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Abstract: We derive strong laws of large numbers for combinatorial sums
∑
iXniπn(i), where ‖Xnij‖

are n × n matrices of random variables with finite fourth moments and (πn(1), . . . , πn(n)) are uniformly
distributed random permutations of 1, . . . , n independent with X’s. We do not assume the independence of
X’s, but this case is included as well. Examples are discussed.
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1. Introduction
Let {‖Xnij‖ni,j=1}∞n=2 be a sequence of matrices of random variables and {πn}∞n=2 be a sequence

of random permutations of 1,2, . . . , n. Put

Sn =

n∑
i=1

Xniπn(i)

for all n> 2, where πn = (πn(1), πn(2), . . . , πn(n)). Sums Sn are called the combinatorial sums.
If distributions of centered and normalized combinatorial sums converge weakly to the normal

law, then one says that a combinatorial central limit theorem (CLT) holds true. If centered and
normalized combinatorial sums converge almost surely (a.s.) to a constant, then one says that a
combinatorial strong law of large numbers (SLLN) holds. Replacing strong convergence by conver-
gence in probability, one arrives at a combinatorial weak law of large numbers (WLLN).

One cannot construct an interesting theory without additional assumptions on type of depen-
dence of X’s and πn and their distributions. We follow a general line in which X’s and πn are
independent and πn has the uniform distribution.

Assume that for every n, components of ‖Xnij‖ are independent, matrix ‖Xnij‖ni,j=1 and per-
mutation πn are independent and πn has the uniform distribution on the set of permutations of
1,2, . . . , n. Moreover, we also assume that EXnij = cnij and

n∑
j=1

cnij = 0,
n∑
i=1

cnij = 0,

for all 1 6 i, j 6 n and n. In results for combinatorial sums, the last condition provides that
combinatorial sums Sn are centered at zero. Indeed,

EXniπn(i) =
1

n

n∑
j=1

cnij = 0.
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If σ2
nij =DXnij =EX2

nij − (EXnij)
2

for all 16 i, j 6 n and n> 2, then we have

Bn =DSn =
1

n− 1

n∑
i,j=1

c2nij +
1

n

n∑
i,j=1

σ2
nij,

for all n. Hence, the norming sequence in combinatorial CLT is
√
Bn.

One can easy derive sufficient conditions for the combinatorial CLT from Esseen inequalities
which give bounds for the accuracy of the normal approximation of distributions of Sn/

√
Bn.

One can find such inequalities in von Bahr [1], Ho and Chen [2], Botlthausen [3], Goldstein [4],
Neammanee and Suntornchost [5], Neammanee and Rattanawong [6], Chen and Fang [7] for X’s
with finite third moments. Earlier asymptotic results on combinatorial CLT may be found in
references therein. Frolov [8,9] derived generalizations of Esseen bounds for combinatorial sums to
the cases of finite moments of order 2 + δ, δ ∈ (0,1] and infinite variations. Moderate deviations for
combinatorial sums have been investigated in Frolov [10]. Esseen bounds for combinatorial random
sums may be found in Frolov [11].

Together with CLT and large deviations, SLLN plays an important role in probability and statis-
tics. In this paper, we derive the combinatorial SLLN. Note that properties of combinatorial sums
Sn for independent X’s are quite different from those of sums of independent random variables.
First, combinatorial sums are sums of dependent random variables. Second, many summands of
Sn and Sn+1 can be different even when ‖Xnij‖ is a sub-matrix of ‖Xn+1,i,j‖ with Xnij =Xn+1,i,j

for all 1 6 i, j 6 n. This is the result of randomness of permutations πn. It follows that we have
no monotonicity of combinatorial sums for positive X’s. Remember that monotonicity of sums of
positive i.i.d. random variables are essentially used in the proof of the Kolmogorov SLLN. We also
have no analogues of results on convergence of series of independent random variables. Moreover,
we will not assume the independence of X’s. This reduces our possibilities to prove strong limit
theorems for combinatorial sums. Therefore, we obtain bounds for forth moments of combinatorial
sums and apply the Borel–Cantelli lemma.

2. Combinatorial SLLN
Let {‖Xnij‖ni,j=1}∞n=2 be a sequence of matrices of random variables with EXnij = cnij for all

1 6 i, j 6 n and n> 2 and {πn}∞n=2 be a sequence of random permutations of 1,2, . . . , n. Assume
that for every n> 2, relation

cni. =
n∑
j=1

cnij = 0, cn.j =
n∑
i=1

cnij = 0, for all 1 6 i, j 6 n, (2.1)

holds, πn has the uniform distribution on the set of permutations of 1,2, . . . , n and ‖Xnij‖ and πn
are independent. For all n> 2, put

Sn =

n∑
i=1

Xniπn(i),

where πn = (πn(1), πn(2), . . . , πn(n)) .
Note that if condition (2.1) is not satisfied, then one can center X’s as follows. Put

X ′nij =Xnij −
1

n
cni.−

1

n
cn.j +

1

n2
cn.., where cn.. =

n∑
i,j=1

cnij.

It is not difficult to check that condition (2.1) holds with EX ′nij instead of cnij.
The next result is the combinatorial SLLN.
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Theorem 1. Suppose that the above assumptions hold and EX4
nij <∞ for all i, j and n. For

every n, put Cn = max
16i,j6n

EX4
nij and Mn = max

16i64
{mni}, where

mn1 = max
16i 6=j 6=k 6=l6n

{|
∑

p 6=q 6=r 6=s

(EXnipXnjqXnkrXnls− cnipcnjqcnkrcnls)|},

mn2 = max
16i 6=j 6=k6n

{|
∑
p 6=q 6=r

(EX2
nipXnjqXnkr−EX2

nipcnjqcnkr)|},

mn3 = max
16i 6=j6n

{|
∑
p 6=q

(EX2
nipX

2
njq −EX2

nipEX
2
njq)|},

mn4 = max
16i 6=j6n

{|
∑
p 6=q

(EX3
nipXnjq −EX3

nipcnjq)|}.

Let {bn}∞n=2 be a sequence of positive constants. Assume that the series
∑

n(Cnn
2 +Mn)b−4n con-

verges.
Then

Sn
bn
→ 0 a.s. (2.2)

Proof. For all natural n and k, denote (n)k = n(n− 1) · . . . · (n− k+ 1).
Put ξi =Xniπn(i) for 1 6 i6 n. We have

ES4
n =

n∑
i=1

Eξ4i + 4
∑
i6=j

Eξ3i ξj + 3
∑
i 6=j

Eξ2i ξ
2
j + 6

∑
i6=j 6=k

Eξ2i ξjξk +
∑

i6=j 6=k 6=l

Eξiξjξkξl, (2.3)

where 16 i, j, k, l6 n in the last four sums. Since X’s and πn are independent and πn is uniformly
distributed, we get

Eξiξjξkξl =
1

(n)4

∑
p 6=q 6=r 6=s

EXnipXnjqXnkrXnls.

Hence,

|Eξiξjξkξl|6
1

(n)4
Mn +

1

(n)4
|T0|, where T0 =

∑
p 6=q 6=r 6=s

cnipcnjqcnkrcnls.

It is clear that

T0 =
n∑
p=1

∑
q:q 6=p

∑
r:r 6=p,q

∑
s:s 6=p,q,r

cnipcnjqcnkrcnls.

By condition (2.1), we have ∑
s:s6=p,q,r

cnls =−(cnlp + cnlq + cnlr).

It follows that

T0 =−
n∑
p=1

∑
q:q 6=p

∑
r:r 6=p,q

cnipcnjqcnkr (cnlp + cnlq + cnlr)

=−
n∑
p=1

∑
q:q 6=p

cnipcnjq (cnlp + cnlq)
∑

r:r 6=p,q

cnkr−
n∑
p=1

∑
q:q 6=p

cnipcnjq
∑

r:r 6=p,q

cnkrcnlr =−T1−T2
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for all i 6= j 6= k 6= l. Using again condition (2.1), we have

T1 =−
n∑
p=1

∑
q:q 6=p

cnipcnjq (cnlp + cnlq) (cnkp + cnkq) .

By the Lyapunov inequality, it follows that |cnij|6 (E|Xnij|4)1/4 6C1/4
n . It yields that

|T1|6 4n2Cn.

Furthermore,

T2 =
n∑
p=1

∑
q:q 6=p

cnipcnjq

(
n∑
r=1

cnkrcnlr− (cnkpcnlp + cnkqcnlq)

)

=

(
n∑
r=1

cnkrcnlr

)
n∑
p=1

cnip
∑
q:q 6=p

cnjq −
n∑
p=1

∑
q:q 6=p

cnipcnjq(cnkpcnlp + cnkqcnlq)

=−

(
n∑
r=1

cnkrcnlr

)
n∑
p=1

cnipcnjp−
n∑
p=1

∑
q:q 6=p

cnipcnjq(cnkpcnlp + cnkqcnlq).

In the last equality, we have applied condition (2.1). Using again inequalities |cnij|6C1/4
n , we get

|T2|6 3n2Cn.

Therefore, for all i 6= j 6= k 6= l, inequalities

|Eξiξjξkξl|6
1

(n)4
(7n2Cn +Mn) (2.4)

hold. For all i 6= j 6= k, we have

Eξ2i ξjξk =
1

(n)3

∑
p 6=q 6=r

EX2
nipXnjqXnkr

and

|Eξ2i ξjξk|6
1

(n)3
Mn +

1

(n)3
|T3|, where T3 =

1

(n)3

∑
p 6=q 6=r

EX2
nipcnjqcnkr.

We get by condition (2.1) that

T3 =
1

(n)3

n∑
p=1

∑
q:q 6=p

EX2
nipcnjq

∑
r:r 6=p,q

cnkr =− 1

(n)3

n∑
p=1

∑
q:q 6=p

EX2
nipcnjq (cnkp + cnkq) .

Since EX2
nij 6 (EX4

nij)
1/2 6

√
Cn and |cnij|6C1/4

n for all i and j, the latter implies that

|Eξ2i ξjξk|6
1

(n)3
(2n2Cn +Mn) (2.5)

for all i 6= j 6= k.
For all i 6= j, we get

Eξ2i ξ
2
j =

1

(n)2

∑
p 6=q

EX2
nipX

2
njq, Eξ3i ξj =

1

(n)2

∑
p 6=q

EX3
nipXnjq,
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and

Eξ2i ξ
2
j 6

1

(n)2
Mn +

1

(n)2

∑
p 6=q

EX2
nipEX

2
njq,

|Eξ3i ξj|6
1

(n)2
Mn +

1

(n)2

∑
p 6=q

EX3
nipEXnjq.

Applying inequalities |cnij|6C1/4
n , EX2

nij 6
√
Cn and |EX3

nij|6 (EX4
nij)

4/3 6
√
Cn for all i and j,

we have

Eξ2i ξ
2
j 6

1

(n)2
(n2Cn +Mn), |Eξ3i ξj|6

1

(n)2
(n2Cn +Mn), (2.6)

for all i 6= j.
Finally, for every i, we get

Eξ4i =
1

n

n∑
p=1

EX4
nip 6Cn. (2.7)

Substituting bounds (2.4)–(2.7) in equality (2.3), we have

ES4
n 6 nCn + (4 + 3 + 12 + 7)n2Cn + 4Mn 6 27(n2Cn +Mn).

It follows that

∞∑
n=1

P (|Sn|> εbn) 6
∞∑
n=1

ES4
n

ε4b4n
6 27

∞∑
n=1

n2Cn +Mn

ε4b4n
<∞

for all ε > 0. By the Borel–Cantelly lemma, we obtain

Sn
bn
→ 0 a.s.

Note that
∑

nDSnb
−2
n <∞ is a sufficient condition for relation (2.2). For independent X’s,

Mn = 0 and, using formula for DSn from Section 1, we see that DSn has an order n in various
partial cases. So, if bn = n, the last series always diverges while the series from Theorem 1 can
converge. For example, the latter holds for bounded (uniformly over n) random variables.
Remark 1. One can find further conditions sufficient for combinatorial SLLN by applications

of bounds for ES2k
n with k> 3 which may be derived in the same way as before.

Condition (2.1) is symmetric relatively to rows and columns of matrices of means. Substituting
in (2.3) the formulae for the expectations, we can interchange sums over numbers of rows and
columns. Further, we can apply the second equality in (2.1) instead of the first one. Hence, we
arrive at the next remark.
Remark 2. In Theorem 1, one can interchange indices in maxima and sums in the definitions

of mn1, . . . ,mn4.
Theorem 1 yields the following result.

Corollary 1. If the conditions of Theorem 1 hold and series
∑

n(n2Cn +Mn)n−4p converges
for some p > 0, then

Sn
np
→ 0 a.s.
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Note that if the series from Corollary 1 diverges, then its conclusion can fail. Indeed, let {ηn}
be a sequence of independent random variables such that P (ηn = np) = P (η =−np) = 1/2 for all
n. Put Xnij = ηi for all i, j and n. Then Cn =Eη4n = n4p, Mn = 0 and

Sn = η1 + η2 + · · ·+ ηn.

Assuming that n−pSn→ 0 a.s., we have

ηn
np

=
Sn
np
− Sn−1

(n− 1)p
· (n− 1)p

np
→ 0 a.s.

that contradicts to relation P (n−pηn = 1) = 1/2 for all n.
It is clear that Mn = 0 provided every quadruple of different elements of matrices ‖Xnij‖ is a set

of independent random variables. Moreover, Mn = 0 when rows of ‖Xnij‖ are independent while
elements of one row may be dependent.

These conditions are much more less than mutual independence, but it is useful to have an
example with positive Mn.

To this end, we consider matrices ‖Xnij‖ with m-dependent rows, where m is a fixed natural
number. The latter means that i-th and k-th rows are independent when |i− k| >m. (The case
m= 0 correspond to independence.) At the same time, we do not assume that random variables of
one rows are independent.

Note that there is a simple way to construct such matrix. Take matrix ‖Xnij‖ of independent
random variables and replace every even row by previous odd ones. Then rows will be 1-dependent.
The construction for m> 1 follows the same pattern.

For simplicity, put m= 1 and assume that Cn = C for all n. It is clear, that all items of sums
in the definitions of mni are bounded by 2C and many of them equal to zero by independence of
”far” rows. The number of zero items in mn1 is bounded from below by n(n− 2)(n− 4)(n− 6).
Hence, the number of non-zero items is less than (n)4−n(n− 2)(n− 4)(n− 6) =O(n3) as n→∞.
It follows that mn1 =O(n3) as n→∞. Maxima mn2, mn3 and mn4 have the same or smaller order.
So, the series in Theorem 1 converges provided series

∑
n n

3b−4n converges. By Theorem 1, we have

Sn
n(lnn)q

→ 0 a.s.

for all q > 1/4.
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