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Abstract – In this study, a mathematical model in form fractional-order differential equations (FDEs) system 

identifying population dynamics in two species bacteria struggling one another and exposed to multiple 

antibiotics simultaneously, was suggested. Stability analysis of the equilibrium points of the proposed model 

was also carried out. Additionally, the results of the analysis have promoted by numerical simulations. 
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1. Introduction 
 

Mathematical modeling through fractional-orders differential and integral operators has 

become increasingly common in recent years. In addition, that, the various types of 

fractional-order differential equations are proposed for most of the standard models. 

Fractional-order differential equations (FDEs) are, at least, as stable as their integer order 

counterpart, namely ordinary differential equation [1]. Therefore, the fractional-order 

calculus has a considerable amount of attention for many areas of science [2-7]. In particular, 

biology is a very rich resource for mathematical ideas. 

 

The behavior of most biological systems has memory or after-effects. The modeling of these 

systems by FDEs has more advantages than classical integer-order modeling, where such 

effects are neglected [2]. In this study, a continuous time mathematical model proposed in 

[8] is examined by using the system of FDEs. 

 

 

2. Preliminaries and Definitions 
 

In this section, the basic definitions and characteristics of fractional derivative operators is 

expressed. 
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2.1. Fractional Differential Operators 

 

There are various descriptions of a fractional derivative with the order 𝛼 > 0. The definitions 

of Riemann-Liouville and Caputo are used most widely. The Riemann-Liouville fractional 

integral operator with order 𝛼 ≥ 0 for the function 𝑓(𝑡) is described as the following: 

𝐽𝛼𝑓(𝑡) =
1

𝛤(𝛼)
∫(𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏

𝑡

0

, 𝛼 > 0, 𝑡 > 0. (2.1) 

 

Some of properties of the operator 𝐽𝛼 are as follows: 

 

𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛼+𝛽𝑓(𝑡)

𝐽𝛼𝑡𝛾 =
𝛤(𝛾 + 1)

𝛤(𝛼 + 𝛾 + 1)
𝑡𝛼+𝛾

(2.2) 

 

where 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0 and 𝛾 > −1. The Caputo sense was used in this study. Taking into 

account the definition of Caputo sense, the fractional derivative of the function 𝑓(𝑡) is 

identified as 

𝐷α𝑓(𝑡) = 𝐽𝑚−𝛼𝐷𝑚𝑓(𝑡) =
1

𝛤(𝑚 − 𝛼)
∫

𝑓(𝑚)(𝜏)

(𝑡 − 𝜏)𝛼−𝑚+1
𝑑𝜏

𝑡

0

(2.3) 

 

for 𝑚− 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, 𝑡 > 0 [9]. 

 

 

3. Model Formulation  
 

The proposed model in this study is fractional-order form of model suggested in [8], which 

showed dynamics between antibiotics concentrations and bacteria in an individual receiving 

a cocktail of multi-drug treatment against bacteria. Bacteria in model have the competitive 

ability against each order for common host. That all bacteria have not resistance ability 

against to multiple antibiotics, has assumed in model. Let us denote by 𝐵1(𝑡) and 𝐵2(𝑡) the 

population sizes of first, and second bacteria to multiple antibiotics at time 𝑡, respectively; 

and by 𝐴𝑖(𝑡) the concentration of the 𝑖-th antibiotic for 𝑖 = 1,2, . . . , 𝑛.  

 

The parameters used in the model are as follows: It has supposed that bacteria follow a 

logistic growth with different carrying capacity 𝐾1 and 𝐾2, respectively. In this sense, 𝛽𝐵1 
and 𝛽𝐵2 are the birth rate of first and second bacteria, respectively. The first and second 

bacteria have per capita natural death rates 𝜇𝐵1 and 𝜇𝐵2, respectively. The first bacteria also 

die due to the action of the antibiotics, and it has assumed that the rate at which they are 

killed by the 𝑖-th antibiotic is equal to α𝑖𝐵1𝐴𝑖. In the same mind, it is  𝑞
𝑖
𝐵2𝐴𝑖 for other. The 

mutual competition between the species is dictated by 𝑀1, 𝑀2. Finally, the 𝑖-th antibiotic 

concentration is supplied at a constant rate 𝛿𝑖, and is taken up at a constant per capita rate ω𝑖 
(or the excretion rate from body) [10]. 

 

Under the assumptions aforementioned and proposed in [8], it is obtained the following 

system of (𝑛 + 2) fractional-order differential equation: 
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𝐷𝛼𝐵1 = 𝛽𝐵1𝐵1 (1 −
𝐵1
𝐾1
) − [∑𝛼𝑖

𝑛

𝑖=1

𝐴𝑖𝐵1] − 𝜇𝐵1𝐵1 −𝑀1𝐵2𝐵1

𝐷𝛼𝐵2 = 𝛽𝐵2𝐵2 (1 −
𝐵2
𝐾2
) − [∑𝑞𝑖

𝑛

𝑖=1

𝐴𝑖𝐵2] − 𝜇𝐵2𝐵2 −𝑀2𝐵1𝐵2

𝐷𝛼𝐴𝑖 = 𝛿𝑖 − 𝜔𝑖𝐴𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑛.

               (3.1)

 
 

where 𝑡 ≥ 0, 𝑛 ∊ ℕ+, 𝐷 =
𝑑

𝑑𝑡
 and 𝛼 ∈ (0,1], real number, is the orders of the derivatives in 

this system. Also, 𝐵1 ≡ 𝐵1(𝑡), 𝐵2 ≡ 𝐵2(𝑡), 𝐴1 ≡ 𝐴1(𝑡),…, 𝐴𝑛 ≡ 𝐴𝑛(𝑡), the parameters 

𝛽𝐵1 , 𝛽𝐵2 , 𝜇𝐵1 , 𝜇𝐵2 , 𝑀1, 𝑀2 and 𝛼𝑖, 𝑞𝑖 for 𝑖 = 1, . . . , 𝑛 are positive constants. Additionally, the 

system (3.1) has to be finished with positive initial conditions 𝐵1(𝑡0) = 𝐵10, 𝐵2(𝑡0) = 𝐵20, 

𝐴1(𝑡0) = 𝐴10,…, 𝐴𝑛(𝑡0) = 𝐴𝑛0. 

 

The above scenario related to the parameters used in the model (3.1) has been graphically 

described in Figure 3.1.  
 

 
Figure 3.1. Schematic demonstration of interaction among bacteria (first and second) and concentrations of 

multiple antibiotic in model (3.1). 

 

To reduce the number of parameters, it is used change of variables 𝑏1 =
𝐵1

𝐾1
,    𝑏2 =

𝐵2

𝐾2
,    𝑎𝑖 =

𝐴𝑖
δ𝑖
ω𝑖

.  In the new variables, system (3.1) transforms to 

𝐷𝛼𝑏1 = 𝛽𝐵1𝑏1(1 − 𝑏1) − [∑𝛼𝑖𝑎𝑖𝑏1

𝑛

𝑖=1

] − 𝜇𝐵1𝑏1 −𝑚1𝑏2𝑏1

𝐷𝛼𝑏2 = 𝛽𝐵2𝑏2(1 − 𝑏2) − [∑𝑞𝑖𝑎𝑖𝑏2

𝑛

𝑖=1

] − 𝜇𝐵2𝑏2 −𝑚2𝑏1𝑏2

𝐷𝛼𝑎𝑖 = 𝜔𝑖 − 𝜔𝑖𝑎𝑖, 𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑛.

             (3.2) 
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where 𝑞𝑖 = 𝑞𝑖 (
𝛿𝑖

𝜔𝑖
),    𝛼𝑖 = 𝛼𝑖 (

𝛿𝑖

𝜔𝑖
),    𝑀1 =

𝑚1

𝐾2
 and 𝑀2 =

𝑚2

𝐾1
. 

 

Definition 3.1 The FDE model in (3.2) is rewritten the matrix form as the following: 

 
𝐷α𝑋(𝑡) = 𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) + 𝐻

𝑋(0) = 𝑋0
(3.3) 

where 

𝑋(𝑡) =

(

 
 

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)
⋮

𝑥𝑛+2(𝑡))

 
 
=

(

 
 

𝑏1(𝑡)

𝑏2(𝑡)

𝑎1(𝑡)
⋮

𝑎𝑛(𝑡))

 
 

, 𝑋0 =

(

 
 

𝑥1(0)

𝑥2(0)

𝑥3(0)
⋮

𝑥𝑛+2(0))

 
 

, 𝐻 =

(

 
 

0
0
𝜔1
⋮
𝜔𝑛)

 
 

, 

 

𝐴 =

(

  
 

(𝛽𝐵1 − 𝜇𝐵1) 0 0 … 0

0 (𝛽𝐵2 − 𝜇𝐵2) 0 … 0

0 0 −𝜔1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜔𝑛)

  
 

, 

 

𝐵1 =

(

 
 

−𝛽𝐵1 −𝑚1 −𝛼1 … −𝛼𝑛
0 0 0 … 0
0 0 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 0 )

 
 

 

and  

 

𝐵2 =

(

 
 

0 0 0 … 0
−𝑚2 −𝛽𝐵2 −𝑞1 … −𝑞𝑛
0 0 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 0 )

 
 

. 

 

Definition 3.2 For 𝑋(𝑡) = (𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡) … 𝑥𝑛+2(𝑡))
𝑇
, let 𝐶∗[0, 𝑇] be the set of 

continuous column vectors 𝑋(𝑡) on the interval [0, 𝑇]. The norm of 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇] definite 

in (3.3) is ‖𝑋(𝑡)‖ = ∑ 𝑠𝑢𝑝𝑡|𝑥𝑖(𝑡)|
𝑛+2
𝑖=1 . 

 

Proposition 3.1 Let considered Definition 3.1. Let ℝ+
𝑛+2 = {𝑋: 𝑋 ≥ 0} and 𝑋(𝑡) =

(𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)… 𝑥𝑛+2(𝑡))
𝑇
. Let 𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] and 𝐷𝛼𝑓(𝑥) ∈ 𝐶[𝑎, 𝑏] for 0 < 𝛼 ≤ 1, 

and then, by the generalized mean value theorem, it is 

 

 𝑓(𝑥) = 𝑓(𝑎) +
1

𝛤(𝛼)
𝐷𝛼𝑓(𝜉)(𝑥 − 𝑎)𝛼 with 0 ≤ 𝜉 ≤ 𝑥, all 𝑥 ∈ [𝑎, 𝑏].  

 

According to this theorem,  

 

• the function 𝑓(𝑥) is increasing for each 𝑥 ∈ [𝑎, 𝑏], when 𝐷𝛼𝑓(𝑥) > 0, all 𝑥 ∈ [𝑎, 𝑏],  
• the function 𝑓(𝑥) is decreasing for each 𝑥 ∈ [𝑎, 𝑏], when 𝐷𝛼𝑓(𝑥) < 0, all 𝑥 ∈ [𝑎, 𝑏]. 
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Additionally, the vector field points into ℝ+
𝑛+2, since 𝐷𝛼𝑏1(𝑡)|𝑏1=𝑏2=𝑎𝑖=0 = 0, 

𝐷𝛼𝑏2(𝑡)|𝑏1=𝑏2=𝑎𝑖=0 = 0 and 𝐷𝛼𝑎𝑖|𝑏1=𝑏2=𝑎𝑖=0 = 𝜔𝑖 for 𝑖 = 1,2, . . . , 𝑛 on each hyperplane 

bounding the nonnegative octant. 

 

Proposition 3.2 Let 𝑋(𝑡) ∈ 𝐶∗[0, 𝑇]. In this case, there is a unique solution of the system 

(3.2). 

 

Proof. If 𝐷α𝑋(𝑡) = 𝐹(𝑋(𝑡)) = 𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) + 𝐻, then         𝑋(𝑡) ∈

𝐶∗[0, 𝑇] implies 𝐹(𝑋(𝑡)) ∈ 𝐶∗[0, 𝑇]. Also, considering 𝑋(𝑡), 𝑌(𝑡) ∈ 𝐶∗[0, 𝑇] and 𝑋(𝑡) ≠

 𝑌(𝑡); it is obtained the following inequalities: 

 

‖𝐹(𝑋(𝑡)) − 𝐹(𝑌(𝑡))‖ 

 

= ‖(𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) + 𝐻)
− (𝐴𝑌(𝑡) + 𝑦1(𝑡)𝐵1𝑌(𝑡) + 𝑦2(𝑡)𝐵2𝑌(𝑡) + 𝐻)‖ 

 

= ‖𝐴𝑋(𝑡) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) − 𝐴𝑌(𝑡) − 𝑦1(𝑡)𝐵1𝑌(𝑡) − 𝑦2(𝑡)𝐵2𝑌(𝑡)‖ 

 

= ‖

𝐴(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥1(𝑡)𝐵1𝑋(𝑡) + 𝑥2(𝑡)𝐵2𝑋(𝑡) − 𝑦1(𝑡)𝐵1𝑌(𝑡) − 𝑦2(𝑡)𝐵2𝑌(𝑡)

−(𝑥1(𝑡)𝐵1𝑌(𝑡) − 𝑥1(𝑡)𝐵1𝑌(𝑡)⏟                  
0

) − (𝑥2(𝑡)𝐵2𝑌(𝑡) − 𝑥2(𝑡)𝐵2𝑌(𝑡)⏟                  
0

)
‖ 

 

= ‖
𝐴(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥1(𝑡)𝐵1(𝑋(𝑡) − 𝑌(𝑡)) + 𝑥2(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡)) + (𝑥1(𝑡) − 𝑦1(𝑡))𝐵1𝑌(𝑡)

+(𝑥2(𝑡) − 𝑦2(𝑡))𝐵2𝑌(𝑡)
‖ 

 

≤ (
‖𝐴(𝑋(𝑡) − 𝑌(𝑡))‖ + ‖𝑥1(𝑡)𝐵1(𝑋(𝑡) − 𝑌(𝑡))‖ + ‖𝑥2(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡))‖

+‖(𝑥1(𝑡) − 𝑦1(𝑡))𝐵1𝑌(𝑡)‖ + ‖(𝑥2(𝑡) − 𝑦2(𝑡))𝐵2𝑌(𝑡)‖
) 

 

≤ (
‖𝐴‖‖(𝑋(𝑡) − 𝑌(𝑡))‖ + |𝑥1(𝑡)|‖𝐵1‖‖(𝑋(𝑡) − 𝑌(𝑡))‖ + |𝑥2(𝑡)|‖𝐵2‖‖(𝑋(𝑡) − 𝑌(𝑡))‖

+‖𝐵1‖|(𝑥1(𝑡) − 𝑦1(𝑡))|‖𝑌(𝑡)‖ + ‖𝐵2‖|(𝑥2(𝑡) − 𝑦2(𝑡))|‖𝑌(𝑡)‖
) 

 

≤ (

(‖𝐴‖ + |𝑥1(𝑡)|‖𝐵1‖ + |𝑥2(𝑡)|‖𝐵2‖)‖(𝑋(𝑡) − 𝑌(𝑡))‖

+‖𝐵1‖ |(𝑥1(𝑡) − 𝑦1(𝑡))|⏟          
≤‖(𝑋(𝑡)−𝑌(𝑡))‖

‖𝑌(𝑡)‖ + ‖𝐵2‖ |(𝑥2(𝑡) − 𝑦2(𝑡))|⏟          
≤‖(𝑋(𝑡)−𝑌(𝑡))‖

‖𝑌(𝑡)‖) 

 

≤ (‖𝐴‖ + ‖𝐵1‖|𝑥1(𝑡)| + ‖𝐵1‖‖𝑌(𝑡)‖ + ‖𝐵2‖|𝑥2(𝑡)| + ‖𝐵2‖‖𝑌(𝑡)‖)‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

≤ (‖𝐴‖ + ‖𝐵1‖(|𝑥1(𝑡)|⏟  
≤‖𝑋(𝑡)‖

+ ‖𝑌(𝑡)‖) + ‖𝐵2‖(|𝑥2(𝑡)|⏟  
≤‖𝑋(𝑡)‖

+ ‖𝑌(𝑡)‖))‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

≤ (‖𝐴‖ + (‖𝐵1‖ + ‖𝐵2‖)(‖𝑋(𝑡)‖ + ‖𝑌(𝑡)‖))‖(𝑋(𝑡) − 𝑌(𝑡))‖ 

 

and so, it is 

‖𝐹(𝑋(𝑡)) − 𝐹(𝑌(𝑡))‖ ≤ 𝐿‖(𝑋(𝑡) − 𝑌(𝑡))‖                         (3.4) 
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where 𝐿 = ‖𝐴‖ + (‖𝐵1‖ + ‖𝐵2‖)(𝑊1 +𝑊2) > 0, and 𝑊1 and 𝑊2 are positive and meet the 

inequalities  ‖𝑋(𝑡)‖ ≤ 𝑊1, ‖𝑌(𝑡)‖ ≤ 𝑊2 due to 𝑋(𝑡), 𝑌(𝑡) ∈ 𝐶∗[0, 𝑇]. Therefore, the 

system (3.3) has a unique solution. 

 

Lemma 3.1. Consider the following fractional-order autonomous system 

 

𝐷α𝑋(𝑡) = 𝐹(𝑋(𝑡)), 𝐷 =
𝑑

𝑑𝑡
𝑋(0) = 𝑋0

                                           (3.5)  

 

where 𝛼 ∈ (0,1], 𝑋(𝑡) = (𝑥1 𝑥2 … 𝑥𝑛)𝑇 and 𝐹 = (𝑓1 𝑓2 … 𝑓𝑛)𝑇. To evaluate the 

equilibrium points, it has been presumed as 𝐷α𝑋(𝑡) = 0 ⇒ 𝑓𝑖(𝑥1̅̅̅, 𝑥2̅̅ ̅, … , 𝑥𝑛̅̅ ̅) = 0 for 𝑖 =
1,2, … , 𝑛. In this sense, the equilibrium point (𝑥1̅̅̅, 𝑥2̅̅ ̅, … , 𝑥𝑛̅̅ ̅) of this system is founded. To 

evaluate the asymptotic stability of equilibrium points, the Jacobian matrix,  

 

𝐽 =

(

 
 
 
 
 

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

…
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

…
𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

…
𝜕𝑓𝑛
𝜕𝑥𝑛)

 
 
 
 
 

 

 

is used. It is assumed that the 𝐼 is identity matrix with 𝑛x𝑛. If all of the eigenvalues, 

𝜆1, 𝜆2, … , 𝜆𝑛, obtained from the equation  

 

𝐷𝑒𝑡( 𝐽(𝑥1,𝑥2,…,𝑥𝑛)=(𝑥1̅̅̅̅ ,𝑥2̅̅̅̅ ,…,𝑥𝑛̅̅ ̅̅ ) − 𝜆𝐼) = 0                                                  (3.6) 

 

satisfies either the Routh–Hurwitz stability conditions or the conditions 

 

(|𝑎𝑟𝑔(𝜆1)| >
𝛼𝜋

2
,    |𝑎𝑟𝑔(𝜆2)| >

𝛼𝜋

2
) ,                                                  (3.7) 

 

then (𝑥1̅̅̅, 𝑥2̅̅ ̅, … , 𝑥𝑛̅̅ ̅) is locally asymptotically stable (LAS) for system (3.5). In addition that, 

the characteristically equation obtained from (3.6) can be given by 

 

𝑃(𝜆) = 𝜆𝑛 + 𝑎1𝜆
𝑛−1+. . . +𝑎𝑛−1𝜆 + 𝑎𝑛, 

 

where the coefficients 𝑎𝑖 for 𝑖 = 1, . . . , 𝑛 are real constants. In this respect, Routh-Hurwitz 

stability conditions for polynomial of degree 𝑛 = 2, 3, 4 and 5 are summarized as 

following: 

 
𝑛 = 2: 𝑎1, 𝑎2 > 0,
𝑛 = 3: 𝑎1, 𝑎3 > 0 and 𝑎1𝑎2 > 𝑎3,

𝑛 = 4: 𝑎1, 𝑎3, 𝑎4 > 0 and 𝑎1𝑎2𝑎3 > 𝑎3
2 + 𝑎1

2𝑎4,

𝑛 = 5: 
𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 > 0, 𝑎1𝑎2𝑎3 > 𝑎3

2 + 𝑎1
2𝑎4 

and (𝑎1𝑎4 − 𝑎5)(𝑎1𝑎2𝑎3 − 𝑎3
2 − 𝑎1

2𝑎4) > 𝑎5(𝑎1𝑎2 − 𝑎3)
2 + 𝑎1𝑎5

2.

(3.8) 
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Additionally, the above mentioned criteria has provided the necessary and sufficient 

conditions for all roots of 𝑃(𝜆) to lie in the left half of the complex plane [11]. 

 

Conclusion 3.1. Let us consider Lemma 3.1. The following conclusion can be summarized 

from this lemma. If the eigenvalues are real numbers, it is enough to only check whether they 

provide the Routh-Hurwitz criteria for the stability of the equilibrium point obtained from 

system (3.5). 

 

Conclusion 3.2. It is assumed that the characteristically equation is 

 

𝑃(𝜆) = 𝜆2 + 𝑎1𝜆 + 𝑎2
          = 𝜆2 + (−𝑇𝑟(𝐽))𝜆 + (𝐷𝑒𝑡𝐽) = 0

                               (3.9) 

 

for 𝑛 = 2 in system (3.5). In this sense, the stability conditions of the equilibrium point are: 

either Routh–Hurwitz conditions (𝑎1, 𝑎2 > 0) 
or:  

𝑎1 < 0, 4𝑎2 > (𝑎1)
2, |𝑡𝑎𝑛−1 (

√4𝑎2 − (𝑎1)2

𝑎1
)| >

𝛼𝜋

2
. (3.10) 

 

4. Qualitative Analysis of the System (3.2) 

 
Proposition 4.1.  The existence and stability of equilibria of the system (3.2) are analyzed in 

here. The equilibria of the system with the threshold parameters 

 
𝛽𝐵1 − [∑ 𝛼𝑖

𝑛
𝑖=1 ] − 𝜇𝐵1
𝛽𝐵1

= 𝐴,
𝛽𝐵2 − [∑ 𝑞𝑖

𝑛
𝑖=1 ] − 𝜇𝐵2
𝛽𝐵2

= 𝐵,
𝑚1
𝛽𝐵1

= 𝐶,
𝑚2

𝛽𝐵2
= 𝐷,

0 < 𝐶, 0 < 𝐷

(4.1) 

 

are as follows: The system (3.2) always has the infection-free equilibrium point 𝐸0 =
(0,0,1,1, . . . ,1). If 𝐴 > 0, then 𝐸1 = (𝐴, 0,1,1, . . . ,1)

 

reveals as another equilibrium point. 

Likewise, 𝐸2 = (0, 𝐵, 1,1, . . . ,1)
 

exists, when 𝐵 > 0.  When 𝐶𝐷 < 1 and 𝐵𝐶 < 𝐴 <
𝐵

𝐷
 or 1 <

𝐶𝐷 and 
𝐵

𝐷
< 𝐴 < 𝐵𝐶, in addition to 𝐸0, 𝐸1, and 𝐸2, there exists a fourth the equilibrium 

point, 𝐸3 = (
𝐵𝐶−𝐴

𝐶𝐷−1
,
𝐷𝐴−𝐵

𝐶𝐷−1
, 1,1, . . . ,1) [8].  

 

Proposition 3.2. The equilibrium points of system (3.2) satisfy the followings: 

(i) If 𝐴 < 0 and 𝐵 < 0, then the infection-free equilibrium 𝐸0 is LAS. If either 𝐴 > 0 
or  𝐵 > 0, it

 
becomes an unstable point. 

(ii) Let 𝐴 > 0. If   𝐵 − 𝐷𝐴 < 0, the equilibrium point 𝐸1 is LAS, and if 𝐵 − 𝐷𝐴 > 0, 𝐸1 
becomes an unstable point. 

(iii) Let 𝐵 > 0. If 𝐴 − 𝐶𝐵 < 0, the equilibrium point 𝐸2 is LAS, and if 𝐴 − 𝐶𝐵 > 0, 𝐸2 
becomes an unstable point. 

(iv) Let 𝐶𝐷 < 1 and 𝐵𝐶 < 𝐴 <
𝐵

𝐷
 or 1 < 𝐶𝐷 and 

𝐵

𝐷
< 𝐴 < 𝐵𝐶. If 1 < 𝐶𝐷 and 

𝐵

𝐷
> 𝐴 > 𝐵𝐶,  

then 𝐸3 is LAS. 



Journal of New Theory 26 (2019) 90-103                                                                                                  97 
 

Proof. For the stability analysis, the functions of the right side of the system (3.2) are 

suggested as follows: 

 

𝑓(𝑏1, 𝑏2, 𝑎𝑖) = 𝛽𝐵1𝑏1(1 − 𝑏1) − 𝑏1 [∑𝛼𝑖𝑎𝑖

𝑛

𝑖=1

] − 𝜇𝐵1𝑏1 −𝑚1𝑏2𝑏1

𝑔(𝑏1, 𝑏2, 𝑎𝑖) = 𝛽𝐵2𝑏2(1 − 𝑏2) − [∑𝑞𝑖𝑎𝑖𝑏2

𝑛

𝑖=1

] − 𝜇𝐵2   𝑏2 −𝑚2𝑏1𝑏2

ℎ𝑖(𝑏1, 𝑏2, 𝑎𝑖) = 𝜔𝑖 − 𝜔𝑖𝑎𝑖,            𝑖 = 1,2, . . . , 𝑛.

                       (4.2)

 
 

That Jacobean matrix obtained from equations in (4.2) is  

 

𝐽 =

(

 
 
 
 
 
 
 
 
 (

𝛽𝐵1 − 2𝛽𝐵1𝑏1 −∑𝛼𝑖𝑎𝑖

𝑛

𝑖=1

−𝜇𝐵1 −𝑚1𝑏2

) −𝑚1𝑏1 −𝛼1𝑏1 … −𝛼𝑛𝑏1

−𝑚2𝑏2 (
𝛽𝐵2 − 2𝛽𝐵2𝑏2 −∑𝑞𝑖𝑎𝑖

𝑛

𝑖=1

−𝜇𝐵2 −𝑚2𝑏1

) −𝑞1𝑏2 … −𝑞𝑛𝑏2

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛 )

 
 
 
 
 
 
 
 
 

.    (4.3) 

 

In terms of ease of representation, the 𝜏-th eigenvalue of
 
equilibrium point 𝐸𝑘 is shown as 

λ(𝑘)τ for 𝑘 = 0,1,2,3 and 𝜏 = 1,2, . . . , 𝑛 + 2,    𝑛 ∈ 𝑁. 

 

(i) From (4.3), the Jacobean matrix evaluated at the equilibrium point 𝐸0 is given by 

 

𝐽(𝐸0) =

(

 
 
 
 
 
 
𝛽𝐵1 −∑𝛼𝑖

𝑛

𝑖=1

− 𝜇𝐵1 0 0 … 0

0 𝛽𝐵2 −∑𝑞𝑖

𝑛

𝑖=1

− 𝜇𝐵2 0 … 0

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛)

 
 
 
 
 
 

. (4.4) 

 

By taking into account (4.1), the eigenvalues obtained from (4.4) are 𝜆(0)1 = 𝛽𝐵1𝐴,  𝜆(0)2 =

𝛽𝐵2𝐵  and  𝜆(0)𝑖+2 = −𝜇𝑖 for 𝑖 = 1,2, . . . , 𝑛. It is explicit that all eigenvalues are real numbers 

and 𝜆(0)𝑖+2 = −𝜇𝑖 < 0, since parameters in the proposed model are positive real number. By 

Conclusion 3.1., it is enough to examine whether the eigenvalues provide the Routh-Hurwitz 

criteria for stability analysis of 𝐸0. Therefore, the others eigenvalues, 𝜆(0)1 and 𝜆(0)2, are 

negative real number, iff 𝐴 < 0 and 𝐵 < 0. In this case, 𝐸0 is LAS. 

 

(ii) Let 𝐴 > 0. The jacobian matrix for the equilibrium point 𝐸1 by taking into account 

(4.1) is given as 
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𝐽(𝐸1) =

(

 
 

−𝛽𝐵1𝐴 −𝑚1𝐴 −𝛼1𝐴 … −𝛼𝑛𝐴

0 𝛽𝐵2𝐵 −𝑚2𝐴 0 … 0

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛 )

 
 
. (4.5) 

 

The eigenvalues are 𝜆(1)1 = −𝛽𝐵1𝐴, 𝜆(1)2 = 𝛽𝐵2(𝐵 − 𝐷𝐴) and 𝜆(1)𝑖+2 = −𝜇𝑖 < 0 for 𝑖 =

1,2, . . . , 𝑛. The eigenvalues are real numbers. From Conclusion 3.1., the eigenvalues are 

negative real number, iff 𝐴 > 0 and 𝐵 − 𝐷𝐴 < 0. Therefore, it is LAS. 

 

(iii) For 𝐵 > 0, there is the equilibrium point 𝐸2. The Jacobian matrix evaluated in this point 

is 

𝐽(𝐸2) =

(

 
 

𝛽𝐵1𝐴 −𝑚1𝐵 0 0 … 0

−𝑚2𝐵 −𝛽𝐵2𝐵 −𝑞1𝐵 … −𝑞𝑛𝐵

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛 )

 
 

                          (4.6) 

 

by (4.1). The eigenvalues of (4.6) are 𝜆(2)1 = 𝛽𝐵1𝐴 −𝑚1𝐵 = 𝛽𝐵1(𝐴 − 𝐶𝐵), 𝜆
(2)

2 = −𝛽𝐵2𝐵 

and 𝜆(2)𝑖+2 = −𝜇𝑖 < 0 for 𝑖 = 1,2, . . . , 𝑛. By the same mind in (ii), the eigenvalues are real 

numbers. We have Conclusion 3.1. 𝐸2 is LAS, iff 𝐵 > 0 and 𝐴 − 𝐶𝐵 < 0. 

 

(iv) Let 

𝐶𝐷 < 1 and 𝐵𝐶 < 𝐴 <
𝐵

𝐷
 or 1 < 𝐶𝐷 and 

𝐵

𝐷
< 𝐴 < 𝐵𝐶.                                 (4.7) 

 

In this case, the stability of 𝐸3 can be analyzed. Evaluating J for 𝐸3, we have 

 

𝐽(𝐸3) =

(

 
 
 
 
 
 
 
 
 𝛽𝐵1 (

𝐴 − 2
𝐵𝐶 − 𝐴

𝐶𝐷 − 1
−

𝐶
𝐷𝐴 − 𝐵

𝐶𝐷 − 1

) −𝑚1
𝐵𝐶 − 𝐴

𝐶𝐷 − 1
−𝛼1𝑏1 … −𝛼𝑛𝑏1

−𝑚2
𝐷𝐴 − 𝐵

𝐶𝐷 − 1
𝛽𝐵2 (

𝐵 − 2
𝐷𝐴 − 𝐵

𝐶𝐷 − 1
−

𝐷
𝐵𝐶 − 𝐴

𝐶𝐷 − 1

) −𝑞1𝑏2 … −𝑞𝑛𝑏2

0 0 −𝜇1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … −𝜇𝑛 )

 
 
 
 
 
 
 
 
 

(4.8) 

 

That eigenvalues of Jacobean matrix evaluated at the equilibrium point 𝐸3 are 𝜆(3)𝑖+2 =
−𝜇𝑖 < 0 for 𝑖 = 1,2, . . . , 𝑛 and the others

 
are founded from following matrix; 

 

𝐽𝐵(𝐸3) = (
−𝛽𝐵1 (

𝐴 − 𝐵𝐶

1 − 𝐶𝐷
) −𝑚1 (

𝐴 − 𝐵𝐶

1 − 𝐶𝐷
)

−𝑚2 (
𝐵 − 𝐴𝐷

1 − 𝐶𝐷
) −𝛽𝐵2 (

𝐵 − 𝐴𝐷

1 − 𝐶𝐷
)

)                                                       (4.9) 
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where 𝐽𝐵(𝐸3) is the block matrix of 𝐽(𝐸3). It is clear that 𝜆(3)𝑖+2 = −𝜇𝑖 ∊ ℝ
− and so, it does 

not impair the stability of this point. From (4.9), it is 𝑇𝑟(𝐽𝐵(𝐸3)) = −[𝛽𝐵1𝑏1 + 𝛽𝐵2𝑏2] and 

𝐷𝑒𝑡(𝐽𝐵(𝐸3)) = 𝛽𝐵1𝛽𝐵2𝑏1𝑏2(1 − 𝐶𝐷). In this respect, it is 𝑇𝑟(𝐽𝐵(𝐸3)) < 0 due to equilibrium 

values in 𝐸3  and parameters in (3.1) are positive real number. Consider the parameter 𝑎1 in 

(3.9), it is 𝑎1 > 0, due to 𝑇𝑟(𝐽𝐵(𝐸3)) < 0. Thus, the stability conditions of the equilibrium 

point are Routh–Hurwitz conditions (𝑎1, 𝑎2 > 0), due to 𝑎1 > 0. 

 

In addition, that, if 𝐶𝐷 < 1, (4.10). Then 𝑎2 = 𝐷𝑒𝑡(𝐽
𝐵(𝐸3)) > 0. By (4.7) and (4.10), if 

1 < 𝐶𝐷 and 
𝐵

𝐷
< 𝐴 < 𝐵𝐶, (4.11) then the eigenvalues are negative real number or 

complex number with negative real parts, and so, it is LAS. 

 

As a result, the LAS conditions founded for equilibria of system (3.2) are summarized in the 

Table 4.1. 

 
Table 4.1. The LAS conditions of the equilibria of FDEs system in (3.2). 

 

Equilibrium Points Stability Conditions 

𝐸0 = (0,0,1, . . . ,1) 𝐴 < 0, 𝐵 < 0 

𝐸1 = (𝐴, 0,1, . . . ,1)   𝑚𝑎𝑥 {0,
𝐵

𝐷
} < 𝐴 

𝐸2 = (0, 𝐵, 1, . . . ,1) 𝑚𝑎𝑥{0, 𝐴} < 𝐵𝐶 

𝐸3 = (
𝐴 − 𝐵𝐶

1 − 𝐶𝐷
,
𝐵 − 𝐴𝐷

1 − 𝐶𝐷
, 1,1, . . . ,1) 1 < 𝐶𝐷 and 

𝐵

𝐷
< 𝐴 < 𝐵𝐶 

 

 

5. Numerical Study 

 
In the following discussion, it is demonstrated some contributions of the proposed 

mathematical model to the study of complex problems in host-microbe interactions. In 

numerical study, datas of two different streams competing each others of bacteria including 

Acinetobacter baumannii (𝑏1) and E. coli (𝑏2)  in host were used and dynamics of multiple 

antibiotics against these bacteria causing infection were examined [8]. The parameters used 

in numerical study [12-18] are as the followings: 

 
𝛽𝐵1 = 1.2 day

−1,  𝛽𝐵2 = 0.6 day
−1, 𝐾1 = 10

8 cell, 𝐾2 = 10
7 cell, 𝜇𝐵1 = 0.312 day

−1,

𝜇𝐵2 = 0.179 day
−1,𝑀1 = 10

−7 cell−1day−1, 𝑀2 = 10
−7 cell−1day−1, 𝛼1 = 0.47 day

−1,

𝛼2 = 0.21 day
−1, 𝑞1 = 0.42 day

−1, 𝑞2 = 0.17 day
−1, 𝛿1 = 2 mg/kg/day,

𝛿2 = 1.2 mg/kg/day, 𝜔1 = 0.04 day
−1, 𝜔2 = 0.03 day

−1 and 𝛼 = 0.25,0.50,0.75,0.99.

(5.1) 

 

In the light of data obtained from (5.1), it is founded as following: the parameters 

 

∑𝛼𝑖

𝑛

𝑖=1

= 𝛼1 + 𝛼2 = 𝛼1
𝛿1
𝜔1
+ 𝛼2

𝛿2
𝜔2
= 0.47

2

0.04
+ 0.21

1.2

0.03
= 31.9 

 

∑𝑞𝑖

𝑛

𝑖=1

= 𝑞1 + 𝑞2 = 𝑞1
𝛿1
𝜔1
+ 𝑞

2

𝛿2
𝜔2
= 0.42

2

0.04
+ 0.17

1.2

0.03
= 27.8 
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𝑚1 = 𝑀1𝐾2 = 10
−7 ∗ 107 = 1 

𝑚2 = 𝑀2𝐾1 = 10
−7 ∗ 108 = 10 

 

the threshold parameters 

 

𝐴 =
𝛽𝐵1 − [∑ 𝛼𝑖

𝑛
𝑖=1 ] − 𝜇𝐵1
𝛽𝐵1

=
1.2 − 31.9 − 0.312

1.2
= −25.84 

 

𝐵 =
𝛽𝐵2 − [∑ 𝑞𝑖

𝑛
𝑖=1 ] − 𝜇𝐵2
𝛽𝐵2

=
0.6 − 27.8 − 0.179

0.6
= −45.63 

 

𝐶 =
𝑚1
𝛽𝐵1

=
1

1.2
= 0.83 

 

𝐷 =
𝑚2

𝛽𝐵2
=
10

0.6
= 16.66 

 

and so the equilibrium points 𝐸0(0,0,1,1), 𝐸1(−25.84,0,1,1), 𝐸2(0, −45.63,1,1) and  
𝐸3 = (−0.9376,−29.99972,1,1, . . . ,1). Because it is 𝐴, 𝐵 < 0, the equilibrium point 

𝐸0(0,0,1,1)  is LAS and this situation is clearly seen in following figures:  

 

 

 
Figure 5.1. According to 𝛼 = 0.25, 0.50, 0.75 and 0.99, the trajectory of population sizes of Acinetobacter 

baumannii, when 𝐴 = −25.84 and 𝐵 = −45.63. In here, 𝐸0(0,0,1,1) is LAS, since 𝐴, 𝐵 < 0. 
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Figure 5.2. According to 𝛼 = 0.25, 0.50, 0.75 and 0.99, the trajectory of population sizes of E. coli, when 

𝐴 = −25.84 and 𝐵 = −45.63. In here, 𝐸0(0,0,1,1) is LAS, since 𝐴, 𝐵 < 0. 

 

 

 
Figure 5.3. According to 𝛼 = 0.25, 0.50, 0.75 and 0.99, the trajectory of the imipenem concentration, when 

𝐴 = −25.84 and 𝐵 = −45.63. In here, 𝐸0(0,0,1,1) is LAS, since 𝐴, 𝐵 < 0. 
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Figure 5.4. According to 𝛼 = 0.25, 0.50, 0.75 and 0.99, the trajectory of the ciprofloxacin concentration, 

when 𝐴 = −25.84 and 𝐵 = −45.63. In here, 𝐸0(0,0,1,1) is LAS, since 𝐴, 𝐵 < 0. 

 

In compliance with literature datas [17], while E. coli is disappeared as a result of 90-day 

antibiotics use and Acinetobacter baumannii is disappeared as a result of 30-day antibiotics 

use. This case shows that our model is very useful to explain experimental results in 

literatures. 
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