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ABSTRACT 
 

The longitudinal stability of an aircraft is analyzed using root locations of the transfer function’s denominator (the characteristic 

equation). This transfer function is obtained by linearizing aircraft dynamic model at a certain operation point (altitude and 

speed). However, aircraft have varying stability derivatives, therefore dynamic behavior, for different flight phases such as takeoff, 

cruise, and landing. Thus the stability analysis of the characteristic equation can be said to be valid only for a single flight condition. 

In fact, stability derivatives vary with flight conditions, so an analysis that includes all possible stability derivatives in the flight 

envelope is required to guarantee stability. In this study, the two most variable stability derivatives in the transfer function were 

taken as uncertain parameters. Gridding these two parameters to check the stability of the unmanned aerial vehicle for all possible 

flight conditions is a possible method, but it is very time-consuming, and it cannot assure the stability theoretically. A new simple 

approach is developed by using the Edge and Bialas theorems, which guarantees stability despite the uncertainty of two stability 

derivatives. The problem is reduced to the analysis of four polynomials. With the eigenvalues of just four polynomials, the 

stability characteristics of an airplane for a given flight envelope can be easily determined. 

 

Keywords: Stability analysis, Edge theorem, Bialas theorem, Unmanned aerial vehicles 
 

 

1. INTRODUCTION 

 

The H∞ technique can adequately handle robust stability and performance issues under unstructured 

perturbations. Nevertheless, it is incomplete in the case of parameter uncertainty. Italian mathematician 

Faedo (1953) and Russian scientist Kharitonov (1970) introduced the treatment of robust stability 

problems under parameter uncertainty. An “optimal” feedback compensator for the system is obtained 

by the H2 and H∞ methods. Before such a compensator can be formed, for the real-world applications, 

it is normal to demonstrate its abilities according to additional design criteria, not only optimal ones. 

Performance with parameter uncertainty is especially important for most systems, but optimal H2 and 

H∞ method are unable to supply a direct and nonconservative solution to this significant problem. The 

problem of robustness under parameter uncertainty was the focus of Kharitonov’s Theorem for interval 

polynomials. This Theorem may be the most significant achievement in the field after the improvement 

of the Routh-Hurwitz criterion. The essential success of this theorem is that it enables us to decide if a 

linear time-invariant control system with several uncertain parameters stay stable as the parameters 

change over a set. The theorem provides an exact answer, that is, nonconservatively, when the 

parameters arise linearly or multilinearly in characteristic polynomials. This solves some significant 

control system design problems such as 1) the calculation of the real parametric stability margin, 2) the 

determination of stability margins under mixed parametric uncertainty, 3) the evaluation of the worst 

case or robust performance measured in the H∞ norm over a prescribed parameter uncertainty set, and 

4) the extension of classical design techniques involving Nyquist, Nichols, and Bode plots and root-loci 

to systems containing several uncertain real parameters. 
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In the real world, most systems are nonlinear. A linear time-invariant model is acquired by positioning 

the operating point and linearizing the system equation about it. As the operating point varies so do the 

parameters. Therefore there is significant uncertainty with respect to the real plant. Kharitonov’s 

Theorem caused an immense revival of work on robust stability under real parametric uncertainty. 

Scientists started to believe that the robust control problem for parametric uncertainties could be treated 

without conservatism and overbounding. Furthermore, it has shown the effectiveness and transparency 

of methods that use the algebraic and geometric characteristics of the stability region in parameter space 

by contrasting the blind formulation of an optimization problem. This has resulted in an outpouring of 

results in this field over the last few years [1]. 

 

Edge Theorem extended Kharitonov’s Theorem by considering dependencies between the coefficients 

of the polynomial and addressing the general stability region. It provides a complete, exact, and 

constructive characterization of the root set of a polytopic family. 

 

Edge Theorem proves that the root region of the entire family can be attained from the root set of the 

edges. Because the edges are one-parameter sets of polynomials, this theorem effectively and 

constructively decreases work load of determining the root space under multiple-parameter uncertainty 

in a set of one-parameter root locus problems. 

 

Kharitonov’s Theorem was first published in 1978 [2]. Bialas [3] and Barmish [4] are recognized for 

presenting it to Western literature. Several applications of this theorem are accessible in articles by Bose 

[5], Yeung and Wang [6], Minnichelli, Anagnost, and Desoer [7], and Chapellat and Bhattacharyya [8]. 

 

The dynamic characteristics of aircraft longitudinal motion and its control are studied by linearizing 

aircraft equations of motion [9, 10]. There are typically two modes in the longitudinal dynamics of an 

aircraft: 1) short period and 2) long period (Phugoid). The differences in the dynamic properties of 

aircraft longitudinal motion result from the differences in geometry and mass properties of the aircraft 

expressed as stability derivatives. Stability derivatives differ for different aircraft and may also differ 

for the same aircraft under different flight conditions. Hence any stability analysis performed for a 

certain flight condition is only valid for that condition. 

 

In this study, a longitudinal stability analysis of an unmanned aerial vehicle (UAV) is performed for two 

uncertain stability derivatives in all flight conditions. This study includes the following steps: the geometry 

and mass properties of the UAV are given. The stability and control derivatives of the UAV are calculated 

using AAA (Advanced Aircraft Analysis) software [11–12]. A stability analysis of the UAV’s longitudinal 

motion is performed for a specific flight condition (an operation point). Finally, two stability derivatives, 

which change considerably for different flight conditions, are determined to be the uncertain parameters. 

 

The first part of the paper introduces the theory and methods behind robust stability analysis approaches, 

such as gridding techniques and the Edge and Bialas [14-17] theorems. Next, the application of these 

methods to the longitudinal aircraft motion under the uncertainty of two stability derivatives is 

demonstrated. In this new method, aircraft longitudinal stability analysis for all flight conditions is 

reduced to four polynomials obtained with the Edge and Bialas theorems. An exact answer of whether 

the aircraft is stable or not for all values in a given range is obtained from the eigenvalues of four 

matrices of the four polynomials. The stability analysis of the UAV under parametric uncertainties is 

repeated for three uncertainty ranges. 

 

2. THE UAV AND ITS DERIVATIVES 

 

This section introduces the UAV used for stability analysis. Its geometric configuration and the modeled 

flight condition determine the values of the stability derivatives. These stability derivatives form the 

magnitude of the coefficients in the transfer functions.  
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First, the stability and control derivatives are obtained AAA software [11] for certain flight conditions. 

It is expected that the values of stability derivatives in the whole flight envelope vary around these values 

and within a bounded range. Some derivatives have more uncertain behavior with wider ranges, and 

some have less. Second, two stability derivatives, which have a wide range, are selected as the uncertain 

parameters. Three different uncertainty levels, 20%, 40%, and 50%, are used as limits for the stability 

derivatives, and these bounds are taken into account in the stability analyses. 

 

2.1. The Geometry of the UAV 
 

The geometry of the fixed-wing UAV [12] and flight conditions were modeled in the AAA program 

(Figs. 1–2). 

 
 

Figure 1. Top View of the UAV (dimensions in mm) 

 

 
(a) 

 
(b) 

 

Figure 2. (a) Fron View of the UAV; (b) Side View of the UAV (dimensions in mm) 
 

The UAV’s weight and velocity information are presented in Table 1. 

 

Table 1. Weights and velocity information 

Parameter Aircraft 

𝑊𝑒, N 57.761 

𝑊𝑃𝑟𝑝, N 26.478 

𝑊𝑝𝑙, N 12.033 

𝑊0, N 96.272 

𝑉𝑐𝑟 , m/s 21 

𝑉𝑠𝑡𝑎𝑙𝑙 , m/s 16 
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2.1. Stability and Control Derivatives of the UAV 

 

The stability and control derivatives of the UAV were calculated for a velocity of 20 m/s at an altitude 

of 842 masl [12]. The derivatives required for longitudinal motion are given in Table 2. 

Table 2. Stability and control derivatives of the UAV 

 

𝑪𝑳𝟎
  0.6311 𝑪𝑫𝟎

  0.0660 𝑪𝒎𝟎
  -0.2327 

𝑪𝑳𝒖
  0.0020 𝐶𝐷𝑢

  0 𝐶𝑚𝑢
  0.0006 

𝑪𝑳𝜶
  5.2472 rad-1 𝐶𝐷𝛼

  0.3241 rad-1 𝐶𝑚𝛼
  -0.8101 rad-1 

𝑪𝑳𝜶̇
  3.2213 rad-1 𝐶𝐷𝛼̇

  0  𝐶𝑚𝛼̇
  -7.5846 rad-1 

𝑪𝑳𝒒
  6.4108 rad-1 𝐶𝑇𝑢

  - 0.0660 𝐶𝑚𝑞
  -18.2663 rad-1 

𝑪𝑳𝜹𝒆
  0.0601 rad-1 𝐶𝑍𝛼

  −(𝐶𝐿𝛼
+ 𝐶𝐷0

) 𝐶𝑚𝛿𝑒
  -1.4876 rad-1 

𝑪𝑳𝒊𝒉
  1.3706 rad-1 𝐶𝑍𝛼̇

  −2𝐶𝐿ℎ𝛼
𝜂𝑉ℎ

𝑑𝜀ℎ

𝑑𝛼
  𝐶𝑚𝑖ℎ

  -3.6583 rad-1 

𝑪𝑳𝒉𝜶
  3.1597 rad-1 𝐶𝑍𝑞

  −2𝐶𝐿ℎ𝛼
𝜂𝑉ℎ 𝑀u  0.0008 m-1.s-1 

𝑿𝐮  -0.0800 s-1 𝐶𝑍𝛿𝑒
  −𝐶𝐿𝛿𝑒

 𝑀𝑇𝑢
  0.0000 

𝑿𝑻𝒖
  0.0000 𝑍u  -0.7662 s-1 𝑀𝑤  -1.1565 m-1.s-1 

𝑿𝒘  0.18607 s-1 𝑍𝑤  -3.2203 s-1 𝑀𝑤̇ -0.0812 s-1 

𝑿𝜹𝒆 0 𝑍𝑤̇ -0.0104  𝑀𝑞 -3.9115 s-1 

𝑿𝜶  3.7214 m/s-2 𝑍𝑞 -0.6319 m/s 𝑀𝛿𝑒 -42.473 s-2 

𝒁𝜶  -64.406 m/s-2 𝑍𝛿𝑒 -1.4285 m/s2 𝑀𝛼  -23.13 s-2 

𝒁𝜶̇ -0.208 m/s-1   𝑀𝛼̇ -1.624 s-1 

 

3. THE LINEARIZED UAV MODEL AND STABILITY ANALYSIS 

 

The linearized dynamic model of a fixed-wing aircraft can be represented by Eq. 1 [11]: 
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(1) 

Three transfer functions corresponding to the elevator inputs can be found with Cramer’s Rule. For 

example, the transfer function for velocity change in x-direction with the change of the elevator input 

can be shown as follows (Eq 2): 
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(2) 

 

The stability and control derivatives given in Table II are substituted in Eq. 2 and the transfer function 

is obtained (Eq. 3). 

17373739.18221

26549556831.5

)(

)(
234

2






ssss

ss

s

su

e
 (3) 

The characteristic equation  is the denominator of the transfer function   (Eq. 4): 

017373739.18221 234  ssss  (4) 

The stability of the UAV around an operation point can be decided by looking at the location of the 

roots of the characteristic equation in the complex plane (Eqs. 5, 6). 

)(43.42,1 PeriodShortiS   (5) 

)(5.002.03,2 ModePhugoidiS   (6) 

Since all roots are at the left-hand side of the complex plane as seen in Figure 3, the UAV is stable for 

this operation point (flight condition: 20 m/s and 842 masl ). 

 
 

Figure 3. Roots of the Characteristic Equation 

 

Figure 3 shows that the Phugoid Mode roots are quite close to the origin. Therefore, the Phugoid mode 

is critical for stability and dominant for longitudinal motion. From the damping ratio 𝜉 and the natural 

frequency 𝜔𝑛, the time required to halve the amplitude is calculated from Eq. 3. Table 3 presents the 

UAV’s longitudinal modes. 
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Table 3. Longitudinal modes of the UAV 

 

Phugoid Mode Short Period Mode 

sT

s

rad

pm
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34

48.0

0417.0

2/1 
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
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s

rad
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spn
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1612.0

88.5

7313.0

2/1 









 

 

The UAV has dampened responses to elevator inputs. However, in the Phugoid Mode, the dampening 

ratio is very low, indicating that even small changes in the stability derivatives may result in instability. 

 

4. THE UNCERTAINTY OF STABILITY DERIVATIVES 

 

The UAV operates in a flight envelope with different stability derivatives under different flight 

conditions. Normally the stability analysis has to be repeated for all different possible flight conditions, 

but since there are infinite possible flight conditions, this is not feasible. Experience shows [5] that 

uncertainty in flight derivatives usually falls in the range of 20–50%. In this study, uncertainty for the 

two stability derivatives
X  and Z  were tested at 20%, 40%, and 50% (Table 4). For example, test 1 

allows both stability derivatives to vary by 20% greater or less the nominal values, which are based on 

the operation point described in section 2.1. 

 
Table 4. Three Different Uncertainty Levels 

 
Case 1: 

 XXX 2.18.0   

 
 ZZZ 2.18.0   

Case 2: 
 XXX 4.16.0   

 
 ZZZ 4.16.0   

Case 3: 
 XXX 5.15.0   

 
 ZZZ 5.15.0   

 

5. ROBUST STABILITY ANALYSIS METHODS 

 

This section introduces the theory behind the robust stability analysis. Stability analysis is expanded 

from a single operation point to include the entire flight envelope based on the uncertainty of two 

stability derivatives. 

 

5.1. Gridding 

 

By gridding the uncertain parameters in Fig. 4, pole spreading (Fig. 5) can be performed by marking the 

poles for every point in Fig. 4. In the example, all poles are on the left-hand side, so stability is assured 

for the given range of parametric uncertainty. Pole spreading methods require intense calculation, 

especially when there are many uncertain parameters. Moreover, no matter how small the gridding is, 

stability is not theoretically assured since this method only addresses a sample of all possible conditions 

[14]. 
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Figure 4. Gridding of two uncertain parameters 

 

 

 
 

Figure 5. Root set for the grid points in Figure 4 

 

5.2. Affine-linear Coefficient Polynomials and Value Sets 

 

The characteristic equation of an aircraft’s longitudinal motion with two uncertain parameters is a 

polynomial with affine linear coefficients. This section discusses this kind of polynomials and the Edge 

theorem [14, 15] for stability analysis. Polynomials with affine-linear coefficients can be presented as 

follows: 

)(.......)()(),( 110 sPqsPqsPsP llq  (8) 

where: 

 

  liqqq

qqq

iii

T

l

.....32,1

........10







q

 

lqqq ........10 : uncertain parameters 



ii qandq : lower and upper boundary of the ith uncertain parameter 

 

For example; 

 

 
 10,,

)13()()(),(
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2

2

2

1

23

0

4





qqq

sqssqsssqssP q
 

is a polynomial with the affine linear coefficients. 

 

The value set of a polynomial family with three uncertain parameters can be seen in Fig.6. The value 

set of the polynomial family for all frequency values must not include the origin for stability.  
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Figure 6. The construction of the value set with three parameters and fixed frequency [15] 

 

5.3. The Edge Theorem 

 

The Edge theorem simplifies stability analysis because it shows evaluating only polynomials is 

sufficient to evaluate stability. The theorem states that the polynomial family  

 

 QsasPQsP i
n

i

i  


qqq )(),(),(
0

 (9) 

with affine coefficient functions )(qia and  

  liqqqQ iii ,...,2,1,  q  

is stable if and only if the edges of Q are stable. 

 

For a given polynomial family, the polynomials of a parameter box’s vertices are called vertex 

polynomials. At these vertex polynomials, the uncertain parameters are at their minimum and maximum 

values. The edge polynomial can be obtained from two vertex polynomials as follows: 

 

  1;0)()()1(),(   sPsPQsP cb  (10) 

where 

)(sPb : 1st vertex polynomial 

)(sPc : 2nd vertex polynomial 

 : uncertain parameter in the edge polynomial  

 

Note that no matter how many uncertain parameters there are, once the vertex polynomials are obtained 

with the minimum and maximum values of the uncertain parameters, the edge polynomial includes only 

one uncertain parameter, as seen in Eq. 10. Next, we use the Bialas theorem [16, 17], which can evaluate 

polynomial stability with one uncertain parameter. 
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5.3. Bialas Theorem 

 

Let 
b

nH and
c

nH be the Hurwitz matrices of  

0,............)( 2

21  n

n

nob bsbsbsbbsP  
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0,............)( 2
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n

noc cscscsccsP  

respectively [6]. 

  1;0)()()1(),(  qsPqsPqQsP cb   

is stable if and only if  

1) )(sPb is stable. 

2) the matrix
c

n

b

n HH 1)( 
 has no non-positive real eigenvalues. 

The Bialas theorem thus makes it possible to easily evaluate the stability of the edge polynomials with 

one uncertain parameter. 

 

5. Application of Robust Analysis Methods to the Longitudinal Stability Analysis of the UAV 

 

The characteristic equation for the aircraft longitudinal motion can be expressed as follows: 
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(11) 

If the values of the stability derivative except X and Z are substituted to Eq. 11, the CE has the 

following form (Eq. 12): 







ZsZs

ZsZXs

XsXs

sssCE

32

2

4

32

9915.3

31292.000784322.07662.0

9807.2000273752.0208.21

73.117841.4790954.42116.173









 
(12) 

The CE is a polynomial family with affine linear coefficients hence  

 

CE= a0+ a1 s+ a2 s2+ a3 s3+ a4 s4 

 

where 
 

𝑎0 = 173.116 + 0.000273752 𝑋𝛼 − 0.00784322 𝑍𝛼 

𝑎1 = 42.0954 + 2.9807 𝑋𝛼 − 0. .31292 𝑍𝛼 

𝑎2 = 479.841 + 0.7662 𝑋𝛼 − 3.9915 𝑍𝛼 

𝑎3 = 117.73 − 𝑍𝛼 

𝑎4 = 21.208 
 

For case 1, uncertainties are in the ranges of 
 XXX 2.18.0   and   

 ZZZ 2.18.0  .  

when the numerical values of the stability derivatives are substituted:  
 

465.4977.2  X  and 524.51287.77  Z  
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The minimum and/or maximum values of the uncertain parameters were substituted in Eq. 12 and four 

vertex polynomials were obtained (Eqs. 13–16). 

 

432 208.21017.195754.7910924.67521.173)( sssssP   (13) 

432 208.21255.169754.791591.79521.173)( sssssP   (14) 

432 208.21255.169783.687591.79521.173)( sssssP   (15) 

432 208.21017.195783.6870924.67521.173)( sssssP   (16) 

 

Vertex polynomials are required to obtain edge polynomials, which can be expressed as follows: 
 

)()()1(1 sPsPedge     (17) 

)()()1(2 sPsPedge     (18) 

)()()1(3 sPsPedge     (19) 

)()()1(4 sPsPedge     (20) 

 

If Eqs. 13–16 are substituted in Eqs. 17–20 the following edge polynomials are obtained: 
 

Edge polynomial 1: 

)208.21017.195783.6870924.67521.173(

)208.21017.195754.7910924.67521.173()1(

432

432

ssss

ssss







  (21) 

Edge polynomial 2: 

)208.21255.169783.687591.79521.173(

)208.21017.195783.6870924.67521.173()1(

432

432

ssss

ssss







  (22) 

Edge polynomial 3: 

)208.21255.169754.791591.79521.173(

)208.21255.169783.687591.79521.173()1(

432

432

ssss

ssss







  (23) 

Edge polynomial 4: 

)208.21017.195754.7910924.67521.173(

)208.21255.169754.791591.79521.173()1(

432

432

ssss

ssss







  (24) 

 

As seen in Eqs. 21–24, the edge polynomials include one uncertain parameter. The Bialas theorem is 

very useful because it provides a very effective and simple means of checking the stability of 

polynomials with a single uncertain parameter. If all four edge polynomials are stable, then it can be 

said that aircraft longitudinal motion is stable for the given parametric uncertainty. This procedure is 

repeated for three test cases with different ranges (Table 5). 
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Table 5. Stability analysis for 
 XXX 2.18.0  and 

 ZZZ 2.18.0   

 Hurwitz Determinants of Pb(s)  Eigenvalues of the 

Matrix (Hn
b)-1 Hn

c  

 

Edge 1 195.017,152983.,3.66469×106 1.,1.,0.626687 Stable 

Edge 2 195.017,132707.,2.29661×106 2.09246,1.,0.864456 Stable 

Edge 3 169.255,114723.,4.15419×106 1.33855,1.,1. Stable 

Edge 4 169.255,132320.,5.5606×106 1.15618,1.,0.57002 Stable 

Table 6. Stability analysis for 
 XXX 4.16.0  and 

 ZZZ 4.16.0   

 Hurwitz Determinants of Pb(s)  Eigenvalues of the 

Matrix (Hn
b)-1 Hn

c  

 

Edge 1 207.898,174122.,3.09861×106 1.,1.,0.145488 Stable 

Edge 2 207.898,130891.,450810. 2.09246,1.,0.864456 Stable 

Edge 3 
156.374,97601.5,4.12765×106 

1.67863,1. +/- i 
3.83297×  10-14  

Stable 

Edge 4 156.374,130118.,6.92879×106 1.33823, 1., 0.334179 Stable 

Table 7. Stability analysis for 
 XXX 5.15.0  and 

 ZZZ 5.15.0   

 Hurwitz Determinants of Pb(s)  Eigenvalues of the 

Matrix (Hn
b)-1 Hn

c  

 

Edge 1 214.339,  185194.,  2.72431×106 1., 1. ,-0.18889 Unstable 

Edge 2 214.339,129481.,-514594. -11.4029,  1., 0.691473 Unstable 

Edge 3 149.933,89543.1,4.05749×106 1.8573,1.,1. Stable 

Edge 4 149.933,128515.,7.53598×106 1.44109,1.,0.250858 Stable 

 

6. CONCLUSION 
 

UAV linearized longitudinal motion was investigated for a fixed flight condition. Since stability 

derivatives may have different values for different flight conditions, two stability derivatives were 

selected as uncertain parameters. Various bounded ranges (20%, 40%, and 50%) were accounted for by 

these uncertain parameters. The theory and methods behind the robust stability analysis were briefly 

presented. The longitudinal stability analysis of the UAV for all flight conditions was reduced to the 

analysis of four polynomials with one uncertain parameter. The stability analysis of these four polynomials 

was performed with the Bialas theorem, which is very useful for polynomials with only one uncertain 

parameter. Thus, instead of making a very large number of calculations for every possible flight condition, 

a stability analysis was simplified to four polynomials. For test cases 1 and 2 (20% and 40% uncertainty 

ranges), the aircraft is stable under all flight conditions. However, in test case 3 (50% uncertainty range), 

the aircraft was not stable under all conditions. This study has shown this effectiveness of this approach 

with two uncertain parameters. Future work may include additional uncertain parameters. 
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