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Measuring 137Cs is considered an effective method to study soil redistribution rate and 
hence needs sampling at a number of sites. The spatial configuration of the network of 
sites to be sampled has a substantial effect on the soil redistribution assessment. Here, 
motivated by sampling 137Cs, we adopted a model-based approach. For this, we chose 
the average kriging variance (AKV) as a design criterion. In fact, by minimizing the AKV 
of soil 137Cs prediction in the paired sub-catchments of Iran's Golestan province, we 
determined the optimal sampling design in the case that no directly measured prior 
information of the primary variable of interest (137Cs) is available. However, the AKV 
depends on some unknown parameters and preliminary estimates of model 
parameters are not available. To overcome this problem, we apply the minimax 
approach which minimizes the maximum value of design criterion over the 
misspecification of parameters. The method is illustrated taking into account the 
ancillary information (slope%) from representative Sub-catchments (Sample and 
Testifier, each around 190 ha in size). A simulated annealing algorithm is used to 
search for an optimal design from among all possible designs. Since, the number of 
sampling points is often limited by time and budgetary constraints, we use a 
sequential-based method for selecting the sample size. It is shown that 60 sites are 
sufficient for the proposed Sample and Testifier sub-catchments. 

  

Keywords: 137Cs, Golestan province, minimax approach, simulated annealing, spatial 
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Introduction 

Fallout radionuclides (FRNs), and more particularly 137Cs, have been successfully used to quantify soil 
redistribution processes since the 1970s (Zapata, 2002). As demonstrated by some 4000 published research 
papers dealing with the use of 137Cs, this technique has been shown an effective means to quantify soil 
redistribution rates (Ritchie and Ritchie, 2008). In fact, this technique has been validated successfully 
against other more conventional data provided by erosion plots, erosion pins, erosion– sedimentation 
modeling and catchment sediment yields, in a range of environments (e.g. Mabit et al. 2002; Wallbrink and 
Croke, 2002; Schuller et al. 2007). It should be noted that 137Cs has been used to investigate soil 
redistribution over a range of scales, extending from experimental plots to large watershed of 217 km2 in 
Quebec, Canada, reported by  Mabit et al. (2007).  So, the spatial configuration of the network of  sites  to  be  
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measured has a substantial effect on the soil redistribution assessment. Consequently, the first step in 
employing the 137Cs technique involves the establishment of an appropriate sampling strategy. This involves 
the selection of both representative sampling areas and the sampling design, which in turn reflects the 
objectives of the proposed study as well as the characteristics of the local landscape. A literature review on 
the proposed aspect shows different views on sampling 137Cs, but they generally focused on design-based 
sampling strategies rather than a model-based sampling. The most commonly used design for radionuclide 
studies is systematic, non-stratified sampling using either transects or grids (Zapata, 2002). Webster and 
Oliver (1992) argued that a minimum of 150 points is needed from each area of interest in order to identify 
the variogram model for geostatistical interpolation. Montgomery et al. (1997) used two sample networks, 
respectively with 110 and 48 samples, to estimate the variogram of the interested process. Lettner et al. 
(2000) applied three sampling networks with areas of 10m2, 100m2 and 1000m2, each containing 
81sampling points. The smaller area networks of sampling were nested within the larger one, such that 235 
samples were taken in their case study to perform an in-depth geostatistical analysis of the 137Cs. Studying 
the spatial variability of 137Cs in a single field in Germany, Bachhuber et al. (1987) concluded that at least 14 
samples were required to obtain the mean activity of 137Cs with 10% of tolerable error and 95% confidence 
limits. Based on 137Cs measurements, Higgitt (1995) assessed the influence of sample number on soil 
redistribution map within a 3.2 ha cultivated field in Shropshire, England. A total of 83 samples were taken 
on a lattice with 20 × 20 m2 cells, and a random-numbers generator was used to successively withdraw 
samples from the lattice to achieve sample sizes of 70, 60, 50, and 25. The interpolated maps maintain a 
broadly similar pattern until the sample size is reduced to 25. Yang et al. (2006) used transect-based 
sampling to study the spatial distribution of soil redistribution (137Cs) at Loess Plateau of China’s Shaanxi 
Province. Mabit et al. (2008) also applied the transect-based sampling, which in their study geostatistics and 
variography were considered as an indicator in validating sampling strategies. The semivariogram of 137Cs 
indicated that the sampling strategy was adequate and adapted to reveal the spatial structures of the 137Cs 
under investigation. Finally, a map of the soil redistribution was produced using the ordinary Kriging 
approach.  

As the goal in soil redistribution studies is to produce the prediction map, in this study, we intend to find the 
optimal sampling designs that are efficient for spatial prediction of soil redistribution using 137Cs. To the best 
of our knowledge, actually there is no published paper using the model-based approach to determine 
optimal spatial network design for 137Cs. Consequently, adopting a model-based approach, we chose average 
kriging variance as the design criterion. In fact, we determined optimal spatial network for two crop 
production Sub-catchments in Iran’s Golestan province, with the same area but different shapes and 
distinctive management policies such as tillage and grazing management as well. It should be noted that 
Sample and Testifier sub-catchments are closed and open area for grazing, respectively. This is motivated by 
the fact that no directly measured prior information on the primary variable of interest is available. 
However, since, the design criterion depends on the correlation structure and no data is available providing 
partial knowledge of the unknown model, we concentrate on a rich and flexible family of correlation 
functions for modeling the spatial structure. Thereafter, to overcome the misspecification of model 
parameters we use the minimax approach (Wiens, 2005; Spöck, 2010). The optimal design in the minimax 
sense is the design that minimizes the maximum value of the design criterion over the misspecification of 
model parameters. For this, we first assume a range of plausible values for the parameters. Then, the optimal 
design is chosen when the parameters take the worst possible value within their respective ranges and thus 
the criterion be minimized. The least favorable parameter values are those that maximize the design 
criterion. For choosing the optimal design, we have discritized the parameter space and then apply 
simulated annealing (SA) algorithm (van Groenigen and Stein, 1998). 

The use of auxiliary variables for soil properties is expected to systematically enhance prediction accuracies 
especially because soil data are generally scarce over large areas and auxiliary variables are readily available 
(Li, 2010). In this study, we use slope% as an auxiliary variable because slope plays a significant role on soil 
redistribution rate, and also because it is readily available at the stage when nothing is known about the 
primary variable in the proposed areas and in their proximity. Since no optimal number of samples is 
known, it becomes necessary to develop a methodology to determine the number of sampling points while 
maintaining its ability to describe the spatial soil redistribution across the field. For this reason, a sequential-
based method is used to determine the sample size.  
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The rest of the paper is organized as follows. Section 2 discusses materials and methods including study area 
as well as the sampling approach. Section 3 deals with results whereas Section 4 contains discussion and 
concluding remarks. 

Material and Methods 

Study Area 

The proposed areas of study are located in the north-east of Iran's Golestan province as paired Sub-
catchments (Sample and Testifier; enclosed and open area respectively) of representative watershed, 
intensively exploited arable land with commonly cultivated crops such as, sun flower, barley, wheat, 
watermelon, artificial and natural forest and so and so forth. The above representative catchment of 
approximately 2,061,338 ha is affected by diverse water erosions types (sheet, rill, and splash) and intense 
agricultural activities over there. The soil in area is a silt loam and loam, varying from shallow to deep. The 
climate is typically semi-arid with an average annual temperature of about 16.7°C and an annual 
precipitation amount of 482mm. The landscape is gently undulate with an average altitude of approximately 
800m. While Fig. 1 shows the location map of Sub-Catchments, Table 1 summarizes some characteristics of 
these Sub-Catchments.  

 

Figure 1. The location map of Sub-Catchments 



 F.Rivaz et al. / Eurasian Journal of Soil Science 3 (2014) 33  - 41 
 

36 

 

 

 Table 1. Some characteristics of Sub-catchments 

Sub-catchment Sample Testifier 
Slope (%) 0-166 0-90 
Elevation (m) 700-900 755-850 
Area (ha) 191 196 

 

The design problem comes down to the following: choose a set of  points that optimizes the design criterion 

among all the sets of  points from the region of interest. To facilitate a search for the optimal points, we 

need to discretize the proposed Sub-catchments into two finite spaces. Sutherland (1994), Lu and Higgitt 
(1999) and Zapata (2002) suggested that sampling interval should be 10 to 25 m away from the adjacent 
samples. So, two fine square  grids are used to approximate the Sample and Testifier sub-catchments, 

with the total grid points  and , respectively. We therefore search for optimal design 

among the grid points in Sample and Testifier areas using simulated annealing algorithm. It must be noted 
that there was no prior measurement of 137Cs in the proposed areas and the slope% is used as an auxiliary 
data influencing soil redistribution.  

Sampling Method 

Two sampling approaches preferred widely for soil mapping are the design-based approach used in classical 
survey sampling and the model-based approach followed primarily in geostatistics (Brus and de Gruijter, 
1997).They differ in assumptions with respect to properties of both population targets (value of soil 
property) and the sampling locations. The design-based approach is the most suitable for estimating the 
frequency distribution of soil property and one or more parameters of that distribution such as the global 
mean. In contrast, the local prediction through interpolation or simulation requires sampling schemes that 
allow quantification of the spatial dependence and provides good area coverage for the reliable prediction 
map. Since the goal of 137Cs sampling is to produce a soil redistribution map, the model-based geostatistical 
sampling approach is often more appropriate (Brus et al. 2002). The geostatistical sampling chooses the 
optimal sample pattern by minimizing a design criterion such as the mean or maximum prediction variance, 
where predictions are computed by kriging assuming that the covariance model and all its parameters are 
known. More precisely, let a continuous spatially-varying quantity, , is to be observed at a predetermined 

number of points  in a region of interest . Suppose  represent the observations 

taken at these points. These observations are modeled as a realization of a random field  with 

mean  and covariance function  where 

 with  is a known vector of observed covariates and  is 

unknown regression parameters. First, we assume that the covariance function is known. By the stated 
assumptions, the best linear unbiased predictor (BLUP) of  at an arbitrary unsampled site , is the so-

called universal kriging predictor, which is given by  

, 

where  is the full rank  matrix,  is the vector whose th element is 

, ,  is the vector whose th element is  and  is the data 

vector. The minimized prediction error variance associated with , also called the kriging variance, is 

given by 

 
(1) 

Suppose we wish to choose a subset of  points from  that are optimal, in some sense, for the purpose of 

kriging. As noted previously, the two most commonly used design criteria for this purpose are the average 
kriging variance (AKV):  
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and the maximum kriging variance: 

 
where  is the set of all possible points that observations may be taken and  is the volume of . The 

optimal design with respect to these criteria is the one that minimizes the criterion over all possible designs 
taken from . To calculate these criteria for any design, the covariance model and its parameters should be 

known. However, prior knowledge of the spatial variation of the primary variable is often not available or its 
gathering significantly increases the sampling cost. Thus the model-based sampling schemes that merely 
utilize measurements of the primary variable are likely to be costly and time-consuming, especially in cases 
when expensive laboratory procedures like Gama ray spectrometry are involved or when the area to be 
investigated is large. In such a case, for determining the design criterion, we need to assume that there exists 
a preliminary estimate or guess of the unknown covariance structure. Since there is no any prior knowledge 
of the spatial structure, we concentrate on a rich and flexible family of covariance model. In this study, a 
general and flexible powered exponential family is used to model the covariance structure (Banerjee et al. 
2004), which involves a shape parameter  in addition to the range parameter , and is given as: 

                                       (2) 

where  such that  and  are variance and nugget effect, respectively. The exponential and 

Gaussian covariance functions are special cases of the powered exponential covariance family with  

and , respectively. The design criterion yet depends on the unknown parameters of powered 

exponential model. To overcome this problem, we used the minimax approach which minimizes the 
maximum value of design criterion over the misspecification of parameters. In other words, the minimax 
approach aims to obtain the best design for the worst possible case of the model misspecification. For this 
purpose, we first need to discretize the parameter space, Θ, into a finite space  and find optimal designs 

for all . Then, we can evaluate the maximum of design criterion on  for any design and search 

for the one that minimizes the maximum. Since slope% has influential effect on soil redistribution and due to 
easy application, it is considered as a covariate variable. In fact, we consider a linear trend of slope in 
prediction equations.  

Now, we discretize the parameter space  into a four dimensional grid with 

 nodes. If the covariance model (1) is parameterized as 

, 

it follows that . The support of  and  are bounded; hence 

discretization of them is straightforward. But it is not clear cut for  and , because the support of them are 

unbounded. To apply the minimax method, it is necessary to determine a subset  of 

 and consider it as the practical support. To choose  and , we apply a sensitivity analysis. In 

fact, the values of  and  are chosen in such a manner that the minimax design criterion be less sensitive 

to them. To do this, first two initial values for  and , say  and , are chosen. Then the 

parameter space is discretized and the minimax design is determined. Thereafter, we replace  and 

 instead of old values of  and , and minimax design is searched over the new parameter space. 

The algorithm continues until the design criterion is not sensitive to change of the values of  and . We 

found that the design criterion is at all not sensitive for values greater than  and . It must be 

noted that, a simulated annealing algorithm is employed to search for the optimal design.   

By this way, we obtained . The 

parameter values at which we find minimax design for Sample and Testifier sub-catchments are 
 and , respectively.  

So far, it was assumed that the sample size is known. Another aspect of this study is to determine the sample 
size due to the fact that the number of sampling points is limited by time and budgetary constraints. For this 
purpose, the optimal design criterion is determined for different sample sizes. Then, an appropriate sample  
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size is selected by accounting for the tradeoff between the prediction accuracy and the time and budgetary 
constraints. In other words, the optimal sample size is chosen in a way that the increasing sample size does 
not significantly impact on the value of design criterion.  

Results  

This section provides the results of the minimax method in determining the optimal design for paired Sub-
catchments. It must be noted that the average kriging variance (AKV) has been considered as a design 
criterion. Table 2 summarizes the value of the AKV for different sample sizes. Moreover, Fig. 2 displays the 
result of Table 2 for the proposed Sub-catchments. As observed, the objective function improved during the 
increasing of the sample size. Although the objective function is yet decreasing after  in both Sub-

catchments, but there is no sharp decline from 60 onward. Thus, a sample size of 60 seems to be reasonable 
in both Sub-catchments.   

 

Table 2. Average kriging variance for different sample sizes in proposed Sub-catchments 
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Figure 2. Average kriging variance for different sample sizes in Sample (a) and Testifier (b) sub-catchments 

 

For fixed sample size and powered exponential correlation structure with parameters specified in section 
2.2, the minimax designs in both catchments were determined using SA algorithm. Fig. 3 shows the spatial 
configuration of optimal design for Sample (left map) and Testifier (right map) sub-catchments. As observed, 
there is no specific regularity in sampling pattern like systematic, cluster and nested in both Sub-catchments. 
Meanwhile the sample locations are scattered in the whole area of two catchments. 

 

Sample Sub-catchment Testifier Sub-catchment 

Design criterion Sample numbers Design criterion Sample numbers 
0.01775 20 0.01936 20 
0.01520 25 0.01696 25 
0.01539 30 0.01490 30 
0.01354 35 0.01364 35 
0.01301 40 0.01313 40 
0.01182 45 0.01216 45 
0.01179 50 0.01206 50 
0.01096 55 0.01110 55 
0.00974 60 0.01011 60 
0.00945 65 0.00938 65 
0.00940 70 0.00933 70 
0.00938 75 0.00926 75 
0.00935 80 0.00922 80 
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Detailed slope characteristics for the selected sites in paired Sub-catchments (Table 3) show no any 
significant difference. Histogram and scatter plot of the slop values for the selected sites in both Sub-
catchments (Fig. 4 and Fig. 5) illustrate more than 50% of sample sites (39 sites) belong to slope<18 % and 
34 sample sites belong to slop<33%, in Sample and Testifier sub-catchments, respectively. It seems minimax 
design depends on auxiliary variable. Although the range of slope in Sample catchment is greater than 
Testifier catchment, but slope frequency distribution in the optimal designs have approximately the same 
behavior. In particular, the average slope is 28% in both Sub-catchments. 

 
Figure 3. Location map of minimax design in Sample (left map) and Testifier (right map) sub-catchments 

 

 Table 3. Slope characteristics of the optimal network of sites in paired Sub-catchments 

Sub-catchment 
Slope (%) 

Mean Min. Max. SD 1st quartile Median 3rd quartile 
Sample 28 0 100 34 2 24 77 
Testifier 28 4 88 24 8 11 41 

 

Discussion 

137Cs as retrospective method in soil redistribution studies is a reliable technique for assessment of the past 
soil redistribution process. However, sampling of 137Cs is still a debatable issue. This article has proposed a 
minimax method for finding the optimal sampling design that is efficient for spatial prediction of soil 
redistribution using 137Cs when no directly measured prior information of the primary variable of interest is 
available. The study area was two sub-catchments called as paired Sub-catchments which have important 
roles in soil and water conservation. We also addressed an important issue, which has somewhat been 
ignored in the past literature, on how to select an appropriate sample size by accounting for the tradeoff 
between accuracy of prediction and time and budgetary constraint.  
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It was obtained that 60 samples (about 1 sample per 3ha) are enough for two Sub-catchments. In this study, 
the slope% was used as an auxiliary data influencing soil redistribution. As expected according to equation 
(1), the optimal designs depend on the auxiliary variable. As a result we came to conclude that more 
auxiliary variables increase information in selecting the optimal design. So it is suggested, when feasible, to 
use other auxiliary variables in determining optimal design. 
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Figure 4. Histogram and scatter plot of the slop values for network sites in Sample sub-catchment 
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Figure 5. Histogram and scatter plot of the slop values for network sites in Testifier sub-catchment 

In contrast to what Zapata (2002) found, we tried to show that the number and location of samples are 
determined effectively using the model-based approach. Further, this approach can use the budgetary 
constraint effectively and can be obtained without the exact knowledge of the true parameters, and thus can 
be applied in practice. Contrary to Webster and Oliver (1992) we illustrated that the sample size of the 
region of interest can be less than 150 points. This approach can conquer limitation on the use of 137Cs 
(sampling pattern) in large areas.  

The tillage erosion, as a calm and dangerous soil redistribution effect, is likely gain importance in the near 
future and FRNs technique will be considered for tillage cultivation results as well and spatial sampling of 
them would be a crucial issue. It must be noted that 137Cs technique also considers tillage erosion that 
represent as much as 70% of total soil erosion (Lobb et al. 1999) dissimilar to other soil erosion methods.  
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As such, through the aforementioned methods and integrated Portable HpGe, soil redistribution will be 
measured in negligible time span and in a large area specifically cultivable land involved with plowing and 
soil redistribution. The special case in this paper includes 137Cs, one of the FRNs. The approach could be 
embedded in a multivariate framework, where 137Cs could be replaced by all three fallout radionuclides: 7Be, 
137Cs and 210Pbex. Although, in such setting, a reasonable criterion that takes into account all three FRNs, is 
required.     
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