estimation function
and Bernstein polynomials estimation function are obtained 0.1643 and 0.3554 respectively. MISE
values of the proposed estimation function is reduced. It means that the proposed estimator is
closer to the actual density function. The advantage of the proposed method is the local property,
that is, refining the knots while keeping the degree fixed of B-splines yields better estimates. We
also give another example to verify this property.

In this example, the number of knots is increased for the same data and the same degree and
Tn,k is taken as

(−0.15,−0.1,−0.05,0,0.05,0.1, . . . ,0,9,0.95,1,1.05,1.1,1.15).
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Figure 2. Comparison of unimodal distributions refined knots

As shown in Figure 2, our unimodal density estimation method achieves a good approximation
of true probability density function. The mean integrated squared error (MISE) of the proposed
estimator value is 0.0701. When the number of knots increases, MISE of the proposed estimation
function reduces. It means that the proposed estimator is closer to the actual density function.
Thus, it is possible to make a better unimodal density estimate by taking increasing number of
knots without changing the degree by means of our proposed method.

5. Conclusions
This work’s contribution is in two parts. First we modify the proofs of uniform convergence which

was based on the uniform knot sequence and that of [12] which relied on the Bohman-Korovkin’s
Theorem. In other words, we provide a probabilistic view of the uniform convergence problem using
the Schoenberg spline operator. Secondly, we introduce a unimodal density estimator based on the
B-splines to generalize both the Bernstein polynomials given by [16] and the beta density.

The above numerical examples demonstrate the effectiveness of our approach compared to the
Bernstein polynomials method. Smaller of MISE values are obtained with our method. Further-
more, refining the knots of B-splines decreases MISE values while keeping the degree unchanged.
This makes our method a suitable choice to achieve a better density estimation. A future area of
interest is to extend this methodology to the cumulative distribution function.
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Oruç et al.: Probabilistic approach to the Schoenberg spline operator and unimodal density estimator

İSTATİSTİK: Journal of the Turkish Statistical Association 10(2), pp. 33–39, c© 2017 İstatistik 39

[8] Goldman, R.N. (2003). Pyramid Algorithms, A Dynamic Programming Approach to Curves and Surfaces
for Geometric Modeling. Elsevier Science, USA.

[9] Goodman, T.N.T. and Sharma, A. (1985). A property of Bernstein-Schoenberg spline operators. Pro-
ceedings of the Edinburgh Mathematical Society, 28, 333-340.

[10] Karlin, S. (1968). Total Positivity, Vol. 1, Stanford University Press, California.

[11] Marsden, M. and Schoenberg, I. J. (1966). On Variation Diminishing Spline Approximation Methods.
Mathematica, 8(31), 61-82.

[12] Marsden, M. J. (1970). An identity for spline functions with applications to variation-diminishing spline
approximation. Journal of Approximation Theory, 3, 7–49.
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