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ABSTRACT 
 

In this report, a method of multiple scales is presented for the analysis of the (1+1)-dimensional seventh-order Korteweg-de 

Vries (KdV7) equation and we derive nonlinear Schrödinger (NLS) type equation. Also we found the exact solutions for (1+1)-

dimensional KdV7 equation by using the  

G
G

expansion method. These methods are very simple and effective for getting 

integrability and exact solutions of KdV type equations. 

 

Keywords: Multiple scales method, KdV7 equation,  

G
G
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1. INTRODUCTION 
 

The Korteweg-de Vries (KdV) equation was derived in various physical contexts. The Korteweg-de 

Vries (KdV) equation can also be stated as modelling the one-sided breeding of small amplitude long 

wavelength gravity waves in a shallow channel. The Korteweg-de Vries (KdV) equation is attained at 

definite approximation degree in all cases and so it can’t be accepted that it represents physical reality with 

perfect accuracy. Thus, one important question that emerges is what happens to the solutions of Korteweg-

de Vries (KdV) when perturbations, resulting from the terms neglected in its derivation, are operated. For 

example, it can be asked whether the perturbed Korteweg-de Vries (KdV) equation has a solitary-wave-

type solution. The answer would be related to physical origin and nature of the perturbation. 

 

That multiple scales analysis of the Korteweg-de Vries (KdV) equation cause to the Nonlinear 

Schrödinger (NLS) equation for the regulated amplitude is widely known. [1-5]. In [1] Zakharov and 

Kuznetsov indicated a much deeper correspondence between these integrable equations not only at the 

level of the equation, but also at the level of the linear spectral problem by showing that a multiple scales 

analysis of the Schrödinger spectral problem leads to the Zakharov-Shabat problem for the Nonlinear 

Schrödinger (NLS) equation. The same relationship between integrable fifth-order nonlinear evolution 

equations and NLS equation was also indicated by Dağ and Özer [6]. 
 

Traveling waves emerge in many physical structures in solitary wave theory such as solitons, cuspons, 

compactons, peakons, kinks and others. To find a certain travelling wave solutions of nonlinear 

evolution equations (NEEs), too many methods have been developed recently. To construct the 

travelling wave solutions of NEEs, the  
G

G -expansion method is simple, clear and proper among these 

methods. The method is based on the explicit linearization of nonlinear evolution equations for travelling 

waves with a certain substitution which leads to a second-order differential equation with constant 

coefficients. Besides, it transforms a nonlinear equation to a simplest algebraic computation [7]. The 

 
G
G -expansion method was used by Zhang et al. [8] and Aslan [9] to address some physically important 

nonlinear differential difference equations. Generalized  
G
G -expansion method was recommended by 
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Zhang et al. [10] to extend and develop the works of Wang et al. [11] and Tang et al. [12] in order to 

solve high-dimensional equations and variable-coefficient equations. To get new certain travelling wave 

solutions in the sense of modified Riemann Liouville derivative, the  
G
G -expansion method was applied 

to fractional differential difference equation [13]. 

 

The research was organized as follows. In Section 2 and in section 3, the method of multiple scales was 

expressed shortly and  
G
G -expansion method in turn. In Section 4, the family of seventh-order KdV 

equations were introduced. In section 5, these methods were implemented to  11 -dimensional 

seventh order Korteweg-de Vries Equation (KdV7) [14].  Conclusions were discussed in the last section. 
 

2. MULTIPLE SCALES METHOD 
 

In this section, we consider the application of the multiple scales method to NEEs. Using the technique 

of Zakharov and Kuznetsov [1], getting the NLS type equations from KdV type equations was shown 

step by step. 

 

Let consider the general evolution equation in the following form. 

 

                                                     ...,, yxt uuuKu                                                                     (2.1) 

Where  uK is a function of u  and its derivatives with respect to the x -spatial variables. The well-

known of this type equations are KdV equation.  
 

Let   uyxL  ,  are the linear part of  uK . So, using  uK we can reach the dispersion relation for 

the Equation (2.1). Substituting the wave solution space 

 

                                                                  

  





i

trkrykxi

k

Ae

Aeu



  ,

                                              (2.2) 

into the linear part of Equation (2.1) 

 

                                                                   uyxLut  ,                                                               (2.3) 

we get the dispersion relation 

 

                                                                irikiLrk ,,                                                              (2.4) 

 

Then, dispersion relation (2.4) is substituted in Equation (2.1). We assume the following series 

expansions for the solution of the Equation (2.1): 

                                                          ,,,,,,
1

tyxUtyxu n

n

n






                                            (2.5) 

 

Based on this solution, we also define slow space   and multiple time variable  with respect to the 

scaling parameter   > 0 respectively as follows. 
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 

 
t

dk

rkd

t
dk

rkd
x





















2

2
2

2
1

,

,







                                                   (2.6) 

 

A nonlinear equation modulates the amplitude of this plane wave solution in such a way that may 

consider it depend upon the slow variables. If we choose the slow variables different forms, we can 

derive higher order NLS equations. The multiple scales analysis starts with the assumption: 
 

                                                               ,,,,,, tyxUtyxu                                                    (2.7) 

 

and solution of U  is in the form  
 

                                                   ...)(,,,, 3

3

2

2

1  UUUtyxU                                  (2.8) 

 

Then, considering transformation (2.7) and solution (2.8), using dispersion relation (2.4) and slow 

variables (2.6), we get u  and its derivatives with respect to   in Equation (2.1). And we substitute these 

terms with (2.7) and (2.8) in the Equation (2.1). Collecting all terms with the same order of   together, 

the left hand side of Equation (2.1) is converted into a polynomial in .  Then setting each coefficient 

of this polynomial to zero, we get a set of algebraic equations. Using wave solution space (2.2) and 

dispersion relation (2.4), these equations can be solved by iteration and by use of Maple. So we can get 

NLS type equations from Equation (2.1). Also, from this procedure we can reach numerical solutions of 

KdV type equations. 

 

3.  
G
G -EXPANSION METHOD 

 

We can describe the  
G
G -expansion method step by step as follows [11, 15, 16]: 

Let consider nonlinear partial differential equation 

 

                                    ,0,,,,, xxttxt uuuuuP                                                (3.1) 

in the form where P  is a polynomial of  txu , and its derivatives. 

Step 1: The traveling wave transformation 
 

                                                                ctkxUtxu   ,,                                              (3.2) 

 

where 𝑐 is the wave speed, k is the wave number. The travelling wave transformation for the travelling 

wave solutions of Equation (3.1). With this wave transformation Equation (3.1) can be reduced to  
 

                                                            ,0,,,,, 22  UkUcUkUcUQ                                  (3.3) 

 

ordinary differential equation where  UU   and prime denotes derivatives with respect to  . 

Step 2: We predict the solution of (3.3) equation in the finite series form 
 

                                          
 
 

,0,
0








 




m

l

l

m

l G

G
U 




                                     (3.4) 
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where m is a positive integer to be determined and l 's are constants to be determined later,  G  

satisfies a second order linear ordinary differential equation: 
 

                                                              
   

  ,0
2

2

 








G

d

dG

d

Gd
                                    (3.5) 

 

where   and   are arbitrary constants. Using the general solutions of Equation (3.5), we get following 

cases: 
 

                                   
 
 
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
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
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




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04,

2
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2
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2

2
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)cosh()sinh(

2
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2

24
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1

2
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22

24

1
2

2
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22

42

1

2
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1
2





























CC

CC

CC

CC

G

G               (3.6) 

 

where 1C  and 2C  are arbitrary constants. 

Step 3: We can easily determine the degree m  of Equation (3.4) by using the homogeneous balance 

principle for the highest order nonlinear term(s) and the highest order partial derivative of  U  in 

Equation (3.3). 

 

Step 4: As a final step, substituting (3.4) together with (3.5) into Equation (3.3) and collecting all terms 

with the same order of 
 
  ,


G

G
 the left hand side of Equation (3) is converted into a polynomial in 

 
  


G

G

. For example, for 1m in Equation (3.5) is in the form 

 

          
   

       ,0
2

2










GGGG

d

dG

d

Gd
                   (3.7) 

where 

                                                             
 
 

,10 






 







G

G
aaU                                                   (3.8) 

 

so we get 

                                            2

1 G
G

G
GaU                       (3.9) 

and 

 

                                   
       



322

1 232 G
G

G
G

G
GaU   

                             (3.10) 

 

as polynomials of  
G
G . As a final step, substituting Equations. (3.4) and (3.8 - 3.10) together with (3.5) 

into Equation (3.3) and collecting all terms with the same order of  
G
G together, the left hand side of 

Equation (3.3) is converted into a polynomial in  
G
G . Equating each coefficient of  l

G
G  ,...)2,1,0( l  

to zero yields a set of algebraic equations for “ ),...,2,1,0( Nll  , k , c ”. Solving these algebraic 
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equations system, we can define “ ),...,2,1,0( Nll  , k , c ”. Finally, we substitute these values into 

expression (3.4) and obtain various kinds of exact solutions to Equation (3.1) by use of Maple. 
 

4.  11 -DIMENSIONAL KdV7 EQUATION 

 

Take into consideration the family of seventh-order KdV equations [17], 
 

                             

xxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxt

ugufuueuu

uduucuubuauuuu

33

2





                          (4.1) 

 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 and 𝑔 are non-zero parameters. Special cases of (4.1) are known in the literature. 

For 21a , 42b , 63c , 126d , 378e , 63f , 252g   

 

                       

xxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxt

uuuuuu

uuuuuuuuuu

33

2

25263378

126634221





                         (4.2) 

 

the equation (4.1) degrades to the SK-Ito equation, because of seventh-order Sawada-Kotera-Ito 

equation (4.2). For 42a , 147b , 252c , 504d , 2268e , 630f , 2016g   

 

                       

xxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxt

uuuuuu

uuuuuuuuuu

33

2

20166302268

50425214742





                  (4.3) 

 

the equation (4.1) pertains to the Kaup-Kupershmidt hierarchy (4.3) [18, 19]. For 14a , 42b , 

70c , 70d , 280e , 70f , 140g   

 

                        

xxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxt

uuuuuu

uuuuuuuuuu

33

2

14070280

70704214





                         (4.4) 

 

the equation (4.1) pertains to the KdV hierarchy studied by Lax (4.4) [20]. 

 

5. APPLICATIONS 

 

In this section, we apply multiple scales method and  
G
G -expansion method summarized in section 2 

and section 3 to  11  dimensional KdV7 Equation (4.4). To find dispersion relation for (4.4), we 

consider the linear part of (4.4) in the form 
 

                                                               xxxxxxxt uu                                                                (5.1) 

 

and linear differential Equation (5.1) satisfies the solution 
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                                                      tkwkxetxu i )(,),(                                                 (5.2) 

Substituting the solution (5.2) into the linear differential Equation (5.1), we get 

 

                                                       )(7)( wtkxiwtkxi ekwe                                                         (5.3) 
and from this we reach the 
 

                                                              7)( kkw                                                                  (5.4) 

 

dispersion relation. Thus the solution of linear differential Equation (5.1) is as follows: 
 

                                                           
)( 7

),( tkkxietxu                                                            (5.5) 
 

Let the solution of Equation (4.4) is in the form 
 

                       ...),,,(,),,,(),( 3

3

2

2

1  UUUtxUtxUtxu                       (5.6) 

 

and slow variables are in the form 
 

                                                           

tk

t

tkx

tx

dk

kwd

dk

kdw

52

)(2

2
1

6

)(

21

)(

)7(

)(

2

2

















                                                 (5.7) 

 

Then using (5.4-5.7), the terms included derivative in (4.4) are obtained as follows: 
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
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

7654

32

54

32

432

32

2

526

72135

35217

5

10105

464

33

2

217

xxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx

xxxxxxxxx

xxxxx

tt

xx

D

D

D

D

D

kkD

D

                                     (5.8) 

 

Substituting (5.6) and (5.8) into the (4.4), we get a polynomial in  . Equating each coefficient of this 

polynomial to zero, we find 
 

                                                  011  xxxxxxxt uu                                                        (5.9) 
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6
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                      (5.10) 
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5
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3
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


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xxxxxxx

xxxxxxxxxxxxx

xxxxxxxxxxxxx
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




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                                (5.11) 

 

Then, we can find the solution of (5.9) as follows 

 

                                     
)(

1

)(

11

77

),(),(),,,( tkkxitkkxi evevtxu 



                               (5.12) 
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where 1v  is complex conjugate of 1v . Substituting the solution (5.12) into (5.10), the solution of (5.10) 

is in the form, 

 

                           ),(),(),(),,,( 1

)(2

2

)(2

22

77

 fevevtxu tkkxitkkxi  




                  (5.13) 

 

where 1f (  , ) is integration constant. Thus we get 

 

                                       2

2
1

2

2
1 ),(

2
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2 ),(,),(
k

v

k

v
vv


  

                              (5.14) 

 

where  1v   is the complex conjugate of  1v   and  2v   is the complex conjugate of 2v . Substituting 

solutions (5.11), (5.13) and (5.14) into the (5.11), we find the solution of (5.11) in the form 
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3

)(2

2
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3

)(3
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
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                            (5.15) 

 

where 
2f (  , ) and  3f  (  , ) is integration constant. Then we get 
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and 
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2
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3

2

2

2

1
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k
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k
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k
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f
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




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


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                                                (5.17) 

 

where 3v  and 3f are the complex conjugates of 3v  and 2f respectively. Thus, the solutions of 

(5.9) - (5.10) are obtained as 
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               (5.18) 

 

where 
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                                                                 tkkx 7                                                       (5.19) 

 

Finally, substituting the solutions (5.18) into (5.11), we get 
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2
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2

2
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k

k



 
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                                               (5.20) 

 

Describing as k

v
q 1  and k

v
q 1

1
  (5.20) equation we get the  11 -dimensional NLS type 

equations in the form 

 

                                                               22 qqqiq                                                     (5.21) 

 

Also, numerical solution of the  11 -dimensional KdV7 equation (4.4) is found as 

 

             

)),(),((

)),(),(2

),(),(2()),(

),(),(),(2(

)),(),((),(

)(33

1

)(33

1

3

4
3

)(2

11

)(23)(22

1

)(22

1

2

)(

1

)(

77

7

77

7

77

tkkxitkkxi

tkkxi

tkkxitkkxi

tkkxi

tkkxitkkxi

eqeqk

eqiq

eqiqkeq

eqqq

eqeqktxu














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
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


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
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


                        (5.22) 

 

where q  is solution of NLS equation. 

Using the travelling wave transformation (5.23)  

 

                                                   ctkxUtxu   ,)(),(                                            (5.23) 

 

Equation (4.4) turns into 

 

        

01442

7070280)(70140

)7(7)5(5)4(5
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





UkUUkUUk
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          (5.24) 

 

ordinary differential equation. Suppose that the travelling wave solution of Equation (5.24) is in the 

form 
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
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G

G

l

m

l
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                                    (5.25) 
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According the homogeneous balance procedure, in Equation (5.24) balancing the highest order 

derivative term 
 7U  and the highest order nonlinear term   5

UU , we get 

 

                                                                     )5()7( UUU                                                     (5.26) 
 

                                                               

2

57


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m

mmm

                                                (5.27) 

Thus substituting (5.27) into (3.4), the travelling wave solution of Equation (5.24) is found as 
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
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G
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

G

G

G

GU                         (5.29) 

where  1,0ll  are constants to be determined later and  G  satisfies second order linear ordinary 

differential equation 
 

                                                             ,0  GGG                                         (5.30) 

 

where  and   are arbitrary constants. Using (5.30) and (5.28) the derivatives in Equation (5.24) are 

obtained as follows: 
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G
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             (5.31) 

 

If we solve this system by Maple, then we get 
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                    (5.32) 

 

Thus, hyperbolic and trigonometric solutions of Equation (5.24) are found as follows: 

i) For 042   , 
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Substituting (5.32) and (3.6) into (5.28) we get hyperbolic function solutions of Equation (5.24) 
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where 1C  and 2C  are arbitrary constants. From (5.34) using   
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we obtain for   , 
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ii) For 042   , 

 

Substituting (5.32) and (3.6) into (5.28) we find trigonometric function solutions of Equation (5.24) 
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where 1C  and 2C  are arbitrary constants. From (5.36) using 
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we obtain for   , 
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where 
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iii) For 042   , 

 

Substituting (5.32) and (3.6) into (5.28) we find trigonometric function solutions of Equation (5.24) 
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where 1C  and 2C  are arbitrary constants. From (5.36) using 
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we obtain for   , 
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6. CONCLUSION 

 

A robust multiple scales method was developed to solve nonlinear evolution equations. The relationship 

between NLS equation and KdV7 equation and the solutions of the KdV7 equation were also examined. 

In this study we only studied on deriving NLS type equations from KdV type equations and their 

solutions by use of multiple scales method. Application of the method to recursion operators of KdV7 

equation and to the spectral problems can be investigated in future studies. Additionally, in the study, 

the  
G
G -expansion method was used to find certain travelling wave solutions of  11 -dimensional 

KdV7 equation. It can be stated that the performance of the method is simple, reliable and these methods 

emerge new hyperbolic and trigonometric type certain solutions. The implementation of the methods is 

clear, simple and it can also be applied to other NEEs fractional differential equations and differential 

difference equations. Lastly, it is worth mentioning that the implementation of these proposed methods 

is very simple and straightforward, and it can also be applied to many other NEEs, differential difference 

equations and fractional differential equations. The details about these methods and their applications 

to other NEEs are given in [21]. 
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