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Abstract
Multi-objective De Novo Programming is a user-friendly device for optimal system design.
There exist no method for solving general multi-objective De Novo Programs. Only some
special cases have been discussed. This paper proposes a one-step method for solving a
general De Novo Programming Problem using a Min-max Goal Programming technique
where the parameters involved are all fuzzy numbers. The solution obtained is an efficient
solution of the problem considered. The present approach is much more realistic than
the standard De Novo Programming with crisp parameters. Two numerical examples are
given to illustrate the solution procedure.
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1. Introduction
Traditional linear programming is a good way of obtaining the optimal allocation of fixed

or limited resources. But the modern requirement has been shifted from an allocation of
the fixed resources optimally in a given system to that of designing an optimal system
extending the existed resources if necessary [25–30]. Zeleny [26] introduced the concept of
De-Novo Programming to deal with optimal designing of a system where all the objectives
are optimized simultaneously, no trade-offs among the objectives are necessary and no
resources are left unused (i.e. all the constraints are satisfied in equality). This method
was first designed for single-criterion decision making [26, 28], later it has been extended
to multi-criteria decision-making, containing the maximizing type of objectives only [27,
29, 30]. In the designed approach the computation could be handled easily and thus it
has become a popular multi-criteria decision-making technique for designing an optimal
system. But no method exists for the solution of general De Novo Programming Problems
involving both maximizing and minimizing type of objectives. Only some special cases
could be seen in the literature. To solve the general De Novo Programming Problems,
Li and Lee [14, 15], Chen and Hsieh [7], Nurullah [22], Chakraborty and Bhattacharya
[3,4] introduced several approaches. Li and Lee [14,15] first introduced a two-phase fuzzy
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approach based on the ideal and negative ideal solutions to solve the general De Novo
Programming Problem. Chen and Hsieh [7] introduced an innovative approach to the
solution of multi-stage general De Novo Programming Problems using a fuzzy dynamic
programming concept. Nurullah [22] employed a Min-max Goal Programming technique
for the solution of the multi-objective general De Novo Programming Problems in two
steps and examined the closeness of the optimal objective values to the ideal values of the
objectives. Chakraborty and Bhattacharya in [3,4] further studied De Novo Programming
Problem and proposed a method for the solution of the general De Novo Programming
Problem in one step under fuzzy environment using Zimmermann’s technique [32] with
max-min operator. Shi [21] introduced several optimum-path ratios for enforcing different
budget levels of resources so as to find alternative optimal system designs for solving multi-
objective De Novo Programming (MDNP) Problems. Shi [20] applied MDNP to formulate
and solve problems of system design that involved multiple decision makers and a possible
debt. Also Babic and Pavic [1], Huang, et al. [9], Zhang et al. [31], and Chen and Tzeng
[6] have contributed to the De Novo Programming literature with their studies. Miao
et. al. [17] considered Interval-Fuzzy De Novo Programming method for planning water
resources systems under uncertainty in 2014. In 2015 Saeedi et al. [19] utilized De Novo
Programming technique to determine the capacity in a closed loop supply chain network
when a queueing system is established at each recovery center in the reverse flow. Thus it
can be said that De Novo Programming and its applications have become a vibrant area
of contemporary research.

So far we have discussed De Novo Programs with all parameters (the coefficients of the
variables) being crisp . Now in real world problems, determination of the coefficient of
the variables appearing in the De Novo Program or other linear/ non-linear program with
precision is rarely possible. So in absence of precise data, the decision maker has to be
satisfied with available inaccurate data and this adversely affects the solution obtained.
Due to this inherent uncertainty, Fuzzy De Novo Programming was introduced by Li and
Lee [14, 15]. In their construction all the parameters were taken as fuzzy numbers and
a two-step approach for its solution was proposed. In this paper, we have proposed a
one-step approach for solving general MDNP problem using min-max Goal Programming.
In the proposed set up the parameters of costs, technological coefficients, unit prices of
the resources and total budget are all taken as fuzzy numbers. The possibility theory in-
troduced by Zadeh [24] has been proposed to transform the Fuzzy De Novo Programming
Problem to an equivalent crisp problem using membership functions of the fuzzy param-
eters and the degree of possibility α ∈ [0, 1] to which the solution satisfies the problem.
After generating a crisp problem, a one-step technique using Min-max Goal Programming
has been used to solve the problem for a given α. Varying α one can plot the optimal
objective values and can choose the most suitable one depending on the situation. To fulfil
our aim the paper is organized as follows.

In Section 2, the basic concepts and formulations of the multi-objective De Novo Pro-
gramming have been sketched. In Section 3, the Fuzzy De Novo Programming introduced
by Li and Lee and its conversion to an equivalent crisp problem has been discussed. In
Section 4, a Min-max Goal Programming approach has been applied to solve the crisp
problem generated in Section 3. With aid of a theorem it has been established that the
proposed solution method elicits an efficient solution of the problem in one-step. Two nu-
merical examples are given to illustrate the approach. Finally, we address the conclusion
in Section 5.

2. De Novo programming problem
In this section, we will discuss the basic concept of the De Novo Programming Problem

suggested by Zeleny [26]. The general type of De Novo Programming Problem can be
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represented as

Max Z = C1x
Min W = C2x

Subject to
Ax ≤ b

m∑
i=1

pibi ≤ B x ≥ 0

(2.1)

where C1 = [ckj ]r×n; C2 = [c(l+r)j ]s×n; A = [aij ]m×n; bT = [b1, b2, ..., bm];
xT = [x1, x2, ..., xn]; ZT = [z1, z2, ..., zr]; and WT = [w1, w2, ..., ws], square brackets are
used to denote row vectors.

Here, x, b, are the column vectors of decision variables for products and resources
respectively, pi is the cost per unit of ith resources, which are known, i = 1, 2, 3, ..., m and
B is the total available budget. Let vj =

∑m
i=1 piaij denote the unit cost of producing the

product j. Then the De Novo Program (2.1) can be re-written as,

Max Z = C1x
Min W = C2x

Subject to
n∑

j=1
vjxj ≤ B

xj ≥ 0, j = 1, 2, .., n

(2.2)

The problem has been reduced to an equivalent problem containing only one constraint
involving n arguments. It can be proved that every solution of the system (2.1) is also
a solution of the system (2.2) and conversely [26]. Thus with these restructuring, the
generality of the system is not disturbed. In this paper, we are concerned with fuzziness
in the above system and design a problem in which all the parameters, ckj , c(l+r)j , pi, aij , B
are fuzzy numbers.

3. Fuzzy De Novo programming
Like traditional linear or non-linear multi-objective programs, standard De Novo

Programming also requires specifically known data structures. But in the real world, it is
often difficult to determine the coefficient of the variables accurately. Li and Lee [14, 15]
introduced a fuzzy environment into the general model of the De Novo programming to
make standard De Novo Programming more flexible as follows:
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Max Z̃k =
n∑

j=1
C̃kjxj k = 1, 2, ..., r.

Min W̃l =
n∑

j=1
C̃(l+r)jxj l = 1, 2, ..., s.

Subject to
n∑

j=1
ṽjxj ≤ B̃

ṽj =
m∑

i=1
p̃iãij

xj ≥ 0, j = 1, 2, ..., n

(3.1)

where parameters C̃kj , C̃(l+r)j , p̃i, ãij , B̃ are fuzzy numbers on the set of real numbers R

characterized by the membership functions µC̃kj
, µC̃(l+r)j

, µp̃i , µãij , µB̃ respectively, and ṽj

are fuzzy functions on R2m defined by using an extension principle,

µṽj (vj) = sup
m∑

i=1
piaij=vj

min
i

{µp̃i(pi), µãij (aij)} j = 1, 2, ..., n.

In (3.1) above Z̃k and W̃l are fuzzyfied versions of Zk and Wl respectively. By means of
an extension principle we have,

µZ̃k
(x) = sup

Zk=
n∑

j=1
Ckjxj

min
j

{µC̃kj
(Ckj)}; k = 1, 2, ..., r; x = (x1, x2, ..., xn)

µW̃l
(x) = sup

Wl=
n∑

j=1
C(l+r)jxj

min
j

{µC̃(l+r)j
(C(l+r)j)}; l = 1, 2, ..., s

µ
(

n∑
j=1

ṽjxj≤B̃)
(x) = sup

n∑
j=1

ṽjxj≤B

min
j

{µṽj (vj), µB̃(B)}

= sup∑n

j=1 ṽjxj≤B

min
j

{ sup
vj=

m∑
i=1

piaij

min{µp̃i(pi), µãij (aij)}, µB̃(B)}

Here µZ̃k
, µW̃l

, µ n∑
j=1

ṽjxj≤B̃)
are fuzzy sets on X, the set of all feasible solutions of (3.1)

and x ∈ X. Each of these fuzzy sets serves as fuzzy restriction on the variable x =
(x1, x2, ...xn), in the sense that the assignment of the values u = (u1, u2, ..., un) to x has
the form

x = u : µZ̃k
(u); x = u : µW̃l

(u); and x = u : µ n∑
j=1

ṽjxj≤B̃
(u)

where, µZ̃k
etc. are the degree to which the constraint represented by Z̃k is satisfied when

u is assigned to x. Equivalently it implies that 1 − µZ̃k
(u) etc. are the degrees to which

the constraint has to be stretched in order to allow the assignment of the values u to x.
In other words, µZ̃k

etc. are the degrees of possibility to which the fuzzy restriction Z̃k is
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satisfied. Then we take

α = min{poss(Z̃k), poss(W̃l), poss(
n∑

j=1
ṽjxj ≤ B̃)}

where, k = 1, 2, ..., r; l = 1, 2, ..., s. Here poss denotes possibility and α ∈ [0, 1] represents
the degree of possibility to which the solution satisfies the problem (3.1). In other words,
it can be said that α ∈ [0, 1] is the safety level or efficiency level and 1−α is the risk-factor
[15]. Also poss(Z̃k) = µZ̃k

etc.

Now for designing a risk-free system under fuzzy environment, the parameters viz.
invested budget (B̃), unit resource price (p̃i), and operation cost (ãij) are respectively
taken as following types of interval [B0, B1), (p1, p0], (a1

ij , a0
ij ], where the superscript 0

corresponds to risk free (i.e. having membership value 1 at the corresponding end of the
interval) and the superscript 1 to the impossible value (i.e. having membership value 0 at
the corresponding end of the interval). The cost coefficient C̃kj of the maximizing type
of objectives are taken as [C0

kj , C1
kj) and for the minimizing type of objectives the cost

coefficient C̃(l+r)j are taken as(C1
(l+r)j , C0

(l+r)j ]. In all these cases, between the risk-free
and impossible value we take a Zimmerman type of linear membership function. On the
other hand, a system designed with possible biggest profit units for maximizing types of
objectives (respectively possible smallest cost unit for the minimizing types of objectives),
biggest invested budget, smallest resources price and smallest operation cost are most
dangerous [2, 15].

Now as in [14,15,23] using the definition of α, the program (3.1) becomes,

Max (Z̃k)α =
n∑

j=1
µ−1

C̃kj
(α)xj k = 1, 2, ..., r

Max (W̃l)α =
n∑

j=1
µ−1

C̃(l+r)j
(α)xj l = 1, 2, ..., s

Subject to,
n∑

j=1
µ−1

ṽj
(α)xj ≤ µ−1

B̃
(α)

α ∈ [0, 1], xj ≥ 0; j = 1, 2, ..., n.

(3.2)

where (Z̃k)α, (W̃l)α, are the α-cuts of Z̃k and W̃l defined by

(Z̃k)α = {Zk ∈ R | µZ̃k
(Zk) ≥ α}, k = 1, 2, ..., r

(W̃l)α = {Wl ∈ R | µW̃l
(Wl) ≥ α}, l = 1, 2, ..., s

And

µ−1
C̃kj

(α) = C1
kj − α(C1

kj − C0
kj), k = 1, 2, ..., r; j = 1, 2, ..., n

µ−1
C̃(l+r)j

(α) = C1
(l+r)j + α(C0

(l+r)j − C1
(l+r)j), l = 1, 2, ..., s; j = 1, 2, ..., n

µ−1
p̃i

(α) = p1
i + α(p0

i − p1
i), i = 1, 2, ..., m

µ−1
ãij

(α) = a1
ij + α(a0

ij − a1
ij), i = 1, 2, ..., m; j = 1, 2, ..., n

µ−1
B̃

(α) = B1 − α(B1 − B0)

µ−1
ṽj

(α) =
m∑

i=1
µ−1

p̃i
(α)µ−1

ãij
(α) j = 1, 2, ..., n
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Thus the fuzzy system (3.1) has been converted to an equivalent crisp system (3.2) (Verde-
gay [23]), for a given α ∈ [0, 1]. Our aim is to solve this crisp problem using Min-max Goal
Programming technique, which requires calculation of target values/ aspiration levels of
the objective. Here by aspiration levels of the objectives, we meant the targeted values
of the objectives set by the decision makers for their achievement. In our calculations for
a maximizing(resp. minimizing) type of objective, its maximum (resp. minimum) value
under the given constraints has been taken as its aspiration level. For this, we first find
the basic feasible solutions of the system. This is done by putting (n − 1) variables to zero
and finding the value of the remaining variable.
Thus the basic solutions are,

( B(α)
v1(α)

, 0, ..., 0); (0,
B(α)
v2(α)

, 0, ..., 0); ...; (0, 0, ...,
B(α)
vn(α)

);

Here B(α) = µ−1
B̃

(α) ≥ 0 and vj(α) = µ−1
ṽj

(α) > 0. So all the basic solutions are feasible.
Substituting these basic feasible solutions one by one in all the objectives we can find the
optimum values of each of the objectives. Let

Z∗
k = Max (Z̃k)α, k = 1, 2, ..., r

W ∗
l = Min (W̃l)α, l = 1, 2, ..., s.

These values Z∗
k , W ∗

l are called ideal values for the maximizing and minimizing objectives
respectively and serve as the target values/aspiration levels for the objectives.
The(l + r) component vector I∗ = (Z∗

1 , Z∗
2 , ..., Z∗

r , W ∗
1 , W ∗

2 , ..., W ∗
s ) of the ideal values of

the objectives, is called the ideal point.
In Min-max goal programming, maximum possible deviations of the objectives from their
respective ideal values are minimized. But the objective may have different units. To get
rid of this difficulty, the objectives are made dimensionless through a normalization pro-
cedure. To apply the normalization procedure, another set of objective values are needed.
For this purpose, Li and Lee [14] used negative ideal values given by Z−

k = Min(Zk)α and
W −

s = Max(Ws)α which denote the worst possible performance of the system.
In this paper, instead of using the negative ideal values, another set of objective values
calculated by Luhandjula’s comparison technique [16] have been used. These intermediate
values (between the ideal and negative ideal value) of the objectives constitute the pes-
simistic objective values in the present case.
Let β̂ = (Ẑ1, Ẑ2, ..., Ẑr, Ŵ1, Ŵ2, ...., Ŵs) be the vector of the pessimistic values.

4. Min-max goal programming
Goal Programming (GP) is one of the most important methods in the arena of

Multi-Objective Decision Making (MODM). This method is regarded as an extension of
classical linear programs which includes the achievement of target values or aspiration
levels for each objective, in place of maximizing or minimizing the objective functions.
The term Goal Programming was first introduced by Charnes and Cooper [5]. With the
studies of Lee [13], Ijiri [11], and Ignizio [10]; Goal Programming has become a strong
and well-accepted technique in the literature. The general purpose of Goal Programming
is to minimize the deviation between the achievement of the goals and their aspirational
levels. The minimization procedure can be accomplished with different methods (Romero
[18]). The min-max variant of goal programming technique was introduced by Flavell [8].
In this variant, the maximum deviation from amongst the weighted set of deviations (of
the objectives from their respective aspiration level) is minimized rather than the sum
of the deviations themselves (Jones and Tamiz [12]). The mathematical expression of
min-max GP is as follows:
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Min d

Subject to
fk(x) + nk − pk = wk

βknk + γkpk ≤ d

x ∈ X, the set of all feasible solution of the problem
nk, pk ≥ 0, k = 1, 2, ..., r; xT = [x1, x2, ..., xn]

(4.1)

where d is the maximum weighted deviation between the achievement of the goals
and their aspirational levels, fk(x) is the kth objective function, wk is the specified
aspiration level for the kth objective (max/min fk), nk, pk are respectively negative
and positive deviations from the aspiration level wk of kth objective and βk, γk are the
non-negative weights with βk + γk = 1. For obtaining a satisfactory solution of the De
Novo Programming Problem based on Min-max Goal Programming, the problem (3.2) is
reformulated. According to the new formulation wk = ideal value of the kth maximizing
/ minimizing objective. Since the ideal values have been used as aspiration level of the
objectives, so fk(x) ≤ Z∗

k for maximizing objectives and fl(x) ≥ W ∗
l , for minimizing

objectives. Hence we must have pk = 0 for the kth maximizing objective and nl = 0
for the lth minimizing objective. Now the ideal values (optimistic values Z∗

k , W ∗
l ) and

pessimistic values (Ẑk, Ŵk) obtained by Luhandjula’s comparison technique [16] will be
used for the normalization of deviation variables. In normalization process each deviation
variable is divided by a constant pertaining to the corresponding objective. This will
reduce the deviations to unitless numbers. In this paper, this normalization constant
has been taken as (Z∗

k − Ẑk) [resp. (Ŵl − W ∗
l )] for maximizing [resp. for minimizing]

objectives.
Now for solving the crisp De Novo Programming Problem (3.2) by using Min-max Goal
Programming method (4.1) we have the following program.

Min d

Subject to
(Z̃k)α + nk = Z∗

k

βk
nk

tk
≤ d

(W̃l)α − pl = W ∗
l

γl
pl

tl
≤ d

n∑
j=1

µ−1
ṽj

(α)xj ≤ µ−1
B̃

(α)

α ∈ [0, 1], xj ≥ 0; j = 1, 2, ..., n.

(4.2)

k = 1, 2, ...r; l = 1, 2, ..., s; tk = Z∗
k − Ẑk, tl = Ŵl − W ∗

l , (Z̃k)α = fk(x) for the
maximizing objectives and (W̃l)α = fl(x) for the minimizing objectives. Here d is the
normalized maximum weighted deviation between the achievement of the goals and their
aspiration levels. This crisp linear program (4.2) can now be solved using Lingo software
(version 17.0 × 64).

Now we will show with the help of a Theorem that the proposed method of solution
(program 4.2) indeed yields an efficient solution of the problem (3.2).
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Theorem 4.1. The optimal solution of the system (4.2) is an efficient solution of the
problem (3.2)

Assume x̄ be an optimal solution of system (4.2).We will show that x̄ is an efficient
solution of system (3.2). If possible let, x̄ is not an efficient solution of (3.2).
Let X =

{
x ∈ Rn, |

∑n
j=1 µ−1

ṽj
(α)xj ≤ µ−1

B̃
(α); α ∈ [0, 1]

}
Then ∃ ¯̄x ∈ X such that,

(Z̃k)α(¯̄x) ≥ (Z̃k)α(x̄); for k = 1, 2, ..., r

(W̃l)α(¯̄x) ≤ (W̃l)α(x̄); for l = 1, 2, ..., s

And for at least one k or one l

(Z̃k)α(¯̄x) > (Z̃k)α(x̄); (W̃l)α(¯̄x) < (W̃l)α(x̄);

Now let F =
{

x ∈ X| (Z̃k)α(x) > Ẑk; (W̃l)α(x) < Ŵl ∀ k, s
}

, F ̸= ϕ, x̄ ∈ F .
Here Ẑk and Ŵl are respectively pessimistic value for kth maximizing objective and lth

minimizing objective. Now we claim that ¯̄x can not be in X − F . Otherwise, there will
be at least one k or one l such that

(Z̃k)α(¯̄x) ≤ (Ẑk) or (W̃l)α(¯̄x) ≥ (Ŵl) (A1)
Now since x̄ is an optimal solution of system (4.2), therefore for ∀k and l,

(Z̃k)α(x̄) > (Ẑk) and (W̃l)α(x̄) < (Ŵl). (B1)
Now combining (A1) and (B1) we get,

(Z̃k)α(¯̄x) < (Z̃k)α(x̄) or (W̃l)α(¯̄x) > (W̃l)α(x̄),
which is a conradiction. Thus ¯̄x ∈ F .
Now from the system (4.2) we can write the normalized values of nk and pl,

nk

tk
= Z∗

k − (Z̃k)α

Z∗
k − Ẑk

; pl

tl
= (W̃l)α − W ∗

l

Ŵl − W ∗
l

Now,
(Z̃k)α(¯̄x) ≥ (Z̃k)α(x̄); k = 1, 2, ..., r.

Therefore,
Z∗

k − (Z̃k)α(¯̄x)
Z∗

k − Ẑk

≤ Z∗
k − (Z̃k)α(x̄)

Z∗
k − Ẑk

(A2)

Also,
(W̃l)α(¯̄x) ≤ (W̃l)α(x̄) l = 1, 2, ..., s.

and
(W̃l)α(¯̄x) − W ∗

l

Ŵl − W ∗
l

≤ (W̃l)α(x̄) − W ∗
l

Ŵl − W ∗
l

(B2)

and for at least one k, and one l,
Z∗

k − (Z̃k)α(¯̄x)
Z∗

k − Ẑk

<
Z∗

k − (Z̃k)α(x̄)
Z∗

k − Ẑk

.

And,
(W̃l)α(¯̄x) − W ∗

l

Ŵl − W ∗
l

<
(W̃l)α(x̄) − W ∗

l

Ŵl − W ∗
l
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Now for any arbitrary point x ∈ X, min d= min
{

βk
nk
tk

, γl
pl
tl

}
. Since this is true for all

βk and γl, we can choose βk = γl. Now from (A2) and (B2) it is clear that the value of nk
tk

and pl
tl

is greater for x̄ than that at ¯̄x . Hence the minimum value of d = min
{

nk
tk

, pl
tl

}
will occur at ¯̄x, which contradicts the fact that x̄ is an optimum solution of the system
(4.2). Therefore x̄ is an efficient solution.

The advantage of this approach is that the decision maker is allowed to participate in
the decision process by choosing his/her appropriate membership grade based on the risk
factor, he/she is willing to take. The following example is taken from Li and Lee [14]
(example 3, page 109) to illustrate the proposed approach.

Example: 1

Max Z̃1 = [20, 51)x1 + 12x2

Max Z̃2 = 4x1 + [10, 31)x2

Min W̃1 = x1 + (11, 40]x2

Min W̃2 = 2x1 + (21, 30]x2

Subject to
((0.51, 20] + 2)x1 + ((0.51, 20].(11, 40] + (21, 30])x2 ≤ [2000, 2501).

x1, x2 ≥ 0

(4.3)

For a given safety factor α, the α-cuts of the fuzzy coefficients can be expressed by means
of inverses of their respective membership functions as presented in page 6; under system
(3.2)

µ−1
C̃11

(α) = 5 − 3α, µ−1
C̃12

(α) = 12, µ−1
C̃21

(α) = 4, µ−1
C̃22

(α) = 3 − 2α,

µ−1
C̃31

(α) = 1, µ−1
C̃32

(α) = 1 + 3α, µ−1
C̃41

(α) = 2, µ−1
ã42(α) = 2 + α,

µ−1
ã11(α) = 1, µ−1

ã12(α) = 1 + 3α, µ−1
ã21(α) = 2, µ−1

ã22(α) = 2 + α,

µ−1
p̃1 (α) = 0.5 + 1.5α, µ−1

p̃2 (α) = 1, µ−1
B̃

(α) = 250 − 50α,

µ−1
ṽ1 (α) = 2.5 + 1.5α, µ−1

ṽ2 (α) = 2.5 + 4α + 4.5α2.

Now the problem (4.3) can be re-written as a crisp program

Max (Z̃1)α = (5 − 3α)x1 + 12x2

Max (Z̃2)α = 4x1 + (3 − 2α)x2

Min (w̃1)α = x1 + (1 + 3α)x2

Min (W̃2)α = 2x1 + (2 + α)x2

Subject to
(2.5 + 1.5α)x1 + (2.5 + 4α + 4.5α2)x2 = 250 − 50α

α ∈ [0, 1], x1, x2 ≥ 0

(4.4)

For a given safety level α ∈ [0, 1] one can solve the problem (4.4) using the
Min-max program (4.2) proposed in this paper. Considering the value of α as
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0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 the solution of the problem (4.4) has been ob-
tained and tabulated in Table 1.

Table 1. values of the Objectives for choosen values of α

Values of α x1 x2 (Z1)α (Z2)α (W1)α (W2)α d Sum of deviation
0.1 46.223 41.528 715.591 301.171 75.292 179.664 0.50148 373.12
0.2 42.871 34.471 602.290 261.111 98.025 161.577 0.50016 329.139
0.3 39.830 28.623 506.788 228.018 94.215 145.495 0.50001 282.096
0.4 37.097 23.858 423.995 200.277 88.985 130.799 0.50002 276.194
0.5 34.615 20.454 336.608 179.371 85.752 120.343 0.500005 277.806
0.6 32.354 16.871 305.985 159.783 79.593 108.572 0.500008 233.65
0.7 30.242 14.342 259.805 143.915 74.702 99.207 0.50064 217.933
0.8 28.379 12.237 220.629 130.647 69.984 91.021 0.5002 205.044
0.9 26.624 10.518 187.452 119.118 65.540 83.750 0.50004 193.886
1.0 26.249 9.091 161.59 114.087 62.613 79.771 0.5549 180.324

From Table 1, it has been observed that with the increase of safety level α, the sum of
the deviations (D) of the objective values from their respective ideal values diminishes
which is shown in the last column of Table 1 and a minimum is obtained at α = 1 which
denotes certainty (i.e. the situation where the parameters could be determined crisply).
In real world situation, there is always some uncertainty associated with the parameters
of the problem. The parameters are not all crisps. So the decision maker has to take
some risk.
Here we take α = 0.8 which associates a risk factor 1 − α = 0.2, but the objective values
are closer to their respective ideal values. From Table 1, using the objective values we
can plot (α, Z) and (α, W ) graphs (Figure 1).

After putting α = 0.8, Example 1 is reduced to a standard De Novo problem. Its
optimal solution has been given in Table 2. The solution obtained by Li and Lee [14] for
this problem with α = 0.8 are also shown in this Table. A comparison shows that the two
solutions are same.

Table 2. Comparison between the results obtained by the different methods

Method DecisionVariable Value Value of Objectives d B̃(Z̃1)α (Z̃2)α (W̃1)α (W̃2)α

Li and Lee x1 28.38 220.7 130.7 70 91
x2 12.24

Proposed method x1 28.379 220.629 130.647 69.9848 91.0216 0.50002 210
x2 12.237

Next we consider another example having more objectives as well as decision variables.
We solve it by our proposed method as well as that of Li and Lee, and compare the results
for justification and worthiness of the approach proposed in this paper.
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Figure 1. System designs for different values of α

Example: 2

Max Z̃1 = [20, 31)x1 + 5x2 + [70, 81)x3 + x4

Max Z̃2 = 4x1 + [10, 21)x2 + 3x3 + [110, 121)x4

Max Z̃3 = [90, 101)x1 + 3x2 + [10, 31)x3 + 2x4

Min W̃1 = 1.5x1 + (11, 20]x2 + 0.3x3 + (21, 30]x4

Min W̃2 = 0.5x1 + x2 + 0.73x3 + 2x4

Subject to
(11, 30]x1 + 4.5x2 + 1.5x3 + (71, 80]x2 = [1500, 2001).

x1, x2, x3, x4 ≥ 0
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As in Example 1, here also we have converted this fuzzy programming into an equivalent
crisp linear programming, as following:

Max (Z̃1)α = (3 − α)x1 + 5x2 + (8 − α)x3 + x4

Max (Z̃2)α = 4x1 + (1 − α)x2 + 3x3 + (12 − α)x4

Max (Z̃3)α = (10 − α)x1 + 3x2 + (3 − 2α)x3 + 2x4

Min (w̃1)α = 1.5x1 + (1 + α)x2 + 0.3x3 + (2 + α)x4

Min (W̃2)α = 0.5x1 + x2 + 0.73x3 + 2x4

Subject to
(1 + 2α)x1 + 4.5x2 + 1.5x3 + (7 + α)x4 = 150 − 50α

α ∈ [0, 1], x1, x2 ≥ 0
In this case also varying α ∈ [0, 1], the solution and the corresponding objective values
could be determined by Lingo and curves of the objective functions could be drawn.
From this graph, the decision maker can choose the values of the objective as per his/her
requirement and the corresponding safety level α and consequent risk factor (1 − α) the
decision maker is ready to concede. Here for α = 0.8 the program has been solved and a
comparison of the optimal solution obtained by Li and Lee and our proposed approach is
given in Table 3.

Table 3. Comparison between the results obtained by the different methods

Objective Functions Li and Lee Fuzzy Approach Proposed Approach
(Z̃1)α 310.481 310.51616
(Z̃2)α 194.608 194.608
(Z̃3)α 245.901 245.932
(W̃1)α 42.729 42.7306
(W̃2)α 37.341 38.935

Closeness to the ideal d= 0.57, 0.88,0.603, 0.5, 0.5 d=0.5000214

Variables

x1=21.14916 x1=21.15207
x2=0 x2=0.000693

x3=36.6598 x3=36.664
x4=0.00288 x4=0.000797

From the Table 3, it is evident that both the methods generate same solution of the
problem.

5. Conclusion
A one-step method for the solution of a general De Novo Programming Problem with

the fuzzy parameters has been introduced in this paper. The solution procedure has
been illustrated by numerical examples. The problems have been solved by our proposed
approach as well as by the two-step fuzzy approach of Li and Lee. It is observed from
the comparison table that both the methods yield the same solutions of the considered
general De Novo Programming Problems with fuzzy parameters. This coincidence is
due to fact that the proposed method in this paper elicits an efficient solution of the
problem in one step (Theorem 4.1) and by the method of Li and Lee also the same could
be obtained but in a two-step approach. But the proposed method is better because it
yields the desired solutions in one-step only. It requires much fewer computations and
processing time than the two-phase fuzzy method. In large problems, these benefits are
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of considerable importance. As a future scope of the study, the solution of general fuzzy
De Novo Programming Problem,where the coefficients are other types of fuzzy numbers
(e.g. triangular, trapezoidal) or other types of fuzzy sets (e.g. type-2 fuzzy set, hes-
itant fuzzy set) and using the different variants of goal programming could be investigated.

Acknowledgment. The authors would like to express their sincere thanks to the referee
for his/her valuable suggestions regarding improvement of the paper in the present form.
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