Available online: January 15, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 1, Pages 1197-[[205] (2019)

DOI: 10.31801/cfsuasmas.513114

ISSN 1303-5991 E-ISSN 2618-6470

COMMUNICATIONS
http://communications.science.ankara.edu.tr/index.php?series=A1 SERIES A1

QUASI-SUBORDINATION AND COEFFICIENT BOUNDS FOR
CERTAIN CLASSES OF MEROMORPHIC FUNCTIONS OF
COMPLEX ORDER

H. M. ZAYED, SERAP BULUT, AND A. O. MOSTAFA

ABSTRACT. In this paper, we obtain Fekete-Szegd functional |a1 - ;La(2)| for
functions of the classes £7(¢) and 27  ; (g, ¢) using quasi-subordination. Sharp

bounds for the Fekete-Szego functional }al — ua%| are obtained. Also, applica-
tions of the main results for subclasses of functions defined by Bessel function
are also considered.

1. INTRODUCTION

Let ¥ denote the class of meromorphic functions of the form:

OEEE! > a2t (1.1)
k=0

Tz
which are analytic in the open punctured unit disc U* = {z: 2 € Cand 0 < |z| <
1} = U\{0}. Let g(2) € X, be given by
1~ &
9(2) = -+ _gr", (1.2)
k=0
then the Hadamard product (or convolution) of f(z) and g(z) is given by

(Fe)2) =2+ > aans = (95 ).
k=0

A function f € ¥ is meromorphic starlike of order «, denoted by X*(«), if

—é)‘?:{z]{é;)} >a(0<a<l; z€l).
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The class ¥*(«) was introduced and studied by Pommerenke [I3] (see also Miller
8)).

For two functions f(z) and g(z), analytic in U, we say that f(z) is subordinate to
g(z) in U and written f(z) < g(2), if there exists a Schwarz function w(z), analytic
in U with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)) (z € U). Furthermore,
if g(z) is univalent in U, then (see [9]):

f(2) < g(2) < f(0) = g(0) and f(U) C g(U).

Let ¢(z) be an analytic function with positive real part on U satisfies ¢(0) =
1 and ¢’(0) > 0 which maps U onto a region starlike with respect to 1 and symmetric
with respect to the real axis. Let X*(¢) be the class of functions f € ¥ for which

2f'(2)
— < ¢(z) (z € U).
19 <o) e v)
The class ¥*(¢) was introduced and studied by Silverman et al. [15] (see also [2]).
1 1-2
The class X*(«) is a special case of the class X*(¢) when p(z) = % (0<

a<1).

Robertson [I4] introduced the concept of quasi-subordination. For two functions
f(2) and g(z), analytic in U, we say that the function f(z) is quasi-subordinate to
g(z) in U and write f(z) <, g(2), if there exists analytic functions ¢(z) and w(z), with
lp(2)] < 1, w(0) =0 and |w(z)| < 1 such that f(z) = ¢(z)g(w(z)) (z € U). When
¢(z) = 1, then f(z) = g(w(z)), so that f(z) < g(z) in U. Also, if w(z) = 2, then
f(z) = ¢(2)g(z) and it is said that f(z) is majorized by g(z) and written f(z) <
g(z) in U (see Goyal and Goswami [6]). Hence it is obvious that quasi-subordination
is a generalization of subordination as well as majorization.

Definition 1. Let X7 () be the class of functions f(z) € ¥ satisfying the quasi-
subordination
2f'(2)

f(z)
The above-mentioned class X} (¢) is the meromorphic analogue of the class S} (), introduced
and studied by Mohd and Darus [10], which consists of functions f(z) of the form z+

&)
S apz" for which
k=2

—1=<49(2)—1(z€l).

2f'(2)
f(z)
Definition 2. For b € C* = C\{0} and A € C\(0,1], R(\) > 0, let = , (g, ) be
the subclass of ¥ consisting of functions f(z) of the form , the functions g(z)
of the form with g, > 0 and satisfying the analytic criterion:
L[—(1 =20z (f*9) (2) + A2* (f % 9)" (2)

A T O e I A

—1<,¢(z)—1(z€0).
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In this paper, we obtain the Fekete-Szegé inequality for meromorphic functions in
the classes 37 (¢) and X7 (g, ). Also, we investigate an applications for subclasses
of functions defined by Bessel function.

2. FEKETE-SZEGO PROBLEM

Let € be the class of functions of the form

w(z) = wiz +waz? + w2 + ...,

satisfying |w(z)| < 1 for z € U.
To prove our results, we need the following lemma.

Lemma 1. [7]. If w € Q, then for any complex number t,
|wa — tw%| < max{1;|t|}.
The result is sharp for the functions given by
2

w(z) =z or w(z) = 2.

Theorem 1. Let p(z) = 1+ B1z+Boz?+..., By > 0 and ¢(2) = co+c1z+c2?+....
If f(2) given by belongs to the class ¥y () and p is a complex number, then

|a1 fua(2)| < % {1+max{1,

B
B,

+ B 12u|}] . (2.1)
The result is sharp.

Proof. If f(2) € ¥;(¢), then there exist analytic functions ¢(z) and w(z), with
lp(2)] < 1, w(0) =0 and |w(z)| < 1 such that

) = ¢(2) [p(w(z)) —
8 1= ¢(2) [p(w(z)) —1].
Since )
—Z;(ij) =1—apz+ (a% —2a1)2* + ...,

p(w(2)) = 1+ wiBiz + (wiBz + wyB1)2* + (w3 By + 2wiwz By + wiBs)z" + ..,
and
o(2) [e(w(z)) — 1] = cow1 B1z + (cowag + cowa By + clwlBl) 24, (22)
then

ag = —cowiBy,
Bicy C1 Bo
a, = - B [wg—&—wlco—l—w% E_Blco .
Thus
Bic c B
a; — Ma% = —% |:'w2 —I-'wlfl —|—w% (2 — Bicg +2M3160):| ,
Co Bl
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and

Bilc c B
o] < 22 et (51 e i)

By

Since ¢(z) is analytic and bounded in U, we have (see [12])
len] < 1= e <1 (n>0).

By using this fact and the well-known inequality, |wi| < 1, we get

B B
|a1 — ,ua%| < 71 [1 + ‘wg + wf (2 — Bicy + 2,uBlcU>

5 |

The result (2.1]) follows by an application of Lemma [I| and the result is sharp for
the functions

) | e
o ! ¢(2) [0(22%) - 1],

and
O
T 1= 62 o)~ 1.

This completes the proof of Theorem [I] O

Remark 1. Putting ¢(z) = 1 in Theorem we obtain the result obtained by
Silverman et al. [I5, Theorem 2.1].

Theorem 2. If f(z) € ¥ satisfies

)
)

then for any complex number p,

-1l p(z)—1(2€0),

|a1—ﬂa3|§% {1+ D2

By |1 —2u||.
|+ Bt -2

Proof. The result follows by taking w(z) = z in the proof of Theorem O

Theorem 3. Let p(2) = 1+B1z+Baz?+...,B1 > 0 and ¢(z) = co+crz+c22>+....
If f(2) given by belongs to the class X7  (g,¢) (A € C\(0,1], R(A) > 0) and
m

w is a complex number, then
By (1 —2\)g1
1—-2u—-5% .
’ [ =22
(2.3)

o — paf] < -

By
— B
Bl‘+ 1

b
1_2)\‘ [1—|—max{1,

The result is sharp.
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Proof. If f(z) € X7 , (g, %), then there exist analytic functions ¢(2) and w(z), with
lp(2)] <1, w(0) =0 and |w(z)| < 1 such that

1[=(1=20)z(f *9)'(2) + A2*(f +9)" (2)
bl @=N(*9)(z) = Az(f *9)(2)

— 1] = ¢(2) [p(w(2)) - 1].

Since

—(1=2X)2(f * 9)'(2) + A22(f x 9)"(2)
(L= (f*9)(z) = Az(f * 9)'(2)
1= (1= XNaogoz + [(1 = N)2aggs — 2(1 — 2N)arq1] 2° + ...,
and from , we get

a _ Blcobwl
0 (1=Ngo
Blcob B2
- =7 — Bicgb || -
ai 2(1—2\)gr [ 2+w1 +w1 <B1 1€o
Thus
Bicob B (1 —2X)Bicobg
2 1Co 2 1€0bg1
— = — — Bicgb + 2p—F-——"—7—"—
T 2(1=2N) g {wQ er +w1 <B1 10D 2 (1-X)2g5 ’
and
Bl C()b C1 2 B ( )\)Blcobgl
e e [ M O et S e

Since |co| <1, |e1| < 1 and |wi| < 1 as in Theorem [I] we deduce that

B4 (1 — 2)\)B160bgl> H

|a a| D1 Cob
B F)) (1—X)2g3

The result ( . ) follows by an application of Lemma The result is sharp for the
functions

1 [ (1 —20)2(f * 9)'(2) + Az*(f * 9)"(2)

B
‘ [1 + ‘wz —l—wf <32 — Bicob+2u
1

- 1} = o) [p(22%) — 1],

bl (=N *9)=) — A(f *9)(2)
and
L[=(1=20a(f 59/ () A2 0)" () ) o
A e et IO
This completes the proof of Theorem O

Remark 2. Putting ¢(z) =1 andb=1in Theorem@ we obtain the result obtained
by Silverman et al. [I5, Theorem 2.2].

Theorem 4. If f(z) € ¥ satisfies

1 [—(1 —20)2(f * 9)'(2) + A2 (f * 9)"(2)
bl (=N *9)(z) = Az(f x9)'(2)

- 1} < p(z) (z € ),



1202 H. M. ZAYED, SERAP BULUT, AND A. O. MOSTAFA

then for any complex number L,

B1 b B2 (1 — 2)\)91
— 1 — Bi|b|1l—2u—7== .
jor = pag| < 5 1—2)\H B T [ =22
Proof. The result follows by taking w(z) = z in the proof of Theorem O

3. APPLICATIONS TO FUNCTIONS DEFINED BY BESSEL FUNCTION

In this section, let us consider the second order linear homogenous differential
equation (see, Baricz [3 p. 7]):

2" (z) + azw'(2) + [B2° — v* 4+ (1 — )] w(z) = 0. (3.1)

The function w, 4 3(2), which is called the generalized Bessel function of the first
kind of order v, is defined a particular solution of (3.1)). The function w, o 5(2) has
the representation

e (—pB)F 2N\ 2k+v
’lUuOéﬁ ZP ( —|—’U—|—QTH) (5) .

k=0

Let us define
2T (s 25)

Loaslz) = Wwv,aﬂ(zw)
1 k+1F v+ a+1
- *+Z (=AM ( ) -
4kt F(k+2)F(k+v+1+ )

where v, , § are non-zero real positive numbers. The operator £, o g is a modifica-
tion of the operator introduced by Deniz [5] (see also Baricz et al. [4]) for analytic
functions.

By using the convolution, we define the operator £, o g as follows:

(Loasf)z) = Luap(z)xf(2)
1 o0 (7B)k+lr ( a+1)

- = k
B z+kZ:04k+1F(k+2) T(k+ov+1+25)™

k2.

The operator L, o g was introduced and studied by Mostafa et al. [1I] (see also
Aouf et al. [2]).

Definition 3. Let Ezqa ﬁ( ) be the class of functions f(z) € X satisfying the quasi-

subordination
_ Z(Ev,a,ﬂf)/(z)

(Loapf)z) 1<4¢(2) =1 (z€U).



QUASI-SUBORDINATION AND COEFFICIENT BOUNDS 1203

Definition 4. For b € C*, A € C\(0,1], R(\) > 0 and v,«, 8 are non-zero real
positive numbers, let E;’A’b(v, a, B;g,¢) be the subclass of & consisting of functions
f(2) of the form and satisfying the analytic criterion:

1 [—(1 —2XN)2(Ly.apf) (2) + A22(Lopasf)"(2)
b (1 =N (Lo,a,)(2) = A2(Lyapf) (2)

Using similar arguments to the proof of the previous theorems, we obtain the
following theorems.

— 1| =4 0(2) — 1.

Theorem 5. Let p(2) = 1+ Byz+Bsz?+..., By > 0 and ¢(2) = co+crz+caz’+....
I{L f(z) given by belongs to the class EZ?%B(QO) and | 18 a complex number,
then

2w+ (v+1+ 2By

= | < =
B2 v+ atl
x (1 1,|==|+B1|1l— e .
e
The result is sharp.
Theorem 6. If f(z) € ¥ satisfies
7Z(£v,a,ﬁf)/(z)

(‘Cwa,,@f) (Z)

—1<p(z)—1(2€U),
then for any complex number p,
2w+ ) (142 By [1+‘B2 . ( v+ 4t >H
2 o K atl :
B By v+ 1+ 24
Theorem 7. Let p(z) = 1+ Biz+Boz?+..., By > 0 and ¢(2) = co+c1z+c2?+....

If f(z) given by belongs to the class ¥ \ (v, a, B;g,) and p is a complex
number, then

a1 — pad| < + B

ay — o] <

42(v+%“)(v+1+“7“)31‘ |
52 1—2X
ot
X |14+ maxq1l,|==

B
Bl+1

(v+2)(a—2n)
’ {1 ~ e aoae

f

The result is sharp.
Theorem 8. If f(z) € ¥ satisfies

1 {—(1 —20)2(Lo,a,8f) (2) + A2 (Loapf)" (2)
b (1 - )‘)(‘Cv,a,ﬁf)/(z) - )‘Z(‘Cv,a,ﬂf)/(z)

- 1} < o(z) (ze 1),
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then for any complex number L,

(1]
2]
(3]
(4]
(5]
[6]

PP CEL SIUSAET LY

2 T—2x
B

(v+2g)(1-2))
b "’ [1 pacEe==val | R
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