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1 Introduction
Non-smooth functions are studied for a long time [1, 2, 3]. Since they have been used
in many areas such as optimization and data modeling [4, 5], they have attracted great
attention in recent years. The basic lack of these functions is not completely smooth on
the domain. Therefore, most of the efficient gradient-based approaches become unusable
in their optimization process. To overcome these inadequacies, smoothing techniques
have been proposed for some subclasses of non-smooth functions. Smoothing techniques
are based on constructing the smooth approximations to the non-smooth function.

The smoothing approaches have been studied for a long time in optimization. The first
study on smoothing approaches was proposed by Bertsekas to solve one of the major
optimization problems called min-max [6]. For the same problem, another important
smoothing function approach is proposed in [7]. In that study, the smoothing approach is
constructed to smooth out the kink points of non-smooth function, locally.

Another idea is to create a set of smooth functions that converge to the non-smooth
function, globally. One of the global smoothing approaches is the hyperbolic smoothing
approach developed by Xavier [8]. The hyperbolic smoothing approach was used to solve
min-max problems in [9]. In the penalty function method for constrained optimization,
the smoothing functions are used [10, 11]. In [12], a class of smoothing functions consid-
ering the wavelet-based approach is presented. In recent years, the smoothing approach
has also been used to solve regularization problems [13, 14, 15] and global optimization
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problems [16, 17, 18]. For more information on the smoothing approach used in opti-
mization problems, see [19, 20, 21, 22].

The next section is devoted to give some preliminaries. In Section 3, the smoothing
technique is proposed and related error estimates among the optimal objective function
values of the smoothed objective function is given. In Section 4, some numerical exam-
ples are given. In the last section, we present some concluding remarks.

2 Preliminaries
Throughout the paper, we use x∗k to denote the k−th local minimizer of f whereas by x∗

we mean the global minimizer. ‖x‖ =
√∑n

k=1 x
2
k denotes the Euclidean norm in Rn. For

error estimation we use the following L1[a, b]−norm defined as

‖E‖L1[a,b] =

∫ b

a

|E(t)|dt,

where E is a continuous function on the interval [a, b].

Definition 1. [19] Let f : Rn → R be a continuous function. The function f̃ : Rn×R+ →
R is called a smoothing function of f , if f̃(·, β) is continuously differentiable in Rn for
any fixed β > 0, and for any x ∈ Rn,

lim
z→x,β→0

f̃(z, β) = f(x).

3 Main Results
Let f and g be continuously differentiable functions on Rn and let us define the following
function F (x) = max{f(x), g(x)}. The function F is used in many optimization prob-
lems of min-max, penalty method, regularization and global optimization. We develop
smooth relaxations of the above optimization problems involving F .

First of all, we can reformulate F by

F (x) =
1

2
((f(x)− g(x))φ (t) + f(x) + g(x)) , (1)

where

φ (t) =

{
1, t ≥ 0,
−1, t < 0,

(2)

and t = f(x) − g(x). It can be observed that the function F may be non-smooth. If we
smooth out the non-smooth function φ (t) as

φ̃ (t, ε) =


1, t > ε,
S1(t, ε), −ε ≤ t ≤ ε,
−1, t < −ε,

(3)

where S1(t, ε) =
−1
2ε3
t3 + 3

2ε
t and ε > 0 then, we obtain smoothing function of F (x) as

F̃ (x, ε) =
1

2

(
(f(x)− g(x)) φ̃ (t, ε) + f(x) + g(x)

)
. (4)
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If f and g second-order continuously differentiable and it is needed to second-order con-
tinuously differentiability of F̃ , the function S2(t, ε) = 3

8ε5
t5 − 5

4ε3
t3 + 15

8ε
t can be use

instead of S1(t, ε).

Remark 1. Since min{f(x), g(x)} = −max{−f(x),−g(x)} and |f(x)| = max{f(x),−f(x)},
the smoothing approach is also valid for the operators min and | · |.

Lemma 3.1. Let the function φ(x) is defined as in (2) and φ̃(x, ε) be the smoothing
function of it. Then, we have

‖φ̃(t, ε)− φ(t)‖L1 =
3

4
ε,

for any ε > 0.

Proof. Since the functions φ̃(t, ε) and φ(t) are equal for t ≤ −ε and t ≥ ε, the difference
between φ̃(t, ε) and φ(t) equal to 0. So, we handle only the case −ε ≤ t ≤ ε and∥∥∥φ̃(t, ε)− φ(t)∥∥∥

L1
[−ε,ε]

=

∫ ε

−ε

∣∣∣φ̃(t, ε)− φ(t)∣∣∣ dt
=

∫ 0

−ε
|S1(t, ε)− (−1)| dt+

∫ ε

0

|S1(t, ε)− 1| dt

=
3

4
ε.

Therefore, the proof is completed.

Theorem 3.1. Let f and g be continuously differentiable functions on Rn and, F (x) and
the function F̃ (x, ε) is defined as (1) and (4), respectively. Then, we have

‖F̃ (x, ε)− F (x)‖L1 ≤ 3

8
ε2, (5)

for any ε > 0 and x ∈ Rn.

Proof. For any ε > 0 and t 6∈ Iε = [−ε, ε], we have F̃ (x, ε) = F (x). Therefore,
it is sufficient to prove that the inequality (5) holds on Iε. For any t ∈ Iε, we have
t = f(x)− g(x) ≤ ε and

‖F̃ (x, ε)− F (x)‖L1 =

∫ ε

−ε

∣∣∣((f(x)− g(x)) φ̃ (t, ε)− (f(x)− g(x))φ (t)
)∣∣∣ dt

=
1

2

∫ ε

−ε

∣∣∣(f(x)− g(x))(φ̃ (t, ε)− φ (t))∣∣∣ dt
≤ ε

2

∫ ε

−ε

∣∣∣φ̃ (t, ε)− φ (t)∣∣∣ dt.
From Lemma 3.1 we have

‖F̃ (x, ε)− F (x)‖L1 ≤ 3

8
ε2.

The proof is completed.
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Theorem 3.2. Let f and g be continuously differentiable functions on Rn and, F (x) and
the function F̃ (x, ε) is defined as (1) and (4), respectively. Then, the function F̃ (x, ε) is a
smooth function and for any fixed x, we have

lim
ε→0

F̃ (x, ε) = F (x)

for ε > 0.

Proof. The smoothing function φ̃(x, ε) is smooth for ε > 0. Since f and g are smooth,
according to equation (4), F̃ (x, ε) is smooth. From the Theorem 3.1, it can be seen that
F̃ (x, ε) approaches to F (x) as ε→ 0.

4 Numerical Examples
Example 1. Let us define the following function

F (x) = max{f(x), g(x)},

where f(x) = exp(−x
5
) + 1 and g(x) = 3x + 5. For any ε > 0, the smoothing function

of F (x) is defined as

F̃ (x, ε) =
1

2

(
(f(x)− g(x))φ̃(t, ε) + f(x) + g(x)

)
,

where t = f(x)− g(x). The graphs of the function F (x) and smoothing function F̃ (x, ε)
in Fig. 1.

x-axis
-4 -3 -2 -1 0 1 2 3 4

y-
ax

is

0

5

10

15

Figure 1: The graphs of F (x) (green and solid) and F̃ (x, ε) (blue and dotted).

Example 2. Let us define the function F : R2 → R as

F (x, y) = max{f(x, y), g(x, y)},
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where f(x, y) = exp(−x
4
)+2y−1 and g(x, y) = 3x− 1

2
y2. For any ε > 0, the smoothing

function of F (x, y) is defined as

F̃ (x, y, ε) =
1

2

(
(f(x, y)− g(x, y))φ̃(t, ε) + f(x, y) + g(x, y)

)
,

where t = f(x, y) − g(x, y). The graphs of the function F (x) and smoothing function
F̃ (x, y, ε) is given in Figs. 2 (a) and (b), respectively. In Figs. 2 (c) and (d), the graph of
contours of the functions F (x, y) and F (x, y, ε) are presented, respectively.
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Figure 2: (a) The graph of F (x, y), (b) The graph of F (x, y, ε), (c) The contour graph of
F (x, y), (d) The contour graph of F̃ (x, y, ε).

5 Conclusion
In this study, we have introduced a new smoothing technique for non-smooth functions.
The presented smoothing process is useful for problems which contain any of “max, min
and | · | and operators. The smoothing technique is controlled by a parameter. This pa-
rameter gives an opportunity to get a sensitive approximation to the original non-smooth
function. By this study, well-known gradient based optimization techniques are avail-
able to solve non-smooth optimization problems such as min-max, penalty methods and
regularization.
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