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Abstract

In the present paper, new analytical solutions for the space-time fractional coupled Konopelchenko-
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2
(SITEM). Here, fractional derivatives are described in conformable sense. The obtained traveling
wave solutions are expressed by the trigonometric, hyperbolic, exponential and rational functions.
Simulation of the obtained solutions are given at the end of the paper.

Dubrovsky (KD) equations are obtained by using the simplified tan( )- expansion method

$(8)
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1. Introduction

In recent years, to model and describe phenomena in various fields of science such as plasma
physics, nonlinear optics, nonlinear transmission lines, solid state physics, chemical
kinematics, and biology, nonlinear partial differential equations have been used. The
popularity of these equations is because of their capacity to model many real systems.
Therefore, nonlinear equations have gained a very significant place in the current research. To
solve the nonlinear partial differential equations, various methods have been developed (see,
for example, [1, 2, 3, 4, 5, 6]).

KD equations were introduced by Konopelchenko and Dubrovsky [7]. These equations
constitute applications in the ocean dynamics, fluid mechanics and plasma physics. To solve
the coupled KD equations, various methods have been proposed such as the standard
truncated Painlevé analysis, homotopy perturbation method, generalized F-expansion method,
(G'/G,1/G)-expansion method, first integral method, extended Riccati equation rational



method, Xu’s stable-range method, tanh—sech method, cosh—sinh method and exponential
functions method [8, 9, 10, 11, 12,13, 14, 15]. There is not much work on the fractional
coupled KD equation. Fractional coupled KD equations have been solved by using sub
equation method, Jacobi elliptic equation method and extended G’/ G -expansion method in
[16, 17, 18]. Here fractional derivatives are described in modified Riemann-Liouville sense
and Caputo sense.
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23]. In [19], ITEM has been simplified and called simplified ITEM (SITEM). SITEM has
been applied to Kundu-Eckhaus equation. To our knowledge, there is no other application of
the SITEM in the literature. In this paper, we consider space-time fractional coupled KD
equation. Here fractional derivatives are described in conformable sense. We obtain some
traveling wave solutions such as trigonometric, hyperbolic, exponential and rational functions.

Recently, tan( ) -expansion method has been applied by many authors [19, 20, 21, 22,

2. Description of the conformable fractional derivative and its properties

For a function f :(0,00) — R, the conformable fractional derivative of f of order 0 <a <1 is
defined as (see, for example, [24])

ToF(t) = lim f(t+et™)—1f(t) .
£—0 s (1)

Some important properties of the the conformable fractional derivative are as follows:

T (af +bg)(t) =aT f(t)+bT g(t) , forall a,beR ,
Tta(tu) = Ht“im,

()

T (f(g(1) =t g (O (g(t)).

3. Description of the simplified tan(@) -expansion method (SITEM) for

solving conformable partial differential equations

Let us consider general nonlinear fractional partial differential equation of the type

P(u, T u, TPu, T*Tu, T*TPu, TP TPu,...) =0, 0<a <1 ,0<B <1, (3)
where u is an unknown function and P is a polynomial of u and its partial fractional

derivatives. Using the following transformation

u(x,t) =U(g), §:k£+mx—ﬁ, (4)
o p

where k and m are non zero arbitrary constants, Eq. (3) can be written as the following
nonlinear ordinary differential equations

®(U, U, U",U",..)=0. (5)

Suppose that traveling wave solution of Eq. (5) can be expressed as follows
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u@)= i Alp+ tan(@)]k + i B,[p+ tan(@)]‘k , ©)

d(&) satisfies the following ordinary differential equation

¢'(8) =asin(¢(g)) +bcos(¢(8)) +c,
(7

wherea, b,c , A, (0<k<m) and B, (1<k<m) are constants to be determined. The

solution of Eq. (7) is given as:

Forb=c, a=0,

tan(g) =b&+c,—p. (8)
Forb=c¢c, a#0 ,

tan(g) =c, exp(af) —; 9)

Forb#c, A=a’+b*—-c*>0,

tan(g — 2 Clrl eXP(r@) + Czrz eXP(rza) _ (10)
2" b-c ¢ exp(rg)+c, exp(r,8) ‘

Forb#c, A=a’+b*>-c*=0,

andy=—2 4 2 _C (11)
2" b-c b-cc +c,§
Forb=c, A=a’+b*—c* <0,
. ~N-A J-A
0 a A G sm(—2 €)+c, cos( 5 €)
tan(=) = + , (12)
2° b-c b-c V=-A A=A
¢, cos( &)+ c, sin( )
2 2
where ¢, and c, are arbitrary constants, T =(a+p(b—c)+x/X)/ 2 and

L, :(a+p(b—c)—\/Z)/ 2 . Substituting Eq. (6) into Eq. (5) and by balancing the highest
order derivatives and nonlinear terms appearing in Eq. (5), the value of m can be computed.

g))k ,(er‘[an(g))_k (k=0,1,2,...), we have system of
algebraic equations. Solving the system with the aid of the Mathematica, the values of A ,

Collecting the coefficients of (p + tan(

A, ,B (k=L2,.,m),a,b,c and p are computed.

4. Application

Conformable space-time fractional Konopelchenko-Dubrovsky equation is given in the
following from [18]

Tlu+T'TPTPu—6A,uTlu +%7»12u2Tfu —3T)v+30,vIlu=0, (13)
Tju=TPv,0<a<1,0<B<I. (14)

Let us consider the following transformation
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o B 0

u(x, v, 1) = UE), v(x,y,t) = V(E), E = k%+m%+n%, (15)

where k, m, nare constants. Substituting (15) into Egs.(13)-(14), we obtain the following
differential equations

kU'-m’U" - 61,mUU’ +%XfmU2U’ —-3nV'+34,mU"V =0, (16)
nU=mV. (17)

Integrating of Eqs.(16)-(17) with zero constant of integration and eliminating V , we have

2 2 2
(k_3i)U+(3xn—6x m)U—+x1—mU3—m3U"=o. (18)
1 2 2 2
m

Let us suppose that the solution of Eq.(18) can be expressed in the form Eq.(6) forp=0 .

Substituting Eq.(6) into Eq.(18) and then by balancing the highest order derivative term and
nonlinear term in result equation, the value of m can be determined asl. Therefore, (6)
reduces to

UE)=A, +A1[tan(@)]+Bl[tan(@)]-l. (19)
¢
2
we can obtain a set of algebraic equations for the unknowns A, A,, B,, k, m,n:

AXm’ —Ab’m* +2A bem® —A ¢’m* =0,

3A, AN M’ —6ATA,m* +3aA bm” —3aA cm® +3A7A,mn =0,

—2a’Am* +3AA Am’ + 6A AL, mn—121,A A m’ +3B,A’Am’
+Ab’m* — A c’m* +2kAm-6An* =0,

2A ,km—-6A A, m’ —6A,n° + AJA;m’ —aA bm* —aA cm’ +abBm*
—aB,cm®* —12A B A,m* +3AJA,mn + 6A A BA;m” + 6A BA,mn=0,

—2a’B,m* +3AB,A'm’ + 6A ,B,A,mn —121,A ,B,m* +b’B,m"
+3A,B/A;m” —-B,¢’'m* + 2kBm —6B;n* =0,

3A,B/Am’ —6B;A,m’ —3abB,m" —3aB,cm” +3B;A,mn =0,

—b’B,m* —2bB,cm* + BjA’m’ - B,c’m* =0.

Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:

Substituting Eq.(19) into (18), collecting all the terms with the same power oftan(—),

Case 1: AO:iﬂ > Alzi(b_C)n ) B1:O ’ m:}\’]_n )
2 2}\'2 2}\.2
o 96\3n—(a’ +b”> —c’)A/n’
16A,A;
For b=c anda#0,
an
U, €)= iE- (20)
2

For A>0 andb#c ,
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asvA _a+d VA __a-a
¢ exp( &) +c, exp( 3]
U, (@)=t 5[ —2 2 2 2 ] 21
4 2h, A, a+VvA a—JA
1 exp( > &)+ ¢, exp( > 9]
For A=0 andb=#c,
an n 2¢
U =+ T a-+ 2 _|. 22
s6(5) 2X2+2X2[ c1+c2§] 22)
For A<O andb#c,
. —A Vv-A
n [ —c, sin( 5 €)+c, cos( 5 F,))]
—F—|a+v-A . 23
78(&) 27\, +27\, — . \/1 ( )
¢, cos( &)+ c, sin( 5 )
Case 2: A, _+— , A0=i£ A _1=0, Bl—i(b+c)n , =M ,
2, 2M, 2M, 2M,
k=967C2‘n—(a +b’ —c*)Ain’
161,A3
For b=c anda=0,
bn _
Uyo(®=+=[bg+e, ] (24)
2
For b=c anda;tO
bn b1
Unn(®== % o e, expag) ], (25)
For A>0 and b#c,
a+yJA  a+A a-JA __a—+JA
)= (b+c)n[ 14, e e, exp(t— &)] 6
Uiaus A, 4%, “b-c a+~A a—~/A '
e exp( ) re,exp(t )
For A=0 andb=#c ,
(b+c)n 2 C, T4
. 27
Yisael&) = xz 2%, [b—c b ccl+c2§] @)
For A<0O andb=#c,
—C, sin(~—— §)+c cos( —A €)
(b+c)n a N 2 2 2 O
U,;5(8) = ” [b—C b_c —~ — ] . (28)
A : ¢, cos( €)+ ¢, sin( 5 £)
4.0 2 2 _ 2 4.3 Lo 0
Here §:(96k2n (a +b3 cHAD t* A xP X x_)
16A,A; oa 2\, B 0
Figs.1 and 2 show 3D and 2D plots of the king wave solution u,(x,0.25,t) and
u,(x,0.25,1) in (21) fora=0.75,=1,6=05 , A, =025x1,=02 , n=1 |,
a=3,b=2,c=1c¢,=2,¢,=1,respectively.
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Figs.3 and 4 show 3D and 2D plots of the periodic wave solution ug(x,1,t) and
u(x,Ll) in Eq.(23) fora=05p=1,6=05 , A, =0252x1,=02 , n=-1 |,
a=0.1,b=0.2,¢c=0.5,c =2, c, =1, respectively.

Figs.5 and 6 show 3D and 2D plots of the solitary wave solution
a=0.1b=02,¢=05c,=2,¢c,=1 u,(x,L,1t) and u,(x,L,1) in Eq. (25) for
oa=05p=1,0=05, A, =025A,=02 , n=-2 , a=3,b=lc=1c¢ =1c¢c,=2 ,

respectively.
Figs.7 and 8 show 3D and 2D plots of the periodic wave solution u,(x,1,t) and
ue(x,Ll) in Eq(28) fora=05p3=1,6=05 , A =025Ax,=02 , n=-2 |,

a=0.1,b=0.2,c=0.5,c =2, c, =1, respectively.

5. Conclusion

In this paper, the conformable space-time fractional coupled KD equations have been solved
9©)
2
solutions containing hyperbolic, trigonometric, exponential and rational functions have been
obtained. Note that SITEM has been applied to the Kundu-Eckhaus equation only for the
parameter p=0 in [19]. In the literature, fractional coupled KD equations with modified

by using the simplified tan( ) -expansion method (SITEM) and new exact traveling wave

Riemann-Liouville and Caputo fractional derivatives have been investigated. In our work,
SITEM has been applied to space-time fractional coupled KD equations with conformable
fractional derivative.
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Figure 1:

3D plot of the obtained traveling wave solution u, (X,0.25,t) of Eq.(21).
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Figure 2:

2D plot of the obtained traveling wave solution U, (x,0.25,1)of Eq.(21).
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Figure 3: 3D plot of the obtained traveling wave solution Uy (X,l,t) of Eq.(23)

Figure 4: 2D plot of the obtained traveling wave solution U (X,1,1) of Eq.(23).
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Figure 5: 3D plot of the obtained traveling wave solution U, (X,l,t) of Eq.(25).
Figure 6: 2D plot of the obtained traveling wave solution u (X, 1,1) of Eq.(25).
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Figure 7: 3D plot of the obtained traveling wave solution Uy (X,1,t) of Eq.(28).
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Figure 8: 2D plot of the obtained traveling wave solution U (X,1,1) of Eq.(28).

233



