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Abstract 
The aim of this paper is obtaining the exact solutions of the Bogoyavlenskii equation and the modified 
KdV-Zakharov-Kuznetsev equation with the help of the exp(-φ(ζ))-expansion method. Solutions are 
obtained with different forms of functions as hyperbolic, trigonometric and rational functions. 
Discussed method is useful for obtaining solutions of nonlinear  equations in mathematical physics and 
engineering. 

 

Lineer Olmayan Kısmi Diferensiyel Denklemlerin exp(-φ(ζ))-
Açılım Metodu ile Tam Çözümleri 
 
Anahtar kelimeler 

Tam çözümler; 
Sembolik hesaplama; 

Kısmi diferensiyel 
denklemler. 

Özet 
Bu çalışmada Bogoyavlenskii denklemi ve modifiye edilmiş KdV-Zakharov-Kuznetsev denkleminin tam 
çözümleri exp(-φ(ζ))-açılım metodu yardımıyla bulunmuştur. Bulunan çözümler birbirinden farklı 
fonksiyonlardır ve hiperbolik, trigonometrik ve rasyonel fonksiyonlar şeklinde ifade edilmiştir. Ele alınan 
yöntem matematiksel fizik ve mühendislikte kullanılan lineer olmayan denklemlerin çözümü için 
çözümlerinin bulunması için oldukça kullanışlıdır. 

© Afyon Kocatepe Üniversitesi 
 

 
1.Introduction 
 
Nonlinear partial differential equations (NLPDEs) 
with time t as one of the independent variables 
have become useful for natural phenomena of 
science and engineering. NLPDEs are not arise only 
from many fields of mathematics, but also from 
different discipline such as fluid mechanics, 
plasma physics, optical fibers, solid state physics, 
chemical kinematic, chemical physics and 
geochemistry. Exact solutions of nonlinear partial 
differential equations play an important role in 
many various areas of natural science. Studies of 
exact solutions of nonlinear partial differential 
equations are becoming attractive in nonlinear 
science. Therefore, many effective and powerful 
methods established and improved, such as Jacobi 
elliptic function method (Liu and Fan, 2005), 

Weierstrass elliptic function method (Achab, 
2016), Darboux and Backlund transform (Matveev 
and Salle, 1991), symmetry reduction method 
(Taşcan and Yakut, 2015; Bluman and Kumei, 
1989), the tanh method (Bekir and Çevikel, 2009), 
auxiliary method (Kaplan et al., 2015), extended 
tanh method (Wazwaz, 2008), sine-cosine method 
(Taşcan and Bekir, 2009), homogeneous balance 
method (Eslami et. al., 2014), variational iteration 
method (Ghaneai and Hosseini, 2016), exp-
function method (Zayed and Abdelaziz, 2011), the  

)/( GG′  -expansion method (Khan and Akbar, 
2014), the modified simple equation method 
(Kaplan et. Al., 2015), first integral method 
(Taghizadeh et. al., 2011), trigonometric function 
series method (Zhang, 2008), exp ( ))(ζφ−  
expansion method (Khan and Akbar, 2014;Khan 
and Akbar, 2013;Hafez et. al., 2014;Abdelrahman 
et. al., 2015). 
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In this paper, we will search the applicability and 
effectivity of the  ( ))(exp ζφ−  expansion 
method on nonlinear partial differential 
equations. 
In literature, exp ( ))(ζφ−  expansion method  is 
used for obtaining exact solutions of  partial 
differential equations. For example; modified 
Benjamin-Bona-Mahony equation by Khan and 
Akbar (Khan and Akbar, 2013), (1+1) dimensional 
Kaup-Kupershmidt equation by Roshid et. al. 
(Roshid et. al., 2015), generalized Hirota-Satsuma 
couple KdV system by Khater  (Khater,2016), 
Nonlinear Dynamics of Microtubules- A New 
Model and The Kundu- Eckhaus Equations by 
Zahran and Khater (Zahran and Khater, 2015). 
All obtained solutions are hyperbolic, 
trigonometric and rational function solutions. 
 In section 2, we will define needed preliminary 
information about the  ( )−− )(exp ζφ  expansion 
method. Next section, we will utilize this method 
to the Bogoyavlenskii equation and the modified 
KdV-Zakharov-Kuznetsev equation. For this 
application firstly we will reduce these nonlinear 
partial differential equations to nonlinear ordinary 
differential equations with wave variable  

wtyx −+=ζ  . Then, exact solutions will be 
obtained in the forms of hyperbolic, 
trigonometric, rational functions for given 
equations. We have seen that our obtained 
solutions more wider than other obtained 
solutions in literature (Malik et.al,2010;Najafi 
et.al, 2012;Naher et.al. 2013). 
 Finally, some conclusions will be given. 
 
2.The  ( ))(exp ζφ−  expansion method 
 
More and new exact wave solutions of NLPDEs can 
be obtain with the  ( ))(exp ζφ−  expansion 
method. In this section we will give necessary 
information about  ( ))(exp ζφ−  expansion 
method. 
Think that a nonlinear partial differential equation 
in the following form 

  0...),,,,,,,,,( =yyxytyxxxtttyxt uuuuuuuuuuP  
(1) 

where  tyx ,,  are independent variablaes and  
),,( tyxu   is dependent variable. We can use the 

wave variable  wtyx −+=ζ   (here  w   is 
constant) for reducing Eq. (1) to a nonlinear 
ordinary differential equation as 

0,...),,( =′′′ uuuQ                         (2) 
where the prime denotes the derivation with 
respect to  ζ  . 
We should take the solution of ODE (2) in the 
following form 

( )( )( )ii

n

i

u ζφαζ −= ∑
=

exp)(
0

              (3) 

here  ia    )0( ni ≤≤   are constants and they will 

be determined later,  0≠nα   , and the balance 
term  n   can be calculated by using homogeneous 
balance method between the highest order 
derivatives and the nonlinear terms appearing in 
ODE (2).  ( )ζφφ =   satisfies the following ODE 

( )( ) ( )( ) λζφµζφζφ ++−=′ expexp)(     (4) 
where  µλ,   are constants. 
Eq. (4) gives the following solutions; 
 

1) If we take  0,042 ≠>− µµλ  in ODE (4)  
we obtain following hyperbolic function solutions. 
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2) If we use  0,042 ≠<− µµλ  in ODE (4)  
we get following trigonometric function solutions. 
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and 
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3) When  ,0,0,042 ≠=>− λµµλ  rational 
function solution is given by  
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( ) ( )( ) .
1exp

ln5 







−+

−=
kζλ

λζφ             (9) 

 
4) When  ,0,0,042 ≠≠=− λµµλ  we get 
following solution 
 

( ) ( )( )
( ) .22ln 26 








+

++
−=

k
k

ζλ
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5) When  ,0,0,042 ===− λµµλ  solution is 
obtained in the following form 
 

( ) ( )k+= ζζφ ln7                     (11) 
 
where  k   is arbitrary constant and we will find 
values of  k   later. 
If we substitute Eq. (3) into Eq. (2), we have 
polynomial of function  ( )).exp( ζφ−  If we 
equate the coefficients of all same powers of  

( ))exp( ζφ−   to zero, we get a set of algebraic 
equations. Then we can find values of  

),0( nii ≤≤α    λ  , µ  ,  w  with the help of 
obtained a set of algebraic equations. Substituting 
these founded values into Eq. (3) along with 
solutions of Eq. (4), we find exact solutions of Eq. 
(1) (Hafez and Akbar, 2015). 
 
 
 
3.Applications 
 
3.1.The Bogoyavlenskii equation 
 
In this subsection we will deal with the 
Bogoyavlenskii equation. The Bogoyavlenskii 
equation is modified version of breaking soliton 
equation given by 

.0484 =+++ xxxyxxyxyxxt uuuuuu  
describes the (2+1)-dimensional interaction of a 
Riemann wave propagating along the y-axis with a 
long wave along the x-axis (Malik et. al., 
2012;Peng and Shen, 2006). Bogoyavlenskii 
equation is given in the following form 

.
0444 2

xy

xyxxyt

vuu
vuuuuu
=
=−−+

                (12) 

Now we will obtain Bogoyavlenskii equation's 
exact solutions with  ( ))(exp ζφ−  expansion 
method. Using the following transformation 

,),(),,( wtyxutyxu −+== ζζ       (13) 
we obtain 

.
0444 2

′′

′′′′′′

=
=−−+−
vuu

vuuuuwu
          (14) 

Integrating second ODE once with respect to  ,ζ   

then putting founded value of    in the first 
equation, the Sys. (14) reduces to following ODE 

064 2 =−+−
′′′′′

uuuwu                (15) 
and integrating founded ODE once with respect to  
ζ   and equating constant of integration to zero, 
the Eq. (12) reduces to following ODE 

042 3 =−−′′ wuuu                      (16) 
where the prime denotes the derivation with 
respect to  ζ  . Homogeneous balance is 1 in Eq. 
(16) and then  

( )).exp()( 10 ζφααζ −+=u            (17) 
When we substitute Eq. (17) with the help of Eq. 
(4) into Eq. (16), then equating the coefficients of  

( ) j)exp( ζφ−   to zero  ( )0≥j   , we get following 
system 
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From system (18), we get 
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         (19) 

We can find solution of Eq. (12) only using third 
and fourth cases in (19) because of  01 ≠α  . 
When 

  ,1,
2

,
28 10

2

±=±=+−= αλαµλw  

solution of Eq. (12) is given by 

( ) ( ))exp(1
2

ζφλζ −±±=u                 (20) 

where  
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 Substituting Eqs. (5-11) into Eq. (20), we obtain 
the following seven exactsolutions of Eq. (12). 
1) When  ;0,042 ≠>− µµλ   
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2) When  ;0,042 ≠<− µµλ   
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3.2.The modified KdV-Zakharov-Kuznetsev 
equation  
 
In this subsection we will deal with the (3+1) 
dimensional modified KdV-Zakharov-Kuznetsev 
equation's exact solutions. Think that the (3+1) 
dimensional modified KdV-Zakharov-Kuznetsev 
equation in the following form 

02 =++++ xzzxyyxxxxt uuuuuu α        (21) 
(Islam et. al., 2014). If we apply following 
transformation 

,),(),,( wtyxutyxu −+== ζζ  
to Eq. (21) and integrating founded ODE once with 
respect to  ζ  , we obtain following ODE 

0
3
13 3 =−+

′′

wuuu α                    (22) 

where the prime denotes the derivation with 
respect to  ζ   then setting constant of integration 
to zero. It is seen that homogeneous balance  

1=n  for ODE (22)  so we can search exact 
solution of Eq. (22) in the following form 
 

( )).exp()( 10 ζφααζ −+=u             (23) 
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If we substitute solution (23) into Eq. (22), then 
equating the coefficients of  ( ) j)exp( ζφ−   to zero  
( )0≥j   , we obtain 
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When Sys. (24) is solved, we get  
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We should use only third and fourth cases in (25) 
because of  01 ≠α  . 
When  
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solution can be given in the following form 
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where   
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Then we obtain the following seven exact 
solutions of Eq. (21). 
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where   
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5) When  ,0,0,042 ===− λµµλ   
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4.Conclusion 
In this paper, we used the  ( ))(exp ζφ−  
expansion method for obtaining new exact 
solutions of the Bogoyavlenskii equation and the 
modified KdV-Zakharov-Kuznetsev equation. After 
this application we obtained seven exact solutions 
for each equation. Solutions are obtained with 
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hyperbolic, trigonometric, rational solutions. We 
checked the correctness of the obtained solutions. 
Our results show that the method is reliable and 
effective. Also, it has been seen that our obtained 
solutions include other obtained solutions in 
literature. Obtained solutions can be useful for 
applications in mathematical physics and 
engineering. Thus, we conclude that method can 
be useful for solving the different nonlinear partial 
differential equations and nonlinear fractional 
order differential equations. 
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