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Abstract — In an era of the early Universe at a time estimated to be a millionth
of a second after the Big Bang, the Universe was filled with quark-gluon plasma. In
this plasma and due to the high temperature the strong coupling constant, that char-
acterizes the magnitude of the strong force acting on quarks and gluons, becomes so
small. As a consequence quarks and gluons inside this plasma can be considered as
an ideal gas of gluons and massless quarks that weakly interact with each others.
Thus, for this plasma, one can describe its characteristics by the equations of states
that relate both energy density and pressure to its temperature. This has been done
in several models in the literature with the recent information about the properties
of the quark-gluon plasma provided by relativistic heavy-ion collision experiments
and some astrophysical measurement. In this article we review three of these models
namely the MIT bag model, Model 1 and Model 2. Moreover, we solve Einstein’s
field equations of the general relativity,that describe our universe, to show the time
evolution of energy density, pressure and temperature in the early universe in these
three models. This kind of a study is important as our present universe evolved from
a universe filled with quark-gluon plasma.
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1 Introduction
Protons, neutrons and other hadrons are composed of quarks. The gluons are the mass-
less particles that carry the strong nuclear force between quarks, or, in the language of
modern particle physics, gluons mediate the strong nuclear force between quarks. The
widely accepted theory that can describe the strong nuclear force(strong interaction) is
known as Quantum Chromodynamics (QCD)[1]. At large momentum transfer or equiv-
alently short distances the QCD coupling constant αs decreases and thus the quarks and
gluons become asymptotically free [2, 3]. This is referred as asymptotic freedom where
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quarks and gluons interact weakly at short distances. Based on this phenomena in the
mid-seventies, Quark-Gluon plasma (QGP) was proposed as a new state of nuclear matter
[4, 5]. QGP can exist at high temperatures and densities when hadrons break down into
their constituents quarks and gluons. On the other hand, it is believed that a millionth
of a second after the Big Bang, the universe was filled with QGP. This plasma can be
described by the thermodynamic quantities such as energy density, pressure and temper-
ature which vary with time as Universe later cooled down. Studying the time variation of
these thermodynamic quantities can be done through using cosmological models based
on Einstein. These equations are the fundamental field equations of general relativity.

In particle physics we deal with so tiny numbers such as the masses of the leptons and
quarks, the lengths of the radii of proton and neutron and the cross sections of particles
interactions. For instances the radius of the proton is' 10−15m and the cross sections are
commonly measured in barns where 1b = 10−28m2. Clearly units like meter and kilogram
that we use in our daily life are not suitable to be used in particle physics and make even
simple calculations difficult. As alternative units, the natural units are used. These units
are suitable for the cases where the dimensions are so small. These units are based on
taking h̄ = 1 and c = 1. Here h̄ = h/2π with h is Planck constant and c is the speed of
light in vacuum. In any system of units the relativistic formula of the total energy E of a
particle with mass m and a momentum p is given as

E2 = (pc)2 + (mc2)2 (1)

Clearly, all E, pc and mc2 have units of energy. Since in natural units we take c = 1 we
find that

E2 = p2 +m2 (2)

which means that the momentum p and the mass m in natural units will have units of
energy. From De Broglie famous relation the wave length λ of a particle of momentum p
is given by

λ =
h

p
=

2πh̄

p
(3)

and since in natural units we take h̄ = 1 we find that length has unit p−1 = E−1. From
speed of light c = 1 and unit of length is E−1 we can deduce that time has also unit E−1

as speed is equal to distance divided by time. So, we finally conclude that in natural units
mass, length and time can be expressed in units of E, E−1 and E−1, respectively.

In natural units energy can be measured in electron volts (eV) or its multiples such
as giga-electron volts (GeV) where (1GeV = 109eV = 1.6 × 10−10J). Thus we can
express fundamental quantities such as mass, length and time in terms of GeV, GeV −1

and GeV −1, respectively. Other derived physical quantities can be then expressed in
terms of powers of GeV. Throughout this paper we will adopt natural units system and
use GeV as a unit of energy.

This paper is organized as follows: In section 2 we review the equation of states of
the QGP relevant to the study in this work. In section 3 we will review Einstein field
equations of the general relativity. Based on this equations, we show the derivation of
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the differential equation that governs the time evolution of the energy density in the early
universe when it was in a QGP phase. Finally in section 4 we present our results for
the time evolution of the energy density, pressure and temperature in this era of the early
Universe.

2 Equations of state of a Quark-Gluon Plasma
Characteristics of solids, fluids and mixtures of fluids can be described using equations
of state. These equations are thermodynamic equations that relate mathematically two or
more state functions associated with the matter. For instance, the state functions can be
the pressure, temperature, volume or internal energy. In the following, we briefly show
the derivation of the equations of state of the quark gluon plasma in the MIT bag model
[6]. The derivation is based on the approximation that the hot quark-gluon plasma with
energy scale∼ 200 MeV just contains massless u and d quarks with neglected interactions
inside the plasma. The degrees of freedom for the gluons (quarks) denoted by Ng (Nq)
that constitute the plasma can be calculated as follows:

Ng = 8(colour)× 2(polarizations) = 16 (4)

Nq = 3(colour)× 2(flavour)× 2(spin) = 12 (5)

The next step is to derive the energy density corresponding to each degree of freedom
for the quarks and the gluons. In the absence of interactions, gluons form perfect relativis-
tic Bose gas. The energy density of this gas can be calculated knowing its temperature T
as (D. A. Foga et al. 2010)

Eg =
∫ d3k

(2π)3

k

(ek/T − 1)
=
π2T 4

30
(6)

We move now to the energy densities of the quarks and antiquarks in the quark-gluon
plasma. In general, there will be a slight excess of quarks over antiquarks in the QGP
created from ordinary atomic nuclei (heavy ions). To account for this excess, one has to
introduce a chemical potential µ. The chemical potential is defined as the energy required
to add another quark to the plasma at a temperature equals zero. At this temperature,
there is no antiquark and so the energy necessary to add it to the plasma is zero and
thus one expects that its chemical potential is zero. However, this is not the case and the
chemical potential of the antiquarks must be chosen to be −µ. This can be explained as
the additional antiquark has the possibility to annihilate one of the quarks that lies at the
surface of the Fermi sea and release the energy µ. In terms of the chemical potential and
temperature, the energy densities for a quark and an antiquark can be calculated from the
relations [7]

Eq =
∫ d3k

(2π)3

k

[e(k− 1
3
µ)/T + 1]

Eq̄ =
∫ d3k

(2π)3

k

[e(k+ 1
3
µ)/T + 1]

(7)

Upon performing the integration, we get
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Eq + Eq̄ =
7π2

120
T 4 +

µ2

36
T 2 +

µ4

648π2
(8)

The total energy density of the QGP, denoted (ε) and the total pressure (p) can be ex-
pressed as

ε =
Ek
V

+ B

p = −B +
1

3

Ek
V

(9)

where B is known as the bag constant and Ek is the internal energy that arises from the
kinetic energies of the quarks and gluons inside the bag and thus it is given by

Ek = (16Eg + 12(Eq + Eq̄))V (10)

The factors 16 and 12 appear in the previous equations account for the degrees of free-
dom of gluons, quarks and antiquarks. Recall that we treat the QGP as an ideal gas of
negligible rest masses of quarks and thus the pressure in this case is just third the internal
energy density which is the reason for the second term in the second line of Eq.(9). The
first term in the second line of Eq.(9) accounts for the fact that the external pressure on the
bag surface B should be balanced by internal pressure of equal magnitude in the absence
of QGP to keep the bag stable. Finally, we get

ε = B + 16Eg + 12(Eq + Eq̄)

p = −B +
1

3

(
16Eg + 12(Eq + Eq̄)

)
. (11)

In this paper, we are interested in studying the baryon-number symmetric quark-gluon
plasma which corresponds to µ = 0. Thus, setting µ = 0 in Eq.(8) we finally obtain the
energy density and pressure as

ε =
37π2

30
T 4 + B

p =
37π2

90
T 4 − B. (12)

Upon eliminating the temperature T from the above equations we get:

p(ε) =
1

3
(ε− 4B) (13)

In natural units, the length has dimension energy−1 and thus ε will have dimension
(energy)4 and thus from Eq.(12) we find that T and p will have dimensions energy and
(energy)4, respectively.
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In Refs.[8, 9] modification of the bag model has been proposed so that the resultant
models can describe the lattice QCD data [10]. These modifications include a reduction
in the Stephan-Boltzmann constant and an introduction of another temperature dependent
term (linear or quadratic) in the pressure and also in the energy density and finally a
bag constant term with negative sign. These modifications resulted in two viable simple
models that can be regarded as variants of the MIT bag model. These two models can be
referred as Model 1 and Model 2. In model 1, the pressure p1 and energy density ε1 as
functions of temperature T , are given by:

p1 =
σ1

3
T 4 − AT − B1 (14)

ε1 = σ1T
4 + B1 (15)

From these two equations we obtain the following relation:

p1[ε1(t)] =
1

3
[ε1(t)− 4B1]− A

[
ε1(t)− B1

σ1

]1/4

(16)

with the parameter: σ1 = 4.73, A = 3.94Tc
3 and B1 = −2.37Tc

4, where Tc is the
critical temperature for the QGP. In Model 2 the pressure p2 and energy density ε2 as
functions of temperature T , are given by:

p2 =
σ2

3
T 4 − CT 2 − B2 and ε2 = σ2T

4 − CT 2 + B2 (17)

and so:

p2[ε2(t)] =
1

3σ2

{[ε2(t)− 4B2]

− C[C +
√
C2 + 4σ2[ε2(t)− B2]]} (18)

where σ2 = 13.01, C = 6.06Tc
2 and B2 = −2.34Tc

4 with Tc = 0.175 GeV is the
critical temperature. In chapter 4 we will use the equations of states presented above in
the MIT model, Model 1 and Model 2 to study the time evolution of the energy density,
pressure and temperature in the early Universe.

3 A Relativistic cosmological model for the Universe
Studying the Universe as a whole, including its origin, nature and evolution is the sub-
ject of cosmology. Mathematical models used to describe the large-scale features of the
universe are usually referred as cosmological models. In 1917 Einstein formulated such
a model based on Einstein field equations which are the fundamental field equations of
general relativity. These field equations can be obtained from the relation [11, 12]

Rµν −
1

2
Rgµν = −κTµν (19)

The indices, µ and ν run from 0 to 3 and hence the previous equation represents a set of
16 equations. It should be noted that due to some symmetries, as we will discuss below
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in the next subsections, only 10 of these equations are independent. In Eq.(19) κ is a
constant, Rµν is the Ricci tensor which depends on the metric tensor and its derivatives,
R is the Ricci scalar and Tµν is the energy momentum tensor. The consistency of general
relativity and Newtonian gravitation requires κ = 8πG. In the following we discuss the
energy momentum and the Ricci tensors relevant to the field equations.

3.1 Energy-momentum tensor

The energy-momentum tensor, denoted by T µν , with µ and ν run from 0 to 3, describes
the distribution and flow of energy and momentum in a region of spacetime resulting
from the presence and propagation of matter and radiation. This tensor is a symmetric
tensor i.e. T µν = T νµ and has a rank 2. Thus, at any point in spacetime it has sixteen
components but due to the symmetry only ten of the sixteen components are independent.
These independent components are T 00, T 11, T 22, T 33, T 01, T 02, T 03, T 12, T 13, T 23. Each
component of T µν can be measured in units of energy density. Thus, in the international
system of units, SI , it is measured in Jm−3 units while in the natural units it is measured
in GeV 4 units. In the following, we give description of each component of the energy-
momentum tensor T µν [12]:

– The component T 00 is the local energy density resulting from the existing masses
and energies.

– The component T0i = Ti0, for i = 1, 2, 3, is defined as the rate of flow of energy per
unit area at an angle right to the i-direction, divided by the speed of light c. Another
but equivalent definition, T0i = Ti0 is the density of the i-component of momentum
multiplied by c.

– The component Tij = Tji , for i, j = 1, 2, 3, is defined as the rate of flow of the
i-component of the momentum per unit area at an angle right to the j-direction.

The quark-gluon plasma is usually treated as an ideal fluid and thus, its corresponding
energy-momentum tensor T µν is given as

Tµν = (ε+ p)uµuν − p gµν (20)

where uµ, ε and p are the velocity four-vector, energy density and the pressure density
of the fluid respectively. The form of Tµν , given in the previous equation, can be fur-
ther reduced upon restricting ourselves to using locally inertial frames with Cartesian
coordinates. In this case, the metric gµν can be represented simply by the Minkowski
metric, ηµν = diag.(1,−1,−1,−1). In the fluid, we expect that thermal effects can lead
to flows of energy and momentum. If we adopt the point of view of an observer in the
instantaneous rest frame of the fluid we find that those flows will not contribute to the
flow of energy. Because in that frame uµ = (1, 0, 0, 0) and thus from Eq.(20) we get
T0i = Ti0 = 0 for i = 1, 2, 3. Moreover, due to the lack of interactions between the
particles in the fluid, we see from Eq.(20) that Tij = 0 for i 6= j. As a result, we are left
with only non-zero components T00 and Tii for i = 1, 2, 3. The component T00 receives
contributions from the random thermal motion of the particles inside the fluid and from
Eq.(20) is given by T00 = ε. On the other hand, due to the thermal motion of the particles
inside the fluid, the momentum will be transferred with equal magnitude per unit area per
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unit time in all directions and from Eq.(20) we have Tii = p. Collecting all components
together, we can write [12]

Tµν =


ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 (21)

It should be noted that the energy-momentum conservation is ensured by

∂µT
µν = 0 (22)

3.2 Ricci tensor

The possibility that space is flat or curved can be determined through studying the Rie-
mann curvature tensor or shortly the Riemann tensor. This tensor is fundamental to study
curved spaces. A space is flat when Riemann tensor vanishes at all points in that space.
Contracting the first and last indices on the Riemann tensor Rγ

αβγ results in Ricci tensor
Rαβ as

Rαβ ≡
∑
γ

Rγ
αβγ (23)

The Ricci scalar R, known also as the curvature scalar, is obtained through further
contracting of the indices on the Ricci tensor as

R ≡
∑
α,β

gαβRαβ (24)

Ricci tensor is symmetric i.e. Rαβ = Rβα. This property can be seen from the definition
of the Riemann tensor. This tensor describes the curvature of the space and has rank 4.
Thus, it has four indices and can be denoted as R`ijk. In four-dimensional spacetime
each of these indices can take four values, so it has 44 = 256 components. However, due
to some symmetries of the tensor with respect to interchanging its indices, there are just
20 independent components. In three dimensions there are 6 independent components,
and in two dimensions only one. In an n-dimensional Riemannian space the Riemann
tensor R`ijk is defined as

R`ijk =
∂Γ`ik

∂xj
− Γ`ij

∂xk
+
∑
m

Γmik Γ`mj −
∑
m

Γmij Γ`mk (25)

where the quantities Γijk, for i, j, k = 1, 2, ..., n, are known as connection coefficients.
There numbers are n3, however due to the symmetry, they are not all independent. These
connection coefficients are important for differentiation in curved space. They can be
defined from the differentiation of the basis vectors ê of the space through [12]

∂êj
∂xk

=
∑
i

Γijk êi (26)

The above equation shows that the connection coefficient Γijk simply denotes the com-
ponent of the rate of the change of the basis vector êj with respect to changes in the
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coordinate xk in the direction of basis vector êi. The connection coefficient has a direct
relation to the metric tensor gµν via

Γijk =
1

2

∑
`

gi`
(
∂g`k
∂xj

+
∂gj`
∂xk
− ∂gjk
∂x`

)
(27)

where the dual metric tensor gij is the matrix inverse of gij satisfying

∑
k

gikgkj = δij (28)

with δij = 1 for i = j and δij = 0 for i 6= j.
We turn now to discuss the metric tensor gµν required to the calculations of the connec-

tion coefficients necessary for the evaluation of both Riemann and Ricci tensors. Recall
that the line element ds2, the infinitesimal generalization of the spacetime separation of
two points, in Minkowski spacetime is given as

ds2 = dt2 − dx2 − dy2 − dz2 (29)

If we denote the points (t, x, y, z) in Minkowski spacetime as xµ = (x0, x1, x2, x3)
we can express the previous equation in terms of the Minkowski metric tensor ηµν =
diag.(1,−1,−1,−1) as

ds2 =
3∑

µ,ν=0

ηµν dx
µ dxν (30)

For later use, we show the expression of ds2 in spherical coordinate system

ds2 = dt2 − dr2 − r2 dθ2 − r2 sin2θ dφ2 (31)

where the points in Minkowski spacetime are given as xµ = (x0, x1, x2, x3) = (t, r, θ, φ).
The coefficients of the Minkowski spacetime metric tensor ηµν are constants showing
that the Minkowski spacetime of the special relativity is flat. In the curved spacetime,
Riemannian space, of general relativity the metric tensor coefficients are functions of
the coordinates. Thus, to calculate the line element ds2 in curved spacetime, we need
to replace the metric tensor ηµν by a general metric tensor gµν that has coefficients as
functions of the coordinates. So we have

ds2 =
3∑

µ,ν=0

gµν dx
µ dxν (32)

Relativistic cosmological models are based on three principals. These principals are the
applicability of general relativity to the Universe as a whole, the cosmological principle
and Weyl’s postulate. The first principal is based on the assumption that all matter and
radiation in the universe exist in four-dimensional spacetime that can be described by an
appropriate metric tensor gµν . On the other hand, the cosmological principle tells that on
an enough large scale and at any time the universe is homogeneous and isotropic. The fact
that our universe is not static but expanding is based on observational evidence published
by Edwin Hubble in 1929. Following studies have shown that the large-scale motion,
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sometimes referred as the Hubble flow, is isotropic and thus it can be characterized by
a single rate of expansion at any time. This rate of expansion is currently increasing
with time indicating that the expansion of the universe is accelerating as confirmed by
many recent observations. Observers who move with the Hubble flow are referred as
fundamental observers. Only these observers who can find that the Universe around them
is isotropic. Weyl’s postulate states that in cosmic spacetime there exists a set of privileged
fundamental observers whose world-lines form a smooth bundle of time-like geodesics.
These geodesics never meet at any event, apart perhaps from an initial singularity in the
past and/or a final singularity in the future.

Howard Robertson and Arthur Walker had shown that all cosmological relativistic mod-
els that are homogeneous and isotropic can be described by a single spacetime metric.
Currently, this metric is referred as the Robertson-Walker metric and can be obtained
from ds2 given in terms of co-moving coordinates r, θ and φ as [13, 14, 15, 16]

ds2 = dt2 − a2(t)
[

dr2

1−Kr2
+ r2(dθ2 + sin2θdφ2)

]
(33)

The constant K describes the geometry of the spatial section of space time, with closed,
flat and open universes corresponding to K = +1, 0,−1, respectively. a(t) is the scale
factor that gives the information about distance ratios at different times. When a(t) in-
creases with time, the fundamental observers become more widely separated with time.
As a consequence, the galaxies containing those fundamental observers get further apart
indicating that the universe is expanding. Contrarily, when a(t) decreases with time, the
fundamental observers and their associated galaxies come close to each others, and the
universe may be said to be contracting. Comparing Eqs.(31,33) we can read off the the
Robertson-Walker metric tensor gµν

gµν =


1 0 0 0

0 a2(t)
1−Kr2 0 0

0 0 a2(t) 0
0 0 0 a2(t)

 (34)

In this metric, t represents the cosmic time that can be related to the proper time mea-
sured by any fundamental observer. The rate of the change of the proper distance dp, the
distance between two fundamental observers or their galaxies, with respect to cosmic time
define the so-called proper radial velocity vp. In terms of vp and dp the Hubble parameter
H(t) is given as

H(t) =
vp
dp

(35)

H(t) can be defined from the scale factor a(t) as follows

H ≡ H(t) =
1

a(t)

d a(t)

dt
≡ ȧ

a
(36)

Positive values of vp indicate that fundamental observers or their galaxies are moving
away from each others while negative values of vp indicating that they are coming toward
each others.
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3.3 Energy density evolution equation

Using the metric tensor gµν given in Eq.(34) one can proceed to calculate the connection
coefficients using Eq.(27) and then evaluate Riemann tensor in Eq.(25). This will allow
to calculate both Ricci tensor and Ricci scalar with the help of Eqs.(23,24). The result is
[14]

R00 =
3ä

a
, (37)

Ri
j =

(
ä

a
+

2ȧ2

a2
+

2K

a2

)
δij, (38)

R = 6
(
ä

a
+
ȧ2

a2
+
K

a2

)
, (39)

here ä means a derivative with respect to t. After substituting Ricci tensor components
given in Eqs.(37,38), Ricci scalar given in Eq.(39) and the energy-momentum tensor given
in Eq.(21) in the Einstein field equations given in Eq.(19) we obtain the following two
differential equations

H2 =
(
ȧ

a

)2

=
8πGε

3
− K

a2
, (40)

Ḣ = −4πG(p+ ε) +
K

a2
, (41)

The energy momentum tensor is conserved by virtue of the Bianchi identities, prompt-
ing the continuity equation[49]

ε̇+ 3H(ε+ p) = 0 (42)

Recent measurements showed that the Universe is flat and hence K = 0 and thus Eq.(40)
and Eq.(42) result in

− dε

3
√
ε (ε+ p)

=

√
8πG

3
dt (43)

which allows us to find the time evolution of the energy density ε once we know the
pressure p as a function of ε.

4 Results and discussion
In this chapter, we present our results for the time evolution of the total energy density
(ε), pressure (p) and temperature (T ) in the early universe in the MIT model, Model l and
Model 2. To do this, we substitute the p(ε), p1(ε1) and p2(ε2) given in Eq.(13), Eq.(16)
and Eq.(18) in Eq.(43) and solve this differential equation numerically to obtain the time
evolution of ε, ε1 and ε2 which represent the time variation of the total energy density in
the MIT model, Model l and Model 2, respectively. Next step is to use the two equations
of states of ε to calculate the time evolution of the temperature T and the pressure p. In
our analysis, we use the following initial conditions [17]:
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εi(ti) = 107 MeV/fm3 at ti = 10−9 s (44)

and run the evolution from the time of the electroweak phase transition, ti = 10−9 s, to
the time of the QCD phase transition, tf = 10−4 s.
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Figure 1: Time evolution of the energy density in MIT bag model.
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Figure 2: Time evolution of the temperature in MIT bag model.

In Fig.1, Fig.2 and Fig.3 we show our results for the time evolution of the energy den-
sity, temperature and pressure, respectively, in the MIT bag model. Recall that, in natural
units system energy density has a unit GeV 4 and the time has a GeV −1. In natural units
system, also the temperature has a unit GeV and pressure has a unit GeV 4.

In Fig.4, Fig.5 and Fig.6 we present our results for the time evolution of the energy den-
sity, temperature and pressure, respectively, in Model 1. Regarding Model 2 we present
our results for the time evolution of the energy density, temperature and pressure in Fig.7,
Fig.8 and Fig.9.
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Figure 3: Time evolution of the pressure in MIT bag model.
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Figure 4: Time evolution of the energy density in Model 1.
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Figure 5: Time evolution of the temperature in Model 1.
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Figure 6: Time evolution of the pressure in Model 1.
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Figure 7: Time evolution of the energy density in Model 2.
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Figure 8: Time evolution of the temperature in Model 2.
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Figure 9: Time evolution of the the pressure in Model 2.
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Figure 10: Time evolution of the energy density in MIT bag model (red), Model 1(blue)
and Model 2 (orange).
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Figure 11: Time evolution of the Temperature in MIT bag model (red), Model 1(blue)
and Model 2 (orange).
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Figure 12: Time evolution of the pressure in MIT bag model (red), Model 1(blue) and
Model 2 (orange).

66



The Role of Quark-Gluon Plasma

Models 1 and 2 can be thought as new versions of the MIT bag model that are com-
batable with recent lattice QCD data. As shown in Fig.10 time evolution of the energy
density in Model 1 and Model 2 have similar behaviors to time evolution of the energy
density in MIT bag model. We note also from the same figure that at most of the time
the prediction of time evolution of the energy density in Model 1 coincide with the MIT
bag model prediction for the time evolution of the energy density. However, at the end
of the chosen time interval, model 1 predicts smaller energy density than that in MIT bag
model. Regarding Model 2, and from the same figure, we see that at the beginning of the
time interval the prediction of time evolution of the energy density in Model 2 coincide
with the MIT bag model prediction. However, after short time, models 2 predicts larger
energy density than that in MIT bag model at a given time.

Turning now to the the time evolution of the temperature in the three model, we note
from Fig.11 we see that starting from the beginning of the time interval the prediction of
the time evolution of the Temperature in Model 1 and Model 2 differ than that in the MIT
bag model prediction and at the end of the time interval the three models coincide in their
predictions.

We proceed now to consider the time evolution of the pressure. We see that from Fig.12
the prediction of Model 1 coincides with that in the MIT bag model. Moreover, both
models predict larger pressure than that predicted in Model 2 at the beginning of the time
interval. Starting from the middle of the time interval the difference in the predictions
of the time evolution of the the pressure is small in the three models and with increasing
time the predictions coincide in the three models.

Finally we discuss the difference between the study considered in this work and a sim-
ilar study in Ref.[17]. First, in this work, we showed the time evolution of the pressure
in the three models that was not discussed in Ref.[17]. Second we showed our results for
the time evolution of the energy density in the three models in natural units system which
is different than corresponding results shown in Ref.[17] where they have used different
system of units.
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