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Abstract

In this paper, we give a new approach to the trial function for Homotopy Per-
turbation Method (HPM) which is powerful, easy-to-use and effective approximate
analytical mathematical tool. By generalizing of the trial function, we obtain better
approximate series solutions for the linear or nonlinear problems, and we minimize the
computational work and the time by choosing trial function properly.

Keywords: Nonlinear differential equations, homotopy perturbation method, se-
ries solutions.

1. Introduction

When we want to obtain mathematical models of physical or biological phenom-
ena, we generally get nonlinear partial differential equations. However, to find exact
solutions of these problems is difficult. In recent years, we see that there are so many
mathematical methods to find approximate solutions of nonlinear problems which come
from various field of science and engineering. Some of them are Perturbation Method
(PM), Adomian Decomposition Method (ADM) [5], HPM [2,4,7,8,9,10,11,12], HAM
[3,13,14,15,12], Variational Iteration Method [16], G′/G Method [17], Homogeneous
Balance Method [18], F-expansion Method [19], Symmetry Method [20], Exp-function
Method [21].

PM is one of the well-known methods which based on the existence of small/large
parameters in the equation. These parameters are called perturbation quantities. Be-
cause of this restriction, PM can only be applied for weakly non-linear problems.

In ADM, we need to calculate Adomian polynomials which are difficult to obtain.

In HPM, one can obtain approximate solution even if there is no restriction on
small/large physical parameters. The method contains an embedding parameter p.
The application of HPM in nonlinear problems has been presented by many researchers
[2,4,7,8,9,10,11,12].

HAM, originally presented by Liao in 1992, has an embedding parameters p and
non-zero auxiliary parameter h which provides us with a simple way to adjust and
control the radius of convergence of series solution. Later, this parameter h is called
convergence-control parameter.



The main purpose of all the above methods is to find series solutions which converge
to the exact solutions of the problems. Many researchers try to find which method is
better than the others. There are a lot of papers which include comparison of the
methods. Generally, we choose problems which have an exact solutions for testing nu-
merical and approximate methods. Even those special exact solutions that do not have
a clear physical meaning can be used as ”test problems” to verify the consistency and
estimate errors of various numerical, asymptotic and approximate analytical methods.
In this paper, we generalize trial function to get better approximate solutions of the
linear or nonlinear problems. Not only do we obtain better approximate solutions, but
also we get less computational work.

2. The Homotopy Perturbation Method

The basic idea of this method is the following. We consider the nonlinear differential
equation

A(u)− f(r) = 0, r ∈ Ω (1)

with boundary conditions

B(u,
∂u

∂n
) = 0, r ∈ Γ

where A is a general differential operator, B is a boundary operator, f(r) is a known
analytic function. Γ is the boundary of the domain Ω. In general, A can be written
in two parts which are linear operator L, and nonlinear operator N . Therefore, Eq.(1)
can be written as follows

L(u) +N(u)− f(r) = 0.

According to the homotopy technique, we can construct a homotopy Φ(r, t; p) :
Ω× [0, 1] → R which satisfies

H(Φ, p) = (1− p)[L(Φ)− L(u0)] + p[A(Φ)− f(r)] = 0

where p ∈ [0, 1] is an embedding parameter, r ∈ Ω, u0 is an initial condition of Eq.(1),
Φ(r, t; p) is an unknown function. We can write this homotopic equation as follows

H(Φ, p) = L(Φ)− L(u0) + pL(u0) + p[N(Φ)− f(r)] = 0

It is easy to see that this homotopy satisfies following initial conditions,

H(Φ, 0) = L(Φ)− L(u0) = 0

H(Φ, 1) = A(Φ)− f(r) = 0.

The changing process of p from zero to unity is just that of Φ(r, t; p) from u0(r, t) to
u(r, t). Expanding Φ(r, t; p) in taylor series with respect to the p, we can write

Φ(r, t; p) = u0(r, t) + pu1(r, t) + p2u2(r, t) + · · · , (2)

2



when p = 1 this infinite series gives us the series solution of the problem.

u(r, t) = lim
p→1

Φ(r, t; p) = u0(r, t) + u1(r, t) + u2(r, t) + · · · , (3)

Let trial function be u0(x, t) = P0(t)g(x) which satisfies the following condition,

u0(x, 0) = u(x, 0) = P0(0)g(x)

where g(x) is the initial condition and P0(0) = 1 when t = 0.

3. Applications

Example 1 : Let’s consider the special case of evolution equation

∂u

∂t
+

∂u

∂x
= 2

∂3u

∂x2∂t
, −∞ < x < ∞, t > 0

with initial condition
u(x, 0) = exp(−x).

We construct a homotopic equation by using He’s method

(1− p)[L(Φ)− L(u0)] + p[A(Φ)− f(r)] = 0 (4)

where L is a linear operator,

L(Φ) =
∂Φ

∂t
(5)

and A is a whole linear operator,

A(Φ) =
∂Φ

∂t
+

∂Φ

∂x
− 2

∂3Φ

∂x2∂t
(6)

and u0 is a trial function such that

u0(x, t) = P0(t) exp(−x), P0(0) = 1. (7)

If we substitute Eq.(5), Eq.(6) and Eq.(7) into Eq.(4), then we obtain the following
homotopic equation

∂Φ

∂t
− P ′

0(t) exp(−x) = p

(
2
∂3Φ

∂x2∂t
− ∂Φ

∂x
− P ′

0(t) exp(−x)

)
. (8)

If p = 0, then above equation satisfies trial function. If p = 1, then the above equation
is just as original differential equation. Substituting Eq.(2) into Eq.(8) and equating
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coefficients of p, we obtain the following differential equations,

p0 : {∂u0

∂t
− P ′

0(t) exp(−x) = 0, u0(x, 0) = exp(−x)

p1 : {∂u1

∂t
= 2

∂3u0

∂x2∂t
− ∂u0

∂x
− P ′

0(t) exp(−x), u1(x, 0) = 0

p2 : {∂u2

∂t
= 2

∂3u1

∂x2∂t
− ∂u1

∂x
, u2(x, 0) = 0

...

pn : {∂un

∂t
= 2

∂3un−1

∂x2∂t
− ∂un−1

∂x
, un(x, 0) = 0

If we solve above equations for unknowns un’s, we obtain

u0(x, t) = P0(t) exp(−x)

u1(x, t) = [P0(t)− 1 +
∫

P0(t)dt] exp(−x) = P1(t) exp(−x)

u2(x, t) = [2P1(t) +
∫

P1(t)dt] exp(−x) = P2(t) exp(−x)

u3(x, t) = [2P2(t) +
∫

P2(t)dt] exp(−x) = P3(t) exp(−x)

...

un(x, t) = [2Pn−1(t) +
∫
Pn−1(t)dt] exp(−x) = Pn(t) exp(−x), n > 1.

Therefore series solution can be written in the following

u(x, t) = [P0(t) + P1(t) + P2(t) + P3(t) + ...] exp(−x).

As we see that once we compute u1, we can get the other terms of the series solution
without computing equations. This gives us less computational work and time. Let’s
give some examples for P0(t). If P0(t) = 1, then terms of the series solution of the
problem is the following

u0(x, t) = exp(−x)

u1(x, t) = t exp(−x)

u2(x, t) = (
t2

2
+ 2t) exp(−x)

u3(x, t) = (
t3

3!
+ 2t2 + 4t) exp(−x)

u4(x, t) = (
t4

24
+ t3 + 6t2 + 8t) exp(−x)

u5(x, t) = (
t5

120
+

t4

3
+ 4t3 + 16t2 + 16t) exp(−x)

...
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Having un for n = 0, 1, 2, 3, 4, 5, the solution u(x, t) is

u(x, t) =
5∑

n=0

un = (
t5

120
+

t4

3
+ 5t3 +

49t2

2
+ 31t+ 1) exp(−x). (9)

If P0(t) = t+ 1, then we obtain the terms of the series solution of the problem

u0(x, t) = (t+ 1) exp(−x)

u1(x, t) = (
t2

2
+ 2t) exp(−x)

u2(x, t) = (
t3

3!
+ 2t2 + 4t) exp(−x)

u3(x, t) = (
t4

24
+ t3 + 6t2 + 8t) exp(−x)

u4(x, t) = (
t5

120
+

t4

3
+ 4t3 + 16t2 + 16t) exp(−x).

...

Computing un for n = 0, 1, 2, 3, 4, the solution u(x, t) is same as Eq.(9). If P0(t) =
t2

2
+ 3t+ 1, then terms of the series solution of the problem is the following

u0(x, t) = (
t2

2
+ 3t+ 1) exp(−x)

u1(x, t) = (
t3

3!
+ 2t2 + 4t) exp(−x)

u2(x, t) = (
t4

24
+ t3 + 6t2 + 8t) exp(−x)

u3(x, t) = (
t5

120
+

t4

3
+ 4t3 + 16t2 + 16t) exp(−x).

...

Computing un for n = 0, 1, 2, 3, the solution u(x, t) is same as Eq.(9). As we see that if
we choose P0(t) properly, we obtain the series solution of the problem in three iteration.

Example 2 : We consider the following problem

∂u

∂t
+ 2

∂4u

∂x4
=

∂3u

∂x2∂t
, −∞ < x < ∞, t > 0

with initial condition
u(x, 0) = sinx.

By same manipulating as we have done above, we obtain the following homotopic
equation. Let trial function be u0(x, t) = P0(t) sinx where P0(0) = 1.

∂Φ

∂t
− P ′

0(t) sin x = p

(
∂3Φ

∂x2∂t
− 2

∂4Φ

∂x4
− P ′

0(t) sin x

)
. (10)
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Substituting Eq.(2) into Eq.(10) and equating coefficients of p,

p0 : {∂u0

∂t
− P ′

0(t) sin x = 0, u0(x, 0) = sinx,

p1 : {∂u1

∂t
=

∂3u0

∂x2∂t
− 2

∂4u0

∂x4
− P ′

0(t) sin x, u1(x, 0) = 0,

p2 : {∂u2

∂t
=

∂3u1

∂x2∂t
− 2

∂4u1

∂x4
, u2(x, 0) = 0,

...

pn : {∂un

∂t
=

∂3un−1

∂x2∂t
− 2

∂4un−1

∂x4
, un(x, 0) = 0.

If we solve above equations for unknowns un’s, we obtain the terms of the series solution

u0(x, t) = P0(t) sinx

u1(x, t) = −2[P0(t)− 1 +
∫

P0(t)dt] sin x = P1(t) sin x

u2(x, t) = −[P1(t) + 2
∫

P1(t)dt] sinx = P2(t) sin x

u3(x, t) = −[P2(t) + 2
∫

P2(t)dt] sinx = P3(t) sin x

...

un(x, t) = −[Pn−1(t) + 2
∫
Pn−1(t)dt] sinx = Pn(t) sin x, n > 1.

Therefore series solution can be written in the following

u(x, t) = [P0(t) + P1(t) + P2(t) + P3(t) + ...] sin x.

As we mentioned above, once we compute u1, we can find the other terms of the series
solution by using u2, u3, u4,... directly. Let’s give some examples for P0(t).

If P0(t) = 1, then terms of the series solution of the problem is the following

u0(x, t) = sin x

u1(x, t) = −2t sinx

u2(x, t) = (2t2 + 2t) sin x

u3(x, t) = −(
4t3

3
+ 4t2 + 2t) sin x

u4(x, t) = (
2t4

3
+ 4t3 + 6t2 + 2t) sin x

u5(x, t) = −(
4t5

15
+

8t4

3
+ 8t3 + 8t2 + 2t) sin x

u6(x, t) = (
4t6

45
+

4t5

3
+

20t4

3
+

40t3

3
+ 10t2 + 2t) sin x.

...
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Having un for n = 0, 1, 2, 3, 4, 5, 6, the solution u(x, t) is

u(x, t) =
6∑

n=0

un = (
4t6

45
+

4t5

3
+

14t4

3
+ 8t3 + 6t2) sin x. (11)

If P0(t) = 1− 2t, then we obtain

u0(x, t) = (1− 2t) sinx

u1(x, t) = (2t2 + 2t) sin x

u2(x, t) = −(
4t3

3
+ 4t2 + 2t) sin x

u3(x, t) = (
2t4

3
+ 4t3 + 6t2 + 2t) sin x

u4(x, t) = −(
4t5

15
+

8t4

3
+ 8t3 + 8t2 + 2t) sin x

u5(x, t) = (
4t6

45
+

4t5

3
+

20t4

3
+

40t3

3
+ 10t2 + 2t) sin x.

...

Computing un for n = 0, 1, 2, 3, 4, 5, the solution u(x, t) is same as Eq.(11).

If P0(t) = 1 + 2t2, then the series solution of the problem is the following

u0(x, t) = (1 + 2t2) sin x

u1(x, t) = −(
4t3

3
+ 4t2 + 2t) sin x

u2(x, t) = (
2t4

3
+ 4t3 + 6t2 + 2t) sin x

u3(x, t) = −(
4t5

15
+

8t4

3
+ 8t3 + 8t2 + 2t) sin x

u4(x, t) = (
4t6

45
+

4t5

3
+

20t4

3
+

40t3

3
+ 10t2 + 2t) sin x.

...

Having un for n = 0, 1, 2, 3, 4, the solution u(x, t) is same as Eq.(11).

If P0(t) = (−4t3

3
−2t2−2t+1), then the series solution of the problem is the following

u0(x, t) = (
−4t3

3
− 2t2 − 2t+ 1) sinx

u1(x, t) = (
2t4

3
+ 4t3 + 6t2 + 2t) sin x
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u2(x, t) = −(
4t5

15
+

8t4

3
+ 8t3 + 8t2 + 2t) sin x

u3(x, t) = (
4t6

45
+

4t5

3
+

20t4

3
+

40t3

3
+ 10t2 + 2t) sin x.

...

Having un for n = 0, 1, 2, 3, the solution u(x, t) is same as Eq.(11). As we see that if
we choose P0(t) properly, we obtain the series solution of the problem in three iteration.

Example 3 : We consider the cauchy problem for porous medium equation with
a source term, which is a simple model for a nonlinear heat propagation in reactive
medium

∂u

∂t
= a

∂

∂x

(
u−2∂u

∂x

)
+ bu (12)

with the initial condition u(x, 0) = x−1. Exact solution of Eq.(12) is given as u(x, t) =
x−1 exp(bt) [6]. Let trial function be u0(x, t) = P0(t)x

−1 where P0(0) = 1. By using
He’s method, the homotopic equation is following

∂Φ

∂t
− P ′

0(t)x
−1 = p

[
a
∂

∂x

(
Φ−2∂Φ

∂x

)
+ bΦ− P ′

0(t)x
−1

]
. (13)

Substituting Eq.(2) into Eq.(13) and equating coefficients of p, we get the following

p0 : {∂u0

∂t
− P ′

0(t)x
−1 = 0, u0(x, 0) = x−1

p1 : {∂u1

∂t
= a

∂

∂x

(
u−2
0

∂u0

∂x

)
+ bu0 − P ′

0(t)x
−1, u1(x, 0) = 0

p2 : {∂u2

∂t
= a

∂

∂x

(
−2u1u

−3
0

∂u0

∂x
+ u−2

0

∂u1

∂x

)
+ bu1, u2(x, 0) = 0

p3 : {∂u3

∂t
= a

∂

∂x

(
−2u−3

0 u2
∂u0

∂x
− 2u−3

0 u1
∂u1

∂x
+ u−2

0

∂u2

∂x
+ 3u−4

0 u2
1

∂u0

∂x

)
+ bu2

...

If we solve above equations for unknowns un’s, we obtain

u0(x, t) = x−1P0(t)

u1(x, t) = x−1[−P0(t) + 1 + b
∫
P0(t)dt] = x−1P1(t)

u2(x, t) = x−1
∫

P1(t)dt = x−1P2(t)

u3(x, t) = x−1
∫

P2(t)dt = x−1P3(t)
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...

un(x, t) = x−1
∫

Pn−1(t)dt = x−1Pn(t)

Therefore series solution can be written in the following

u(x, t) = [P0(t) + P1(t) + P2(t) + P3(t) + ...]x−1.

As we mentioned above, once we compute u1, we can find the other terms of the series
solution by using u2, u3, u4,... directly. Let’s give some examples for P0(t).

If P0(t) = 1, then terms of the series solution of the problem is u0(x, t) = x−1,
u1(x, t) = btx−1 u2(x, t) = bt2

2
x−1, u3(x, t) = bt3

6
x−1, u4(x, t) = bt4

24
x−1, u5(x, t) =

bt5

120
x−1...

If P0(t) = 1 + bt, then terms of the series solution of the problem is u0(x, t) =
(1 + bt)x−1, u1(x, t) =

bt2

2
x−1, u2(x, t) =

bt3

6
x−1, u3(x, t) =

bt4

24
x−1, u4(x, t) =

bt5

120
x−1...

If P0(t) = 1+ bt+ bt2

2
, then terms of the series solution of the problem is u0(x, t) =

(1 + bt + bt2

2
)x−1, u1(x, t) = bt3

6
x−1, u2(x, t) = bt4

24
x−1, u3(x, t) = bt5

120
x−1... As we see

that if we choose P0(t) properly, we obtain the series solution of the problem in three
iteration. On the other hand, we obtain exact solution of the nonlinear problem, which
is u(x, t) = u0 + u1 + u2 + ... = x−1 exp(bt)

Conclusion

As we see from above examples, we obtain better approximation by choosing P0(t)
properly. In this way, we minimize the computational work and the time. Once we
compute u1, it is easy to find the other terms of the series solution of the problem with-
out computing to the series equations. In addition to, we obtain better approximate
solution of the problem no matter they are linear or nonlinear.
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